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Abstract

Bipartite graphs have long been used to study and model matching problems, and in this

paper we introduce the bipartite graphs that explain a recent matching problem in computa-

tional biology. The problem is to match haplotypes to genotypes in a way that minimizes the

number of haplotypes, a problem called the Pure Parsimony problem. The goal of this work is

not to address the computational or biological issues but rather to explore the mathematical

structure through a study of the underlying graph theory.
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1 Introduction

The burgeoning field of computational biology is advancing the science of genetics and transforming
traditional ‘wet lab’ research into computational efforts. The preponderance of the current research
emphasizes computational aspects, which have made significant strides in projects such as the human
genome project. These advances have the potential of redefining standard medical practice and have
already proven to be a significant contribution to mankind.

One of the problems currently receiving attention is that of describing how genetic diversity
propagates from one generation to the next. Such problems are called haplotyping problems, and a
brief biological description is warranted. Genes are sequences of DNA that code for specific traits,
with the vast majority of DNA being common among all individuals. The locations on the genome
where diversity occurs are called single nucleotide polymorphisms (SNPs). Diploid organisms like
humans have two distinct copies of each gene, one from each parent, which together describe a trait.
A collection of SNPs in a single copy of a gene is called a haplotype, and a pair of haplotypes forms
a genotype. Each SNP of a haplotype is in one of two states, denoted by −1 or 1, that corresponds
to the two distinct nucleotide base pairs of the DNA. Each SNP of a genotype is in one of three
states, −2, 0, or 2, where the SNP is −2 (resp, 2) if and only if each of the haplotypes that form
the genotype have a −1 (resp. 1) at that SNP, and the SNP is 0 if and only if one of the haplotypes
has a −1 and the other a 1 at that SNP.

Biologists are capable of efficiently determining an individual’s genotype, but it is difficult and
costly to determine the haplotypes. However, haplotypes are more valuable to biologists, and a
haplotyping problem is to calculate the haplotypes knowing only the genotypes. In particular,
finding small collections of haplotypes that explain the genotypes is biologically relevant. The
problem of finding a smallest collection of haplotypes is called the Pure Parsimony problem and
empirical evidence suggests that these minimum solutions naturally occur. The initial investigations
into haplotyping were undertaken by Clark in [5], and since then there has been flourish of activity
addressing computational issues [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Theoretically
we know that the parsimony problem is APX-hard and that practically it is difficult to solve on large
data sets. Our goal is not directly computational, and instead we address the underlying structure
of the problem through graph theory. We do solve the pure parsimony problem in a few well-defined
instances.

2 Notation, Definitions and Preliminary Results

The results of this paper are graph theoretical, and a basic understanding of bipartite graph theory
is expected. We point readers to [1] for a thorough development. The degree and neighborhood of
node v are denoted by deg(v) and N(v), respectively. The vector of ones is denoted by e, where
length is decided by the context of its use. If x is a vector, then diag(x) is the symmetric matrix
whose diagonal elements correspond to x and whose off-diagonal elements are zero. So, diag(e) is
the identity matrix. For any real number C we define C+ = max{C, 0}.

We assume that haplotypes are of length n and that SNPs are indexed by i = 1, 2, . . . , n. The
set of all possible haplotypes of length n is the collection of sequences H = {−1, 1}n. Similarly, the
collection of all genotypes of length n is {−2, 0, 2}n. The arithmetic of mating haplotypes to form a
genotype is simply coordinate-wise addition. So, if the maternal haplotype is (−1, 1,−1, 1) and the
fraternal haplotype is (1, 1,−1,−1), the genotype is

(−1, 1,−1, 1) + (1, 1,−1,−1) = (0, 2,−2, 0). (1)
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We extend this coordinatewise addition so that we can generally add elements in {−2,−1, 0, 1, 2}n.
Let a, b ∈ {−2,−1, 0, 1, 2} and define ⊕ so that

a ⊕ b =







−2, a < 0, b < 0
2, a > 0, b > 0
0, otherwise.

This binary operator is commutative, and to add elements of {−2,−1, 0, 1, 2}n we perform the
operation componentwise. For example,

(−1, 1,−1, 1)⊕ (1, 0,−2, 1)⊕ (1,−1,−1, 1) = (0, 0,−2, 2).

Notice that ⊕ reduces to the typical addition in (1) if the terms on the left are in {−1, 1}4. Un-
fortunately, ⊕ does not generally satisfy a cancellation rule since a ⊕ 0 = b ⊕ 0 does not mean that
a = b. For much of the paper simple addition as described in (1) is sufficient, and to distinguish ⊕
from + we use + in all instances where it appropriate.

SNP values of 0 are called ambiguous because the orientation of the 1 and −1 in the parental
donations could be reversed. The question we address begins with a collection of genotypes and asks
us to construct a collection of haplotypes that form the genotypes under this arithmetic. If there
were no ambiguous SNPs, this process would be trivial, and hence, we assume that each genotype
has at least one ambiguous SNP. The subset of {−2, 0, 2}n with this property is denoted G. For
any G′ ⊆ G, we say H′ ⊆ H is a solution to G′ if, for all g ∈ G′, there exist h′,h′′ ∈ H such that
g = h′ + h′′. A solution H to G′ is minimal if H\{h} is not a solution to G ′, for all h ∈ H. We say
H is a minimum solution if there exists no solution H′ to G′ such that |H′| < |H|.

Our intent is to study the underlying graph theory of finding solutions, and we introduce the
concept of a Diversity Graph. Informally, a diversity graph is a labeled (or colored) bipartite graph
with one set of nodes representing genotypes, the other set representing haplotypes, and edges
representing the possible relationships between them.

Definition 2.1. For H′ ⊂ H and G′ ⊂ G, a bipartite graph (V ,W , E), and functions η : V → H′

and γ : W → G′, we say (V ,W , E , η, γ) is a diversity graph on n SNPs if

1. η and γ are one-to-one,

2. for each w ∈ W, there exists some v ∈ V such that (v, w) ∈ E, and

3. E has the property that if (v′, w) ∈ E, there exists some v′′ ∈ V\{v′} such that (v′′, w) ∈ E and

h′ + h′′ = g, where h′ = η(v′), h′′ = η(v′′), and g = γ(w).

The requirement that η and γ be one-to-one ensures that each haplotype and genotype are
represented by exactly one node. The rest of the definition guarantees that H′ is a solution to G′. If
η(v′) + η(v′′) = γ(w), we say that v′ and v′′ or η(v′) and η(v′′) are mates for w or γ(w). Notice that
a diversity graph is a labeled bipartite graph, and we make the distinction between the structure
represented by the graph and the biology represented by the labeling. The elements of H and G are
denoted by h and g or by η(v) and γ(w), where v and w are elements of V and W . Different elements
of H and G are indicated with superscripts and SNP locations are indicated with subscripts. We
say that a bipartite graph supports diversity if there are sets H′ ⊆ H and G′ ⊆ G, and functions η
and γ that fulfill the definition.

An important observation is that the pure parsimony problem as stated assumes that G ′ is known,
that η(V ) = H and that E is as large as possible. However, the parsimony problem makes sense on
other graphs, and in general we address the problem of starting with a diversity graph (V ,W , E , η, γ)
and finding a smallest subset of V , say V ′, such that
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• η(V ′) is a solution to γ(W) = G ′, and

• if v′ and v′′ are in V ′, then they are allowed to mate and form w if and only if (v′, w) and
(v′′, w) are in E .

So, when we say that H is a minimal or minimum solution we mean that it is a solution with respect
to a diversity graph. If V and η are such that η(V) = H and E is as large as possible, then we are
considering the original parsimony problem.

Before continuing with an investigation into the bipartite graphs that support diversity, we
establish some general results about diversity graphs. The first of these results shows how to order the
elements of H so that we can conveniently pair them to form the genotype (0, 0, . . . , 0). The imposed
ordering is lexicographic, meaning that (h1,h2, . . . ,hn) < (h′

1,h
′
2, . . . ,h

′
n) if the first component with

different values satisfies hi < h′
i. The proof of this lemma is simple and omitted.

Lemma 2.1. If the elements of H are ordered lexicographically, then for unique i and j between 1
and 2n we have that hi + hi+1 6= hj + hj+1 and that hj + h(2n−j+1) = (0, 0, . . . , 0).

Since haplotypes mate in unique pairs to form a genotype, the degree of every node in V is even.
An immediate consequence of this observation is that not every bipartite graph supports diversity.
Moreover, even if every node of a bipartite graph has even degree it does not mean the graph
supports diversity. As an example, the complete bipartite graph K2,2 does not support diversity
because any η and γ that satisfies the third and fourth conditions of the definition violates the fact
that γ is one-to-one. Theorem 2.1 does not characterize the graphs that support diversity, but it
does establish a necessary condition.

Theorem 2.1. Let (V ,W , E , η, γ) be a diversity graph. Let w1 and w2 be in W, with w1 6= w2.

Then,

max{deg(w1), deg(w2)} ≥ 2|N(w1) ∩ N(w2)|.

Proof. Let H′ = {η(v) : v ∈ N(w1) ∩ N(w2)} and assume to the contrary that

max{deg(w1), deg(w2)} < 2|H′|.

Since haplotypes mate in unique pairs, there must be fewer than |H′| pairs of haplotypes mating to
form each of γ(w1) = g1 and γ(w2) = g2. It follows that there exists h1,h2,h3 and h4 in H′ such
that h1 + h2 = g1 and h3 + h4 = g2. Suppose that g1

j = 2, which means hj = 1 for all h ∈ H′. It

follows that g2
j = 2. Similarly, if g1

j = −2, we have that g2
j = −2. Suppose that g1

j = 0. Then g2
j can

not be 2 or −2 because if so, the same argument would guarantee that g1
j is 2 or −2, respectively.

We conclude that g2
j = 0. Since j was arbitrary, we have the contradiction that g1 = g2.

We now turn our direction to a matrix equation that is satisfied by every diversity graph. Con-
sider the diversity graph (V ,W , E , η, γ), where |V| = m and |W| = k. List the elements of V as
v1, v2, . . . , vm and W as w1, w2, . . . , wk, and assume that η(vi) = hi and γ(wi) = gi. Let H be the
m × n matrix so that H(i,j) = hi

j , and let G be the k × n matrix defined by G(i,j) = gi
j . Also let E

be the m× k biadjacency matrix —i.e. E(i,j) = 1 if (vi, wj) ∈ E and E(i,j) = 0 otherwise. Note that
the column sums of E must be even from the definition of a diversity graph.

The k×n matrix product ET H aggregates the mating structure for each genotype. Without loss
of generality, let E(1,i) = E(2,i) = . . . = E(t,i) = 1 and E(t+1,i) = E(t+2,i) = . . . = E(m,i) = 0. Then
the ith row of ET H is η(v1) + η(v2) + . . . + η(vt). From the definition of a diversity graph we know
there are t/2 disjoint pairs, (vp, vq), with p and q no greater than t, such that η(vp)+η(vq) = γ(wi).
This means that the ith row of ET H is (t/2)γ(wi). We have just established the following result.
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Theorem 2.2. If (V ,W , E , η, γ) is a diversity graph, then ET H = diag
(

1
2ET e

)

G.

The matrix equation in Theorem 2.2 succinctly separates the structure of the graph, explained by E,
from the labeling of the graph, explained by H and G. Unfortunately, satisfying the matrix equation
does not guarantee the graph is a diversity graph because the aggregated information ignores the
need of a mating structure. As an example

ET H =
(

1 1 1 1
)









1 1 −1 −1
−1 1 1 −1
−1 −1 −1 1

1 −1 1 1









= (2)
(

0 0 0 0
)

= diag

(

1

2
ET e

)

G.

This labeling of K4,1 does not lead to a diversity graph since no pair of haplotypes (no two rows of
H) add to form the single genotype (the row of G).

We conclude this section with a discussion of a logical operator that helps address the failure of
Theorem 2.2 to characterize graphs with the stated matrix equation. The logical join of a sequence
of matrices is determined by the logical operator “or” over each component of these matrices. The
component-wise logical join is defined so that 0 ∨ 0 = 0, 0 ∨ 1 = 1, and 1 ∨ 1 = 1. The set
{A1, A2, . . . , As} is a logical decomposition of A if A is the logical join of the matrices in this set,
denoted:

∨

1≤i≤s

Ai = A1 ∨ A2 ∨ . . . ∨ As = A,

where we assume that all matrix elements are 0 or 1. For example, the matrices on the left are a
logical decomposition of the matrix on the right,

(

1 1 0 0
1 0 1 0

)

∨

(

1 1 0 0
0 1 0 1

)

=

(

1 1 0 0
1 1 1 1

)

.

Such decompositions are used in the next section to characterize the graphs that support diversity.

3 Graphs that Support Diversity

A natural goal is to characterize the bipartite graphs that support diversity, and the first result of
this section does this for complete bipartite graphs.

Theorem 3.1. The complete graph Kp,q supports diversity if and only if p is even and q = 1.

Proof. Assume that (V ,W , E , η, γ) is a complete diversity graph. Suppose that |W| > 1. Then, from
Theorem 2.1 we have for any w1 and w2 in W that

max{deg(w1), deg(w2)} ≥ 2|N(w1) ∩ N(w2)| = 2|V|,

which is a contradiction. So, |W| = 1. The fact that genotypes need pairs of haplotypes guarantees
that |V| is even.

Now assume that p is even and q = 1. Select n so that |V| < 2n and let γ be such that
γ(w) = (0, 0, . . . , 0). There are 2n−1 disjoint pairs of haplotypes that can mate to form γ(w). Pick
|V|/2 of these pairs and let H′ be the set of haplotypes in these pairs. Allowing η : V → H′ to be a
bijection, we see that (V ,W , E , η, γ) is a diversity graph.
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From Theorem 3.1 we see that the probability of generating a complete bipartite graph of the
form Kp,1 that supports diversity is one half (assuming that even and odd values of p are equally
likely). In some ways, the next result extends this idea by showing that the probability of generating
a random bipartite graph that supports diversity is low. The result decomposes the biadjacency
matrix into matrices whose rows sums are all 2, which guarantees a mating structure.

Theorem 3.2. The bipartite graph (V ,W , E) supports diversity if and only if the biadjacency matrix

E has a logical decomposition E1, E2, . . . , Es so that

• eT Ek = 2eT for all 1 ≤ k ≤ s,

• there exists an H ∈ {−1, 1}|V|×n with distinct rows and the property that (E1)T H = (E2)T H =
. . . = (Es)T H, and

• the rows of (Ek)T H are distinct.

Proof. Assume that (V ,W , E , η, γ) is a diversity graph, and let s = (1/2) max{deg(w) : w ∈ W}.
Order the elements of W so that deg(w1) ≥ deg(w2) ≥ . . . ≥ deg(w|W|). We construct the matrices
E1, E2, . . . , Es that form a desired logical decomposition. The neighborhood of each wj can be
written as the disjoint union of (1/2) deg(wj) pairs,

N(wj) =
⋃

k

{vkj′ , vkj′′ }, (2)

where 1 ≤ k ≤ (1/2) deg(wj). Let every element of the first column of each Ek be a zero except for
the k1′ and k1′′ positions, which are both set to 1. If the deg(w1) = deg(w2), form the second column
of each Ek similarly, replacing 1′ and 1′′ with 2′ and 2′′. Otherwise, deg(w1) > deg(w2) and this
construction terminates once k reaches (1/2) deg(w2). In this case, let the second column of Ek, for
(1/2) deg(w2)+1 ≤ k ≤ s, be the same as the second column of E1. Continue in this fashion through
the remaining nodes in W , duplicating columns from E1 as needed. From (2) we have that E(i,j) = 1

if and only if Ek
(i,j) = 1 for at least one k, from which we conclude that E = E1 ∨ E2 ∨ . . . ∨ Es.

Let H and G be the matrices in Theorem 2.2. Each column of Ek corresponds to an element of
W that in turn corresponds to a genotype under γ. Moreover, each column of Ek contains two 1s
that identify a pair of haplotypes (via η) that mate to form the genotype. So, each column sum of
every Ek sums to 2 and (Ek)T H = G, for every k. From the fact that γ is one-to-one we have that
the rows of (Ek)T H are distinct.

Now assume that E has a logical decomposition, say E1, E2, . . . Es, that satisfies the three

conditions. List the elements of V from 1 to |V| and define η(vi) to be the ith row of H . The fact
that the rows of H are unique ensures that η is one-to-one. Similarly, list the nodes in W from 1

to |W| and let γ(wi) be the ith row of (Ek)T H , which is common for 1 ≤ k ≤ s. The assumption
that the rows of (Ek)T H are distinct guarantees that γ is one-to-one. From the condition that each
column sum of Ek is 2, we have that each column of E has at least two ones. This means that
there are at least two elements of V that are adjacent to each element of W . The same condition
together with the definition of η and γ further guarantee that if (v′, w) ∈ E , then there is a v′′ so
that (v′′, w) ∈ E and η(v′) + η(v′′) = γ(w).

The logical decomposition in Theorem 3.2 extends Theorem 2.2 to characterize graphs that
support diversity by adding the necessary condition that the edge structure must accommodate a
mating structure. The fact that (E1)T H = (E2)T H = . . . = (Es)T H shows that every pairwise
differences (Ei)T − (Ej)T must share a non-trivial null space, which is restrictive and demonstrates
that bipartite graphs that support diversity are rare.
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The last two results indicate that the structural requirements needed to support diversity are
important and that most bipartite graphs can not be labeled to represent a population. We point
out that this is true even with the number of SNPs being arbitrary, which is somewhat counter
intuitive because the complexity of a mating scheme can increase as the number of SNPs grows. We
conclude this section by showing that we can add nodes and edges to any bipartite graph so that
it does support diversity. We only consider adding nodes to V since in real problems the genotypic
information corresponding to W is defined by the biological data.

For w ∈ W , define

T (w) =
⋃

w′ 6=w

(N(w) ∩ N(w′)) .

So, T (w) is the collection of nodes in the neighborhood of w that are also in the neighborhood
of another node in W . We extend the neighborhood of each w so that the number of points in
N(w)\T (w) plus the number of points in the extension is at least the number of points in T (w).
Let V̂(w) be a collection of nodes whose cardinality is either (2|T (w)| − |N(w)|)+ or 1 + (2|T (w)| −
|N(w)|)+ to ensure that |N(w) ∪ V̂(w)| is even or 0. Notice that if 2|T (w)| ≤ |N(w)|, then N(w) is
not extended. The extended vertex and edge sets are

V̄ = V ∪

(

⋃

w∈W

V̂(w)

)

and Ē = E ∪

(

⋃

w∈W

{(v, w) : v ∈ V̂(w)}

)

.

Lemma 3.1. Any bipartite graph (V ,W , E) with no isolated nodes can be extended and labeled to

become a diversity graph by adding no more than
∑

w∈W |V̂(w)| nodes to V. In particular, (V̄ ,W , Ē)
is an extension of (V ,W , E) that adds this number of nodes to V that supports diversity.

Proof. The proof follows by induction on |W|. Let (V ,W , E) be a bipartite graph with no isolated
nodes such that |W| = 1. Let W = {w} and notice that T (w) = ∅. Hence, (2|T (w)|− |N(w)|)+ = 0,
and we add a single node to V if and only if |V| is odd. The resulting V̄ has an even number of
nodes, and from Theorem 3.1 we know that that this graph supports diversity.

Assume the result holds if |W| ≤ k. Let (V ,W , E) be a bipartite graph with no isolated nodes
such that |W| = k + 1. Select w1 ∈ W , and let (V ′,W ′, E ′) be the subgraph of (V ,W , E) with
the vertices in {w1} ∪ N(w1)\T (w1) and edges incident to w1 removed. Extend the subgraph so
that (V̄ ′,W ′, Ē ′, η′, γ′) is a diversity graph, where the image sets of η′ and γ′ are in {−1, 1}n′

and
{−2, 0, 2}n′

, respectively. The functional descriptions of η and γ below depend on η′ and γ′, and a
slight abuse of notation is used to describe this dependence. As an example, if η′(v) = (1,−1, 1), we
assume that (η′(v), 1, 1, 1) = (1,−1, 1, 1, 1, 1), which allows us to embed η′ into a larger collection of
haplotypes.

The argument is established in 2 cases, each of which constructs η and γ so that (V̄ ,W , Ē , η, γ)
is a diversity graph. Notice that the number of nodes added to V is additive over W , and hence,

∑

w∈W

|V̂(w)| = |V̂(w1)| +
∑

w∈W′

|V̂(w)|.

This fact guarantees that the constructions below add the maximum number of vertices allowed by
the result.

Case 1: Suppose that T (w1) = ∅. Then, (2|T (w1)| − |N(w1)|)+ = 0, and |V̂(w1)| is either 0
or 1 depending on whether |N(w1)| is even or odd, respectively. If |N(w1)| is even (odd),
then no nodes are (a single node is) added to (V ′,W , E ′). Let |N(w1) ∪ V̂(w1)| = 2p for the
natural number p. Let k be a natural number so that 2k > 2p. List the elements of {−1, 1}k
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lexicographically as h1,h2, . . . ,h2k

. Then, denoting the elements of N(w1) ∪ V̂(w1) as vi for
i = 1, 2, . . . , 2p, we define η and γ by

η : V̄ → {−1, 1}n′+k : v 7→







(η′(v), 1, 1, . . . , 1), v ∈ V ′

(1, 1, . . . , 1,hi+1), v = vi, i = 1, 2, . . . p

(1, 1, . . . , 1,h2k−i+p), v = vi, i = p + 1, p + 2, . . . 2p

and

γ : W → {−2, 0, 2}n′+k : w 7→

{

(γ′(v), 2, 2, . . . , 2), w ∈ W ′

(2, 2, . . . 2, 0, 0, . . .0), w = w1,

where γ(w1) has k zeros. We mention that Lemma 2.1 is used to guarantee that the last k
elements of η(vi), for i = 1, 2, . . . , 2p, can be paired to satisfy the definition of a diversity
graph.

Case 2: Suppose T (w1) 6= ∅. The difficulty with this case lies in the fact that η′(v) is defined for
v ∈ T (w1). Notice that

(|N(w1)| − 2|T (w1)|) + (2|T (w1)| − |N(w1)|)+ = (|N(w1)| − 2|T (w1)|)+ ≥ 0,

which guarantees that there are enough nodes in (N(w1)∪V̂(w1))\T (w1) to be uniquely paired
with the nodes in T (w1). Let {Z, ZC} be a two set partition of (N(w1) ∪ V̂(w1))\T (w1) so
that |Z| = |T (w1)|. Notice that the definition of V̂(w1) guarantees that both |T (w1) ∪Z| and
|ZC | are even.

List the elements of T (w1), Z and ZC so that

T (w1) = {v1, v2, . . . , v|T (w1)|}, (3)

Z = {v|T (w1)|+1, v|T (w1)|+2, . . . , v2|T (w1)|}, and (4)

ZC = {v2|T (w1)|+1, v2|T (w1)|+2, . . . , v|V̂(w1)|}. (5)

Let |N(w1) ∪ V̂(w1)| = 2p for the natural number p and let k be such that 2k > p. Label

{−1, 1}k lexicographically as h1,h2, . . . ,h2k

. Define η : V̄ → {−1, 1}n′+k so that

v 7→























(η′(v), 1, 1, . . . , 1), v ∈ V ′\T (w1)
(η′(vi),hi+1), v = vi, 1 ≤ i ≤ |T (w1)|

(−η′(vi−|T (w1)|),h2k−i+|T (w1)|), v = vi, |T (w1)| + 1 ≤ i ≤ 2|T (w1)|

(η′(vi),hi−|T (w1)|), v = vi, 2|T (w1)| + 1 ≤ i ≤ |V̂(w1)|, i odd

(−η′(vi−1),h2k−i+2|T (w1)|), v = vi, 2|T (w1)| + 1 ≤ i ≤ |V̂(w1)|, i even

and γ : W → {−2, 0, 2}n′+k so that

w 7→

{

(γ′(w), 2, 2, . . . , 2), w ∈ W ′

(0, 0, . . . , 0), w = w1.

We conclude this section by showing that any bipartite graph, including those with isolated
nodes, can be extended and labeled to become a diversity graph. The result is an extension of
Lemma 3.1, but the edges added between isolated nodes are handled outside the definition of Ē .
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Theorem 3.3. Any bipartite graph (V ,W , E) can be extended and labeled to become a diversity graph

by adding no more than

∑

w∈W

|V̂(w)| + (2MW − MV)+ + MV( mod 2)

nodes to V, where MV and MW are the number of isolated nodes in V and W, respectively.

Proof. Let VI and WI be the isolated nodes in V and W and let (V ′,W ′, E ′) be the subgraph of
(V ,W , E) with these nodes removed. Extend (V ′,W ′, E ′) as in Lemma3.1 so that (V̄ ′,W ′, Ē ′, η′, γ′)
is a diversity graph. Since N(w) = T (w) = ∅ for all w ∈ WI , we have that

∑

w∈W′

|V̂(w)| =
∑

w∈W

|V̂(w)|,

and we conclude that the extension of (V ′,W ′, E ′) to (V̄ ′,W ′, Ē ′) adds
∑

w∈W |V̂(w)| nodes to

(V ,W , E). Let n′ be such that the images of η′ and γ′ are in {−1, 1}n′

and {−2, 0, 2}n′

. Let k be a
natural number so that 2k > |WI |. Let V̂I be a set of nodes of size (2MW − MV)+ + MV(mod 2),
which guarantees that |VI ∪ V̂I | is even and at least twice the size of WI . List the elements in WI as
w1, w2, . . . , wMW and the elements in VI ∪V̂I as v1, v2, . . . , vq , where q = MV +(2MW −MV)+ +MV(
mod 2). For i = 1, 2, . . . , MW , add (v2i−1, wi) and (v2i, wi) to Ē ′. Notice that this may leave

some isolated nodes in VI , which is allowed by the definition. Let h1,h2, . . . ,h2k

be a lexicographic
ordering of {−1, 1}k. Define η : V̄ ′ ∪ VI ∪ V̂I → {−1, 1}n′+k by

v 7→







(η′(v), 1, 1, . . . , 1), v ∈ V̄ ′

(1, 1, . . . , 1,hi+1), v = vi, i = 1, 2, . . . , q/2

(1, 1, . . . , 1,h2k−i+(q/2)), v = vi, i = q/2 + 1, q/2 + 2, . . . , q

and γ : W → {−2, 0, 2}n′+k so that

w 7→

{

(γ′, 2, 2, . . . , 2), w ∈ W ′

(2, 2, . . . , 2, η(v2i−1) + η(v2i)), w = wi, i = 1, 2, . . . , MW ∈ WI ,

where the uniqueness of η(v2i−1) + η(v2i) follows from Lemma 2.1.

4 Algorithms and Solutions for the Pure Parsimony Problem

Although the pure parsimony is generally difficult, there are cases where a closed form solution exists.
Throughout this section we assume that (V ,W , E , η, γ) is a diversity graph with the property that
γ maps W onto G′. We also assume that H∗ ⊆ η(V) is a minimal solution relative to (V ,W , E , η, γ).

We begin by establishing the intuitive result that a minimal solution has cardinality 2|G ′| if and
only if the neighborhoods of the elements in W are disjoint. Although this fact is nearly obvious,
we include a proof for completeness. The following lemma supports the result.

Lemma 4.1. Suppose that T (w) 6= ∅ for some w ∈ W. Then, H∗ contains an element of
⋃

w∈W η(T (w)).

Proof. Assume that T (w) 6= ∅ for some w ∈ W and suppose that H∗ does not contain an element of
⋃

w∈W η(T (w)). Then for each w there is a v′ and v′′ in N(w)\
⋃

w∈W η(T (w)) so that η(v′)+η(v′′) =
γ(w). This implies that |H∗| = 2|G′|. However, we know that T (w) is nonempty for some w, which
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means there exists w1 and w2 such that η(v1) + η(v2) = γ(w1) and η(v1) + η(v3) = γ(w2) for some
v1, v2, and v3 in V . This means that

(

H∗\{η(v) : η(v) ∈ H∗, {(v, w1), (v, w2)} ∩ E 6= ∅}
)

∪ {η(v1), η(v2), η(v3)}

is a solution to G′ whose cardinality is at most |H∗| − 1, which is a contradiction.

Theorem 4.1. We have that |H∗| = 2|G′| if and only if N(w′) ∪ N(w′′) = ∅ for all w′ and w′′ in

W.

Proof. The fact that |H∗| = 2|G′| if N(w′) ∪ N(w′′) = ∅ for all w′ and w′′ in W is clear. Assume
that |H∗| = 2|G′|, and suppose for the sake of obtaining a contradiction that T (w) 6= ∅ for some
w ∈ W . From Lemma 4.1 we have that H∗ contains an element in

⋃

w∈W η(T (w)). Let w1 and
w2 be such that η(v1) + η(v2) = γ(w1) and η(v1) + η(v3) = γ(w2), for some v1, v2, and v3. Let
W ′ = W\{w1, w2}, and let V ′ = ∪w∈W′N(w). Furthermore, let (V ′)∗ be such that η((V ′)∗) is a
minimum solution to γ(W ′) with respect to (V ′,W ′, E ′), where E ′ is E with the edges incident to w1

and w2 removed. Then, |η((V ′)∗)| ≤ 2|G′|. We know that we can resolve G ′ by including v1, v2, and
v3 in (H ′)∗. Since all three haplotypes might not be required, we have that 2|G ′| = |H∗| ≤ |(H′)∗|+3.
So,

2|G′| = |H∗| ≤ |(V ′)∗| + 3 ≤ 2|W ′| + 3 = 2(|W| − 2) + 3 = 2|G ′| − 1.

Since this is a contradiction, we have that T (w) = ∅ for all w, and consequently, N(w′)∩N(w′′) = ∅,
for all w′ 6= w′′.

We continue our investigation by exploring the effects of restricting the number of times a hap-
lotype can be used to form a genotype. This makes sense realistically since in many populations
the mating structure is not random. For example, many species have a unique mate for life, which
means their haplotypes are only used in conjunction with the haplotypes of another individual. To
make this precise, we reduce the edge set of the initial graph. For any E ′ ⊆ E we define the degree of
v with respect to E ′ to be degE′(v) = |{(v, w) : (v, w) ∈ E ′}|. For the diversity graph (V ,W , E , η, γ)
we let V∗

m ⊆ V be any solution to

min{|V ′| : V ′ ⊆ V , η(V ′) solves γ(W), max{degE′(v) ≤ m : v ∈ V ′} for some E ′ ⊆ E}. (6)

The value of this optimization problem is denoted φ(m) = |V∗
m|, and if the problem is infeasible,

we let φ(m) = ∞. As an example, consider the graph in Figure 1, which is easily seen to support
diversity. Since deg(wi) = 2 for all i except 3, the only solution is η({vi : i = 1, 2, . . . , 9}). If m = 1,
then each v can be adjacent to at most one w with respect to E ′. This means we must be able to
associate a unique pair in V with each element of W . Biologically this means that each parent can
donate one of its two haplotypes to a unique child. Since this is impossible for this graph, we have
that φ(1) = ∞. Notice that in general we have φ(1) is either 2|W| or ∞ depending on whether or
not (6) is feasible. The situation is more complex if m > 1, and one of the main goals of this section
is to show that φ(2) can be calculated by decomposing an acyclic diversity graph into longest paths.

At some threshold, increasing m does not change the cardinality of V∗
m. For instance, if a

haplotype is not compatible with more than m genotypes, then allowing it to mate with m + 1
haplotypes provides no additional benefit. Hence, for some m, φ(m) = φ(m + k) for every natural
number k. Moreover, increasing the number of possible mates that any haplotype is allowed never
causes an increase in φ(m), and hence, φ is non-increasing. The smallest m such that φ(m) =
φ(m + k), for all k ∈ N, is denoted by m∗. Clearly we have that

m∗ ≤ max{deg(v) : v ∈ V} ≤ |W|.
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Figure 1: A graph for which V∗
1 = ∅, φ(1) = ∞, V∗

2 = V , φ(2) = 9, and m∗ = 2.

An important observation is that φ(m∗) is the solution to the pure parsimony problem. So, if we
knew how φ grew as m increased and how to bound m∗, then we could estimate the size of a
biologically relevant collection of haplotypes. Unfortunately, we do not know the answer to either
of these questions at this point, but these and related questions have future research promise. We
initiate the investigation by studying φ(2) and φ(|W|) if m∗ = |W|, the latter of which is addressed
below.

Theorem 4.2. If m∗ = |W|, then φ(m∗) = |W| + 1.

Proof. Let m∗ = |W|. Then, there exists v′ ∈ V∗
m such that for each wi ∈ W there is a unique

vi ∈ V∗
m\{v′} that satisfies η(v′) + η(vi) = η(wi). This means that φ(m∗) ≥ |W| + 1, and since

η({v′, v1, v2, . . . , v|W|}) solves G′, we conclude that φ(m∗) = |W| + 1.

Our next goal is to calculate φ(2) for acyclic graphs. The key observation in this case is that the
most complicated subgraphs induced by a solution are paths. To motivate this intuition, consider the
diversity graph in Figure 2. Notice that both η({v1, v3}) and η({v2, v4}) are solutions to γ({w1}) but
that the path v1, w1, v3 has the advantage over v2, w1, v4 since the single node v5 can be appended
to the path so that η({v1, v3, v5}) solves γ({w1, w2}). If we had instead selected v2, w1, v4, then
both v3 and v5 would have been needed so that η({v2, v3, v4, v5}) solved γ({w1, w2}). It is clear in
this example that φ(2) = 3 and that m∗ = 2. The intuition is that we want to decompose the graph
into longest paths, a process explained by the algorithm in Table 1. The fact that this technique
minimizes the number of paths is established in Theorem 4.3. The proof is by induction on |W| and
relates φ(2) as defined on (V ,W , E) to φ(2) as defined on one of its subgraphs.

Theorem 4.3. Let (V ,W , E , η, γ) be an acyclic diversity graph. Then the algorithm in Table 1

calculates φ(2), and in particular, if k is the number of paths found by the algorithm, then φ(2) =
|W| + k.

Proof. If |W| = 1, the algorithm in Table 1 clearly finds an optimal solution. Assume the result is
true as long as |W| ≤ q. Let (V ,W , E , η, γ) be an acyclic diversity graph with |W| = q+1. Apply the
algorithm in Table 1 to (V ,W , E) and let P1, P2, ..., Pk be the paths in non-increasing length found
by the algorithm. Denote the last path as Pk = v1, w1, v2, w2, . . . , wr, vr+1. Let W ′ = W\{wr} and
E ′ = E\{(wr, v) : v ∈ N(wr)}.

11



An Algorithm to Decompose the acyclic bipartite graph (V ,W ,E) into

the Fewest Paths

Step 1: Set k = 0 and (Vk ,Wk,Ek) = (V ,W ,E).

Step 2: Find the longest path in (Vk,Wk,Ek), say Pk. If no path exists, set
Pk = ∅.

Step 3: If Pk = ∅, stop.

Step 4: Set (Vk+1,Wk+1, Ek+1) = (Vk,Wk, Ek)\Pv .

Step 5: Increase k by 1.

Step 6: Go to Step 2.

Table 1: Theorem 4.3 shows that this algorithm calculates φ(2). The removal of the path in Step 4
means that all nodes and edges in Pk are removed.

Case 1: Suppose Pk 6= v1, w1, v2. Then, the algorithm applied to (V ,W ′, E ′) finds the paths
P1, P2, ..., P

′
k, where P ′

k = v1, w1, v2, w2, . . . , wr−1, vr —i.e. the last path is missing wr and
vr+1. In this case, the algorithm terminates with k paths for both (V ,W , E) and (V ,W ′, E ′).
From the induction hypothesis we have that φ(2) = |W ′| + k for (V ,W ′, E ′). Let V̂∗

2 be a
solution to (6) for the subgraph (V ,W ′, E ′). Then, V̂∗

2 ⊆ V , |V̂∗
2 | = |W ′| + k, η(V̂∗

2 ) solves
γ(W ′), and |N(w)∩ V̂∗

2 | ≤ 2. Since (V ,W , E) is acyclic we know that (v1, wr) and (vr, wr) are
not both in E . Moreover, wr cannot be adjacent to any of the terminal nodes P1, P2, . . . , Pv−1

since this would violate the fact that each of these is a longest path. We conclude that adding
wr back to W ′ forces φ(2) for (V ,W , E) to be at least one greater than φ(2) for (V ,W ′, E ′).
Notice that η(V̂∗

2 ∪ {vr+1}) is a solution to γ(W) that is feasible to (6) for (V ,W , E). Since

|V̂∗
w ∪ {vr+1}| = |W ′| + k + 1 = |W| + k,

we have that φ(2) for (V ,W , E) is |W| + k.

Case 2: Suppose Pk = v1, w1, v2 —i.e. r = 1. Then the algorithm applied to (V ,W ′, E ′) produces
the paths P1, P2, . . . , Pk−1, and we have that φ(2) = |W ′| + k − 1 for (V ,W ′, E ′). Let V̂∗

2 be
as in Case 1 with the cardinality condition replaced by |V̂∗

2 | = |W ′| + k − 1. Notice that w1

cannot be adjacent to any of the terminal nodes of P1, P2, . . . , Pk−1, as this would violate the
fact that these are longest paths. So, adding w1 back to W ′ forces φ(2) for (V ,W , E) to be at
least 2 greater than φ(2) for (V ,W ′, E ′). Since η(V̂∗

2 ∪ {v1, v2}) is a solution to γ(W) that is
feasible to (6) for (V ,W , E) that additionally satisfies

|V̂∗
w ∪ {vr+1}| = |W ′| + (k − 1) + 2 = |W| + k,

we have that φ(2) for (V ,W , E) is |W| + k.

We mention that this proof does not readily extend to graphs with cycles. The problem is that
cycles can share nodes, and hence the removal of a longest cycle can destroy other cycles. Although
a proof currently alludes the authors, we suspect the following is true.
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Figure 2: In this example η({v1, v3, v5} = V∗
2

and φ(2) = 3.
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Figure 3: The consecutive genotypes of a
path in (H, G, E) are indicated with an arc.
So, there is path that contains the sequence
g2, h′, g4, h′′, g5, but there is no path that
contains g1, h, g3.

Conjecture 4.1. Let (V ,W , E , η, γ) be a diversity graph and (V ′,W ′, E ′) be the subgraph with all

cycles removed. Then, if k is the number of paths identified by the algorithm in Table 1, we have

that φ(2) = |W| + k.

The insight from Theorem 4.3 is that the solutions of a restricted form of the Pure Parsimony
problem are representable as a collection of paths. However, this technique has two shortcomings.
First, the longest path problem is NP-Complete, making each step of the algorithm difficult. So,
the technique describes the nature of a solution but does not provide an efficient solution procedure.
The second shortcoming is that the algorithm is not capable of finding every optimal solution. To
see this, consider the following collection of genotypes,

g1 = γ(w1) = (2, 0,−2,−2,−2,−2)
g2 = γ(w2) = (0, 2, 0, 0,−2,−2)
g3 = γ(w3) = (−2, 0, 2, 0,−2, 0)
g4 = γ(w4) = (−2, 0, 0, 2, 0,−2)
g5 = γ(w5) = (−2,−2,−2, 0, 2,−2)
g6 = γ(w6) = (−2,−2, 0,−2,−2, 2).































(7)

Assume that |V| = 26, that η(V) = {−1, 1}6, and that E is the largest edge set possible. Notice that
a path may contain the sequence gi,hi,gi+1 if and only if there is no SNP where gi has a value of
2 or −2 and gi+1 has the other value. So, in the above example there is no h such that the path
g1,h,g3 exists in the diversity graph because the first SNP of g1 is a 2 and the first SNP of g3 is
a −2. However, there is an h so that the path g1,h,g2, is in the diversity graph because there is
no SNP where g1 and g2 have different values of 2 and −2. If we compare each pair of genotypes
in a similar fashion, we find that the paths pass through the genotypes as indicated in Figure 3.
From this figure we see that there is not a path or cycle through every genotype, but that there are
several two path solutions. From Theorem 4.3 we know that φ(2) = 6 + 2 = 8. Up to reversing the
order of the genotypes, there are four optimal progressions through the genotypes, see Table 2. Our
algorithm finds the first solution indicated in Table 2, as the first path is as long as possible. None
of the other paths have this property, and so the algorithm is not capable of finding these solutions.

Our last discussion approaches the pure parsimony problem through lattice theory and requires
the more general ⊕ as discussed in Section 2. Let � be a binary relation such that 2 � 2, 2 � 0,
−2 � −2, −2 � 0, and 0 � 0. Then {−2, 0, 2}n is a poset under componentwise comparisons of �.
A subset of G′ for which all elements are comparable forms a chain of genotypes. For example, the
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First Path’s Second Path’s

Genotype Progression Genotype Progression

(g1,g2,g3,g4,g5) (g6)
(g1,g2,g4,g5) (g3,g6)
(g1,g2,g3,g6) (g4,g5)
(g6,g3,g4,g5) (g1,g2)

Table 2: Ways in which the genotypes for the example in (7) can be listed in two distinct paths.

following four genotypes form a chain,

(−2, 2, 0, 2,−2) � (0, 2, 0, 0,−2) � (0, 2, 0, 0, 0) � (0, 0, 0, 0, 0).

Chains have the property that as we look up the chain from smaller to greater elements that once
a 2 or −2 becomes a 0 it remains 0. The following lemma and theorem solve the pure parsimony
problem in the special case that G ′ is a chain.

Lemma 4.2. For the diversity graph (V ,W , E , η, γ) assume that γ(W) = G ′ forms a chain under

�. Let η(V ′) be a minimal solution and assume that g ∈ G has the property that γ(w) ≺ g, for all

w ∈ W. Then there does not exist v′ and v′′ in V ′ such that η(v′) + η(v′′) = g.

Proof. If |G′| = 1, then V ′ = {v′, v′′} and the result follows because η(v′)+η(v′′) ∈ G′ but g 6∈ G′. So,
assume that |G′| ≥ 2. Suppose for the sake of attaining a contradiction that there is a v′ and v′′ in V ′

such that η(v′)+η(v′′) = g. Because η(V ′) is a minimal solution to G′, there are no isolated nodes in
V ′. Since g 6∈ G′, this implies that there exists v̂′ and v̂′′ in V ′ such that η(v′)+η(v̂′) and η(v′′)+η(v̂′′)
are distinct elements of G ′. Without loss of generality, we assume that η(v′)+η(v̂′) ≺ η(v′′)+η(v̂′′).

Since η(v′′) + η(v̂′′) ≺ g and g = η(v′) + η(v′′), we have from the definition of ⊕ that

η(v′) ⊕ η(v′′) ⊕ η(v̂′′) = η(v′) ⊕ η(v′′).

Similarly, because η(v′) + η(v̂′) < η(v′′) + η(v̂′′) and

η(v′) ⊕ η(v̂′) ⊕ η(v′′) ⊕ η(v̂′′) = η(v′′) ⊕ η(v̂′′),

we have that
η(v′) ⊕ η(v′′) ⊕ η(v̂′′) = η(v′′) ⊕ η(v̂′′).

It follows that
g = η(v′) + η(v′′) = η(v′′) + η(v̂′′),

which is a contradiction.

Theorem 4.4. Assume that (V ,W , E , η, γ) is a diversity graph with η(V) = H and E as large as

possible and that γ(W) = G ′ is a chain under �. Then a minimum solution has cardinality |G ′|+ 1.

Proof. List the elements of G ′ as g1,g2, . . . ,g|G′| and let w1, w2, . . . , w|G′| be such that γ(wi) = gi,
for i = 1, 2, . . . , |G′|. We first construct a solution to G ′ with cardinality |G′| + 1. Choose v ∈ V so
that η(v) ≺ γ(w1) = g1. Then for every gi ∈ G′ there is a unique vi ∈ V such that η(v) + η(vi) =
γ(wi) = gi. Then, η({v, v1, v2, . . . , v|G

′|}) solves G′ and has cardinality |G′| + 1.
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We now show by induction on |G ′| that there does not exists a solution with cardinality less than
|G′| + 1. This fact is clear if |G ′| = 1, and we assume the claim is true when |G ′| ≤ k. Assume that
G′ is a chain of length k + 1, and let η(V ′) be a minimum solution. Let G′′ = G′\{γ(wk+1)}, where
we assume that the elements of G ′ are ordered so that

γ(w1) ≺ γ(w2) ≺ . . . ≺ γ(wk) ≺ γ(wk+1).

Since η(V ′) solves G′′ and a minimum solution to G′′ has cardinality |G′′| + 1 = k + 1, we have that
|η(V ′)| ≥ k+1. Suppose for sake of attaining a contradiction that |η(V ′)| = k+1. From the induction
hypothesis η(V ′) is a minimum solution to G′. However, γ(wi) ≺ γ(wk+1) for i = 1, 2, . . . , k,
and from Lemma 4.2, this leads to the contradiction that there is no v′ and v′′ in V ′ such that
η(v′) + η(v′′) = γ(wk+1). Hence |V ′| ≥ k + 2 = |G′|+ 1. Since we have already demonstrated that a
solution of size |G′| + 1 exists, the proof is complete.

Corollary 4.1 follows immediately from Theorem 4.4 and provides a bound on the pure parsimony
problem.

Corollary 4.1. Let (V ,W , E , η, γ) be a diversity graph such that η(V) = H and E is as large as

possible. Partition W into W1,W2, . . . ,Wq, where each γ(W i) is a chain ordered by �. Then a

minimum solution has cardinality no greater than |G ′| + q.

The best bound provided by Corollary 4.1 is the one that minimizes q. An interesting question
for future research is whether or not calculating the minimum value of q actually solves the pure
parsimony problem in some cases.

Instead of addressing the smallest size of a solution to a chain, the next result and its corollary
considers how large a minimal solution can be.

Theorem 4.5. Let (V ,W , E , η, γ) be a diversity graph such that η(V) = H, E is as large as possible,

and γ(W) = G′ is a chain with respect to ≺. Assume that the elements of W are ordered so that

γ(w1) ≺ γ(w2) ≺ . . . ≺ γ(w|G′|).

Assuming that γ(w2) has 3 or more zero SNPs, we have that there is a minimal solution to G ′ with

cardinality 2|G′|.

Proof. The proof is by induction on |G ′|. The result clearly holds if |G ′| = 1, and we assume the
result is true for |G′| ≤ k. Assume that |G′| = k + 1, and let η(V ′′) be a minimal solution to
G′′ = G′\{γ(wk+1)} whose cardinality is 2|G ′′|. From Lemma 4.2, η(V ′′) does not solve G′ because
there is no v′ and v′′ in V ′′ such that η(v′) + η(v′′) = γ(wk+1). We show that there is a minimal
solution η(V ′) such that V ′′ ⊆ V ′ and |V ′′| + 2 = |V ′|.

Because γ(wk+1) is the k + 1 element in a chain, it has at least k + 1 ambiguous SNPs, and thus
|N(wk+1)| ≥ 2k+1. Since we assumed that γ(w2) has at least 3 zero SNPs, |N(wk+1)| > 2k+1. For
j ≥ 1, we have 2j ≤ 2j , and thus 2k < |N(wk+1)|/2. Since |N(wk+1)|/2 is the number of adjacent
pairs to wk+1 and |V ′′| = 2k, there is a v′ and v′′ in N(wk+1)\N(V ′′) such that η(v′) + η(v′′) =
γ(wk+1). This means that η(V ′′∪{v′, v′′}) is a minimal solution to G ′ whose cardinality is 2|G ′|.

The condition of γ(w2) having at least 3 zero SNPs is not imposed because this proof requires it,
but rather, it is needed by any proof due to the following example. Let G ′ = {(−2, 0), (0, 0)}. Then
a four element solution would have the form {(−1, 1), (−1,−1), (x, 1), (y,−1)}, where x is either 1
or −1 and y is the other. In either case an element is duplicated, and hence there is no solution of
size 4.

The following corollary establishes that under the conditions of Theorem 4.5, there is a minimal
solution of every cardinality between the minimum value of |G ′|+1 and the maximum value of 2|G ′|.
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Corollary 4.2. Let (V ,G′, E , η, γ) be a diversity graph satisfying the condition of Theorem 4.5.

Then, there is a minimal solution of cardinality j for |G ′| + 1 ≤ j ≤ 2|G′|.

Proof. For 1 ≤ i ≤ |G′|, let

G′
1 = {γ(w1), γ(w2), . . . , γ(w|G′|−i+1)}

and
G′

2 = {γ(w|G′|−i+2), γ(w|G′|−i+3), . . . , γ(w|G′|)}

be subchains of G′. By Theorem 4.4 there is a solution η(V1) to G′
1 of cardinality |G′| − i + 2 and by

Theorem 4.5 there is a solution η(V2) to G′
2 of cardinality 2i − 2. If i = 1, notice that G ′

1 = G′ and
that G′

2 = ∅. In this case Theorem 4.4 establishes that we can indeed find a solution of cardinality
|G′| + 1. For other values of i we have that if V1 and V2 are disjoint, then V1 ∪ V2 is a minimal
solution whose cardinality is |G ′| + i, for 1 ≤ i ≤ |G′|. So, all that is left to show is that V1 and V2

may be selected so that they are disjoint. We accomplish this by showing that as i increases to i+1
that there are always enough elements of V to allow V1 and V2 to be disjoint.

For i = 1, 2, . . . , |G′| we have that |G′| − i + 2 ≤ 2|G
′|−i+2. As in the proof of Theorem 4.5, we

have that
2|G

′|−i+2 < |N(w|G′|−i+2)|/2,

which guarantees that there are v′ and v′′ in N(w|G′|−i+2)\η(V1) such that η(v′)+η(v′′) = γ(w|G′|−i+2).
So, as i increases from i to |G ′|, we are guaranteed to be able to select disjoint V1 and V2.

5 Directions for Future Research

The goal of this paper was to establish an initial investigation into the structure of haplotyping
problems by studying the underlying graph theory. We have shown that the structural requirements
of the problem are meaningful and that the majority of bipartite graphs are incapable of representing
the underlying biology We have further established a solution to the pure parsimony problem in a
few cases, and in particular we have shown that ordering the genotypes with � and decomposing G ′

into chains bounds the problem. During the writing of this paper the authors had other questions
that were left unanswered, many of which promise to be fruitful continued research:

• Although the matrix equation and the logical decomposition stated in Theorem 3.2 characterize
the graphs that support diversity, we would have enjoyed a more graph theoretical characteri-
zation. A theorem like (V ,W , E) supports diversity if and only if it does not contain a certain
structure would have been particularly appealing.

• We conjecture that m∗ is 2 for acyclic diversity graphs, which means that the pure parsimony
problem is solve by the algorithm in Table 1. This together with a proof of Conjecture 4.1
may highlight the class of diversity graphs for which m∗ = 2.

• Decomposing the genotypes into chains ordered by � bounds the optimal value of the pure
parsimony problem, but this bound can likely be reduced by investigating how the solutions
to the individual chains can interact. Moreover, we do not yet know how to decompose
the genotypes into the fewest number of chains. This bound could be useful in the integer
programming formulation of the problem, and numerical work should be explored.

• Investigating how φ(m) decreases and estimating m∗ are exciting new avenues. If we can
accomplish both of these, then we will be able to estimate the solution to the pure parsimony
problem.
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