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Abstract. We establish the basic theory of almost periodic sequences on Z+.
Dichotomy techniques are then utilized to find sufficient conditions for the ex-
istence of a globally attracting almost periodic solution of a semilinear system
of difference equations. These existence results are, subsequently, applied to
discretely reproducing populations with and without overlapping generations.
Furthermore, we access evidence for attenuance and resonance in almost peri-
odically forced population models.

1. Introduction

Despite the fact that all natural populations suffer temporal environmental fluc-
tuations on some scale, experimental and theoretical studies of population responses
to external fluctuations remain relatively rare [8, 9, 10], [12, 13, 14, 15, 16, 17],
[20, 21, 22, 23, 24], [28, 29, 30], [32], and [35, 36, 36, 38, 39, 40, 41]. To study the
effects of fluctuating environments on population dynamics, one can deliberately
fluctuate environmental parameters in controlled laboratory experiments. Jillson
performed such an experiment with laboratory cultures of Tribolium [34]. Others
have used mathematical models to study the effects of periodic forcing on popula-
tion dynamics [8, 9, 10], [12, 13, 14, 15, 16, 17], [20, 21, 22, 23, 24], [29, 30], and
[35, 36, 37, 38].

Though one can deliberately periodically fluctuate environmental parameters in
controlled laboratory experiments, fluctuations in nature are hardly periodic. That
is, almost periodicity is more likely to accurately describe natural fluctuations.
Almost periodicity has been observed in data collected by Henson et al. on tidal
heights [31]. The ecological literature is filled with future life-history studies of
periodically forced (nonautonomous) classical parametric population models with
time t in Z+. Examples of such periodically forced parametric models with time
t in Z+ include the Beverton-Holt, Ricker, Smith-Slatkin and LPA models [9, 10],
[13, 14, 15, 16], and [21, 22, 23, 24].

In this paper, we focus on the effects of almost periodic environments on popu-
lation dynamics. That is, we study future life-history evolutions in these environ-
ments with time t ∈ Z+. For that, we make extensive use of dichotomy techniques
to find sufficient conditions for the existence of a globally attracting almost peri-
odic solution to a semilinear system of difference equations. These existence results
are applied to discretely reproducing populations with and without overlapping
generations.
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The paper is organized as follows: in Section 2, we establish the theory of al-
most periodic sequences on Z+. In particular, we show that the notions of Bohr
and Bochner almost periodic sequences on Z+ are equivalent. In Section 3, we pro-
vide a method to construct almost periodic sequences on Z+. Sufficient conditions
for the existence of a globally attracting almost periodic solution of a semilinear
system of difference equations are given in Section 4 (Theorem 4.6). In Section 5
(respectively, Section 6), we apply Theorem 4.6 to population models with non-
overlapping generations (respectively, overlapping generations). Section 7 is on
accessing evidence of attenuance and resonance in almost periodic environments.
Extensions to population models with delay are developed in Sections 8 and 9, and
the implications of our results are discussed in Section 10.

2. Preliminaries

In this section, we establish the basic theory of almost periodic sequences on Z+.
But first, let us introduce the notation needed in the sequel.

Let (R, | · |), (Rk, | · |), R+, Z, Z+ be the field of real numbers equipped with
its absolute value, the k−dimensional space of real numbers equipped with the
Euclidean topology, the set of positive real numbers, the set of all integers, and the
set of all nonnegative integers, respectively.

Our main objective in this paper is to find sufficient conditions for the existence of
a globally attracting almost periodic solution of the semilinear systems of difference
equations

(2.1) x(t + 1) = A(t)x(t) + f(t, x(t)), t ∈ Z+

where A(t) is a k × k almost periodic matrix function defined on Z+, and the
function f : Z+ × Rk → Rk is almost periodic.

To study solutions of Eq. (2.1), we use the fundamental solutions of the system

(2.2) x(t + 1) = A(t)x(t), t ∈ Z+,

to examine almost periodic solutions of the system of difference equations

(2.3) x(t + 1) = A(t)x(t) + g(t), t ∈ Z+

where g : Z+ → Rk is almost periodic.

Let l∞(Z+) denote the Banach space of all bounded Rk-valued sequences equipped
with the sup norm defined for each x = {x(t)}t∈Z+

∈ l∞(Z+), by

‖x‖∞ = sup
t∈Z+

‖x(t)‖ .

Let N(Z+) ⊂ l∞(Z+) denote the subspace of all null sequences.

Definition 2.1. [18, 19, 25, 33, 43, 44] An Rk-valued sequence x = {x(t)}t∈Z+
is

called Bohr almost periodic if for each ε > 0, there exists a positive integer T0(ε)
such that among any T0(ε) consecutive integers, there exists at least one integer τ
with the following property:

‖x(t + τ)− x(t)‖ < ε, ∀t ∈ Z+.

The integer τ is then called an ε-period of the sequence x = {x(t)}t∈Z+
.
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Definition 2.2. [18, 19, 25, 33, 43] An Rk-valuedsequence x = {x(t)}t∈Z+
is called

Bochner almost periodic if for every sequence {h(t)}t∈Z+
⊂ Z+ there exists a subse-

quence {h(Ks)}s∈Z+
such that {x(t + h(Ks))}s∈Z+

converges uniformly in t ∈ Z+.

One should point out that combining the extension theorem [2, Proposition
4.7.1, p. 305] (of an almost periodic function on R+ to an almost periodic function
R) and [6, Theorem 1.27, p. 47], it is not hard to see that if {x(t)}t∈Z+ is an
Rk-valued almost periodic sequence, then there exists a unique almost periodic
function f : R 7→ Rk such that x(t) = f(t) for each t ∈ Z+. Unlike the case of
almost periodicity on Z, here, we make use of other techniques to establish our
preliminary results on almost periodicity on Z+ rather than equations of the form
x(t) = f(t), t ∈ Z+.

We use the following result to reconcile the two definitions of almost periodic
sequences.

Proposition 2.3. Let xm = {xm(t)}t∈Z+
be a Bohr almost periodic sequence con-

verging uniformly in m ∈ Z+ to x, then the sequence x is Bohr almost periodic.

Proof. The proof is similar to the one in Halanay [25, Proposition 4.7, p. 229] for
sequences in Z and hence omitted. ¤

The next step consists of showing that the two definitions of almost periodic
sequences in Z+ are equivalent.

Theorem 2.4. A sequence x = {x(t)}t∈Z+
is Bochner almost periodic if and only

if it is Bohr almost periodic.

Proof. First, we show that if x = {x(t)}t∈Z+
is Bochner almost periodic, then it is

Bohr almost periodic. To achieve this, we show that if x = {x(t)}t∈Z+
is not Bohr

almost periodic, then it is not Bochner almost periodic.
Suppose that x = {x(t)}t∈Z+

is not Bohr almost periodic. Then there exists at
least one ε > 0 such that for any positive integer T0, there exist T0 consecutive
positive integers which contain no ε-period related to the sequence {x(t)}t∈Z+

. Now,
let h(1) ∈ Z+ and let 2α1 +1, 2α1 +2, 2α1 +3, ..., 2β1−2, 2β1−1 be (2β1−2α1−1)-
positive integers (α1, β1 ∈ Z+) such that 2β1−2α1−2 > 2h(1) or β1−α1−1 > h(1)
and the sequence 2α1 + 1, 2α1 + 2, 2α1 + 3, ..., 2β1− 2, 2β1− 1 does not contain any
ε-period related to {x(t)}t∈Z+

.
Next, let h(2) = 1

2 (2α1 + 2β1) = α1 + β1. Clearly, h(2) − h(1) is a (positive)
integer such that 2α1 + 1 < h(2) − h(1) < 2β1 − 1, and hence h(2) − h(1) cannot
be an ε-period. Thus, there exist 2α2 + 1, 2α2 + 2, 2α2 + 3, ..., 2β2 − 2, 2β2− 1 such
that 2β2 − 2α2 − 2 > 2(h(1) + h(2)), which does not contain any ε-period related
to {x(t)}t∈Z+

. Setting h(3) = 1
2 (2α2 + 2β2) = α2 + β2, it follows that h(3)− h(2),

h(3) − h(1) are respectively one of the terms 2α2 + 1, 2α2 + 2, 2α2 + 3, ..., 2β2 −
2, 2β2−1, and hence h(3)−h(2), h(3)−h(1) are not ε-period related to {x(t)}t∈Z+

.
Proceeding as previously, one defines the numbers h(4), h(5), ..., such that none of
the expressions h(i)− h(j) for i > j is an ε-period for the sequence {x(t)}t∈Z+

.
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Consequently, for all i, j ∈ Z+,

sup
i,j
‖x(t + h(i))− x(t + h(j))‖ ≥ sup

i>j
‖x(t + h(i))− x(t + h(j))‖

= sup
i>j

‖x(t + h(i)− h(j))− x(t)‖
≥ ε.

This proves that {x(t + h(i))}i∈Z+
cannot contain any uniformly convergent se-

quence, and hence {x(t)}t∈Z+
is not Bochner almost periodic.

Conversely, suppose that the sequence {x(t)}t∈Z+
is Bohr almost periodic and

{tj}j∈Z+
is a sequence of positive integers. Here, we adapt our proof to the one

given in [25, Proof of Theorem 4.9., p. 230-231]. For each ε > 0 there exists an
integer T0 > 0 such that between tj and T0 + tj there exist an ε-period τj with
0 ≤ τj − tj ≤ T0. Setting sj = τj − tj , one can see that sj can take only a finite
number (at most T0 + 1) values, and hence there is some s, 0 ≤ s ≤ T0 such that
sj = s for an infinite numbers of j′s. Let these indexes be numbered as jk, then we
have

‖x(t + tj)− x(t + sj)‖ = ‖x(t + τj + sj)− x(t + sj)‖ < ε.

Hence,
‖x(t + tj)− x(t + sj)‖ < ε

for all t ∈ Z+.
One may complete the proof by proceeding exactly as in [25, Proof of Theorem

4.9., pp. 230-231] and using [25, Proposition 4.7] relative to Z+ rather than Z.

Now let {εr}r∈Z+
be a sequence such that ε → 0 as r →∞, say εr =

1
r + 1

. Now,

from the sequence {x(n + tj)}j∈Z+
, consider a subsequence chosen so that

∥∥∥x(n + tj1
i
)− x(n + s1)

∥∥∥ ≤ ε1.

Next, from the previous sequence, we take a new subsequence such that∥∥∥x(n + tj2
i
)− x(n + s2)

∥∥∥ ≤ ε2.

Repeating this procedure and for each r ∈ Z+ we obtain a subsequence
{
x(n + tjr

i
)
}

i∈Z+

such that ∥∥x(n + tjr
i
)− x(n + sr)

∥∥ ≤ εr.

Now, for the diagonal sequence,
{

x(n + tji
i
)
}

i∈Z+

, for each ε > 0 take k(ε) ∈ Z+

such that εk(ε) < ε
2 , where εr belongs to the previous sequence {εr}r∈Z+

.

Using the fact that the sequences
{
tjr

r

}
and

{
tjs

s

}
are both subsequences of{

t
j

k(ε)
i

}
, for r ≥ k(ε) we have

∥∥x(n + tjr
r
)− x(n + tjs

s
)
∥∥ ≤ ∥∥x(n + tjr

r
)− x(n + sk)

∥∥
+

∥∥x(n + sk)− x(n + tjs
s
)
∥∥

≤ εk(ε) + εk(ε)

≤ ε.

Thus, the sequence
{

x(n + tji
i
)
}

i∈Z+

is a Cauchy sequence.

¤
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Let x = {x(i)}i∈Z+
and α = {α(j)}j∈Z+

be Rk-valued sequences. Define

Tαx := {y = (yj)j∈Z+ : y(j) = lim
i→∞

x(j + α(i))}.
Theorem 2.5. Let x be a sequence. Suppose that for every pair α′, β′ of sequences
in Z+ there exist common subsequences α, β where α is a subsequence of α′ and β
that of β′, such that TαTβx = Tα+βx pointwise in Z+. Then x is almost periodic.

The proof of Theorem 2.5 is similar to the one given for sequences in Z [25,
Theorem 4.18, pp 234-235], and is omitted.

The collection of all almost periodic Rk-valued sequences on Z+ will be denoted
by AP (Z+). It is a Banach space when equipped with the sup norm defined above.

Lemma 2.6. If {x(t)}t∈Z+
is almost periodic, then it is bounded.

Proof. Assume that {x(t)}t∈Z+
is not bounded. Then for some subsequence

‖x(ti)‖ → ∞ as i →∞.

Let ε = 1. Then there exists T (ε) ∈ Z+ − {0} that satisfies the almost periodicity
definition. There exists ti = s1 such that ti = s1 > T (ε). Then among the integers

{s1 − T (ε) + 1, s1 − T (ε) + 2, ..., s1}
there exists ŝ1 such that

‖x(t + ŝ1)− x(t)‖ < 1.

Next, choose tj = s2 such that tj = s2 > T (ε) + s1. Then among the integers

{s2 − T (ε) + 1, s2 − T (ε) + 2, ..., s2}
there exists ŝ2 such that

‖x(t + ŝ2)− x(t)‖ < 1.

Repeating this process, we obtain a sequence {ŝi} → ∞ as i →∞ such that

‖x(t + ŝi)− x(t)‖ < 1 for r = 1, 2, 3, ...,

and a subsequence {si} of {ti} with {si} → ∞ as i →∞. Moreover,

si = ŝi + ui

where 0 ≤ ui < T (ε).
Since {ui} is finite, there exists ui0 that is repeated infinitely many times and

sir = ŝir + ui0 , where ir →∞ as i →∞. Therefore,

‖x(t + ŝir )− x(ui0)‖ < 1.

Moreover,
‖x(t + sir )− x(ui0)‖ < 1.

Hence, {x(sir )} is bounded; a contradiction.
¤

Definition 2.7. A real-valued sequence x = {x(t)}t∈Z+
is said to be asymptotically

almost periodic if it can be decomposed as

x(t) = u(t) + υ(t),

where u = {u(t)}t∈Z+
∈ AP (Z+) and {υ(t)}t∈Z+

∈ N(Z+).
The collection of all asymptotically almost periodic Rk-valued sequences will be

denoted by AAP (Z+).
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Definitions 2.1, 2.2 and 2.7 are respectively adapted from the definitions of Rk-
valued almost periodic sequences and asymptotically almost periodic sequences
x = {x(t)}t∈Z defined in Z.

Lemma 2.8. If x = {x(t)}t∈Z+
∈ AP (Z+) and lim

t→∞
x(t) = 0, then x(t) = 0 for all

t ∈ Z+.

Proof. Let εt =
1

t + 1
for each t ∈ {0, 1, ...}. Then there exists T (εt) such that

among t, t + 1, ..., t + T (εt)− 1, there exists st such that

‖x(t + st)− x(t)‖ ≤ εt for all t ∈ Z+.

As t → ∞, st → ∞, x(t + st) → 0, and εt → 0. Hence, ‖x(t)‖ ≤ 0. This implies
that x(t) = 0 for all t ∈ Z+.

¤

Lemma 2.9. The decomposition of an asymptotically almost periodic sequence is
unique. That is, AP (Z+)∩ N(Z+) = {0}.
Proof. Suppose that x = {x(t)}t∈Z+

can be decomposed as

x(t) = u(t) + υ(t)

and
x(t) = v(t) + δ(t),

where u = {u(t)}t∈Z+
, ν = {ν(t)}t∈Z+

∈ AP (Z+) and {υ(t)}t∈Z+
, {δ(t)}t∈Z+

∈
N(Z+). Clearly, u(t) − ν(t) = δ(t) − υ(t) ∈ AP (Z+)∩ N(Z+). By Lemma 2.8,
u(t) = ν(t) and υ(t) = δ(t) for all t ∈ Z+.

¤

Theorem 2.10. Assume that (t, w) 7→ f(t, w) is Lipschitz in w uniformly in t ∈
Z+. If x(t) = u(t)+υ(t) is a solution of Eq. (2.1), then {u(t)}t∈Z+

is also a solution
of Eq. (2.1), where u = {u(t)}t∈Z+

∈ AP (Z+) and ν = {ν(t)}t∈Z+
∈ N(Z+).

Proof. Let {x(t)}t∈Z+
be an asymptotically almost periodic solution of Eq. (2.1).

That is, x(t) = u(t) + υ(t), where {u(t)}t∈Z+
∈ AP (Z+) and {υ(t)}t∈Z+

∈ N(Z+).
Now

u(t + 1)−A(t)u(t)− f(t, u(t)) = x(t + 1)− υ(t + 1)−A(t)u(t)− f(t, u(t))
= A(t)x(t) + f(t, x(t))− υ(t + 1)
− A(t)u(t)− f(t, u(t)).

Consequently,

‖u(t + 1)−A(t)u(t)− f(t, u(t))‖
≤ (L + ‖A(t)‖) · ‖x(t)− u(t))‖+ ‖υ(t + 1)‖

≤
(

L + sup
t∈Z+

‖A(t)‖
)
· ‖υ(t))‖+ ‖υ(t + 1)‖ .

Hence, ‖u(t + 1)−A(t)u(t)− f(t, u(t))‖ → 0 as t →∞.



POPULATION MODELS IN ALMOST PERIODIC ENVIRONMENTS 7

Let w(t) = u(t + 1) − A(t)u(t) − f(t, u(t)). If w(T ) 6= 0 for some t ∈ Z+, let

ε =
|w(T )|

2
> 0. Thus,

|w(T + p)− w(T )| ≤ |w(T )|
2

.

Hence,

|w(T + p)| ≥ |w(T )|
2

.

Let It = [sl, (s + 1) l] be intervals of length l. For each interval Is there exists ps

such that |w(T + ps)| ≥ |w(T )|
2

. As s →∞, ps →∞, and

lim
t→∞

|w(t)| ≥ |w(T )|
2

> 0.

This contradicts the fact that limt→∞ |w(t)| = 0. Therefore, w(t) = 0 for each
t ∈ Z+. That is, u(t + 1) = A(t)u(t) + f(t, u(t)) where {u(t)}t∈Z+

is almost
periodic.

¤

Definition 2.11. A sequence F : Z+ × Rp 7→ Rq, (t, u) 7→ F (t, u) is called almost
periodic in t ∈ Z+ uniformly in u ∈ Rq if for each ε > 0 there exists a positive
integer T0(ε) such that among any T0(ε) consecutive integers, there exists at least
one integer s with the following property:

‖F (t + s, u)− F (t, u)‖ < ε

for all u ∈ Rq and t ∈ Z+.

Theorem 2.12. Suppose that F : Z+×Rp → Rq, (t, u) 7→ F (t, u) is almost periodic
in t ∈ Z+ uniformly in u ∈ Rp. If in addition, F is Lipschitz in u ∈ Rp uniformly
in t ∈ Z+ (that is, there exists L > 0 such that

‖F (t, u)− F (t, v)‖ ≤ L ‖u− v‖ ∀u, v ∈ Rp, t ∈ Z+),

then for every Rp-valued almost periodic sequence x = {x(t)}t∈Z+ , the Rq-valued
sequence y(t) = F (t, x(t)) is almost periodic.

Proof. Let x = {x(t)}t∈Z+
be an almost periodic sequence and let y(t) = F (t, x(t)).

Then, for each ε > 0 there exists a positive integer T0(ε) such that among any T0(ε)
consecutive integers, there exists at least one integer s with the following property:

‖x(t + s)− x(t)‖ <
ε

L
∀ t ∈ Z+.

Moreover,

‖y(t + s)− y(t)‖ = ‖F (t + s, x(t + s))− F (t, x(t))‖
≤ ‖F (t + s, x(t + s))− F (t + s, x(t))‖

+ ‖F (t + s, x(t))− F (t, x(t))‖
≤ L ‖x(t + s)− x(t))‖+

ε

2
<

ε

2
+

ε

2
= ε.

¤
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3. Construction of Almost Periodic Sequences on Z+

There are two ways of generating an almost periodic sequence on Z+. One may
start with a periodic function on R or an almost periodic function on R. In the
sequel we will describe these two approaches.

(i) Periodic Functions. Let f : R→ Rk be a periodic function with periodic ω.

(a) If ω is a rational number, ω =
r

s
, r, s ∈ Z+ with s 6= 0, then r = sω is also

a period of f . If we let x(t) = f(t), t ∈ Z, then (x(t))t∈Z+ is a periodic
sequence of period r.

(b) Now assume that ω is an irrational number. Then f is uniformly continuous
and hence, given ε > 0, there exists δ > 0 such that |x− y| < δ implies

‖f(x)− f(y)‖ < ε.(3.1)

There exists a rational number
r

s
such that |ω − r

s
| < δ

s
and consequently,

|sω − r| < δ.(3.2)

Define x(t) = f(t), t ∈ Z. Then

‖x(t + r)− x(t)‖ ≤ ‖f(t + r)− f(t + sω)‖
+ ‖f(t + sω)− f(t)‖
< ε,

by Eq. (3.1).
(ii) Almost Periodic Functions. This case can also be divided into two cases. Let

f : R 7→ Rk be an almost periodic function,and ε > 0 be given. Then there exists
T (ε) such that for any interval of length T (ε), there exists a number ω with

‖f(t + ω)− f(t)‖ < ε for all t ∈ R.

(a) If ω =
r

s
is rational, then we consider T̃ (ε) = sT (ε), ω̃ = sω. If we let

x(t) = f(t), t ∈ Z, it follows that T̃ (ε) and ω̃ are the integers needed to
make x(t) almost periodic on Z and

‖f(t + ω̃)− f(t)‖ <
ε

2s
.(3.3)

(b) Now assume that ω is irrational. Since f is uniformly continuous, given
ε > 0, there exists δ > 0 such that |x− y| < δ implies ‖f(x) − f(y)‖ <

ε

2
.

There exists a rational number
r

s
, r, s ∈ Z+ with s 6= 0 such that |r

s
−ω| <

δ

s
. Hence |r − sω| < δ and consequently,

‖f(t + r)− f(t + sω)‖ <
ε

2
, for all t ∈ R.(3.4)

Define x(t) = f(t), t ∈ Z. Then

‖x(t + r)− x(t)‖ ≤ ‖f(t + r)− f(t + sω)‖
+ ‖f(t + sω)− f(t)‖
<

ε

2
,
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by Eq. (3.3) and Eq. (3.4).
Let T (ε) = bsωc + 1 (b·c being the greatest integer function). Then r

and T (ε) provide with the almost periodicity of (x(t))t∈Z.
I. Finally, once we get an almost periodic sequence {x(t)}t∈Z, we define an asso-

ciated sequence {x̃(t)}, where x̃(t) = x(t)u0(t) (u0 being the Heaviside function).
The sequence {x̃(t)} is almost periodic on Z+ but not on Z.

II. (a) An example for case (i) is the function f(t) = cos(αt) with period ω =
2π

α
.

Then x̃(t) = cos(αt)u0(t) is almost periodic on Z+.

(b) For case (ii), we let f(t) = cos(αt) + cos(βt) with
2π
α

or
2π

β
is irrational.

Then x̃(t) = (cos(αt) + sin(βt)) u0(t) is almost periodic on Z+ but not on Z.

Remark 3.1. (i) Since almost periodic functions f on R can be approximated by
trigonometric polynomials, it follows that almost periodic sequences x̃(t) on Z+

that are constructed in the manner described above can also be approximated by
trigonometric sequences.

(ii) Almost periodic sequences may be generated as solutions of scalar difference
equations or systems of difference equations. The following examples elucidate this
point.

Example 3.2. Consider the second-order difference equation

x(t + 2)− 2 cos αu0(t)x(t + 1) + x(t) = 0, x(0) = 0, x(1) = 1,

where 0 < α < π and α is not a multiple of π. Then the solution is given by

x(t) =





sin(tα)
sin α

if t ≥ 0

...x(−4), x(−3), x(−2), x(−1) if t < 0

where x(−1) = −1, x(−2) = 0, x(−3) = 1, x(−4) = 0, and this is of period 4.
Clearly, {x(t)} is almost periodic on Z+ but not on Z.

Example 3.3. This set of examples is inspired by Corduneanu [6, Theorem 8]. Con-
sider the k-dimensional system of difference equations

x(t + 1) = Ax(t) + g(t)

where A is a k × k-matrix and g is assumed to be almost periodic on Z. Then by
[6, Theorem 8], any bounded solution of the previous system is necessarily almost
periodic on Z. And by the construction above this produces an almost periodic
sequence on Z+.

4. Regular Exponential Dichotomy

In Eq. (2.2), the classical definition of dichotomy does not apply, whenever the
state transition matrix

X(t, s) =
t−1∏
r=s

A(r)

is not invertible. In [27], Henry used the following definition to address this problem.
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Definition 4.1. Eq. (2.2) is said to have a regular exponential dichotomy if there
exists k × k projection matrices P (t) with t ∈ Z+ and positive constants M and
β ∈ (0, 1) such that the following four conditions are satisfied:

(i) A(t)P (t) = P (t + 1)A(t);
(ii) The matrix A(t) |R(I−P (t)) is an isomorphism from R(I−P (t)) onto R(I−

P (t + 1));
(iii) ‖X(t, r)P (r)x‖ ≤ Mβt−r ‖x‖ , for 0 ≤ r ≤ t, x ∈ Rk;
(iv) ‖X(r, t)(I − P (t))x‖ ≤ Mβt−r ‖x‖ , for 0 ≤ r ≤ t, x ∈ Rk.

By repeated application of [(i), Definition 4.1], we obtain

(4.1) P (t)X(t, s) = X(t, s)P (s).

Define the hull H(x) of a sequence x as follows:

Definition 4.2. The set

H(x) = {x̃ | there exists a sequence α in Z+ with Tαx = x̃}.
Similarly, for a matrix function A(t), we define

H(A) = {Ã | there exists a sequence α in Z+ with TαA = Ã},
where TαA = Ã means that lim

t→∞
A(t + α(t)) = Ã(t).

Theorem 4.3. Suppose that Eq. (2.2) has a regular exponential dichotomy and
Ã(t) ∈ H(A(t)). Then the system

x(t + 1) = Ã(t)x(t)

satisfies a regular exponential dichotomy with same projections and constants.

Proof. Let TαA = Ã. Then Xi(t) = X(t + αi) is a fundamental matrix for the
equation

x(t + 1) = A(t + αi)x(t)

and satisfies regular exponential dichotomy with the same projection P (i) and same
constants M and β.

One may take subsequences so that Xi(0) converges to Y0. For a suitable sub-
sequence, Xi(t) converges to a solution Y (t) of

x(t + 1) = Ã(t)x(t).

Then Y (0) = Y0 and Y (t) satisfies the conditions of regular exponential dichotomy.
¤

Theorem 4.4. Suppose that Eq. (2.2) has a regular exponential dichotomy and
Ã(t) ∈ H(A(t)). Then, Eq. (2.3) has an almost periodic solution given by

(4.2) x(t) =
t−1∑

r=−∞
X(t, r + 1)P (r + 1)g(r)−

∞∑
r=t

X(t, r + 1)(I − P (r + 1))g(r),

where X(t, r)P (r) = 0 for r > t and g(r) = 0 for r < 0.
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Proof. It can be easily verified that x(t) defined by Eq. (4.2) is indeed a solution
of Eq. (2.3). Moreover,

‖x(t)‖ ≤
{

t−1∑
r=−∞

‖X(t, r + 1)P (r + 1)‖+
∞∑

r=t

‖X(t, r + 1)(I − P (r + 1))‖
}
‖g‖

≤
{

t−1∑
r=0

Mβt−r−1 +
∞∑

r=t

Mβr+1−t

}
‖g‖ ≤ M

1 + β

1− β
‖g‖ .

Let {α̃} and {γ̃} be arbitrary sequences of nonnegative integers, and let {α} ⊂
{α̃} and {γ} ⊂ {γ̃} be their common subsequences. Then Tα+γA = TγTαA and
Tα+γg = TγTαg. Now,

x(t + αi) =
t+αi−1∑
r=−∞

X(t + αi, r + 1)P (r + 1)g(r)−

∞∑
r=t+αi

X(t + αi, r + 1)(I − P (r + 1))g(r)

=
t−1∑

s=−∞
X(t + αi, s + αi + 1)P (s + αi + 1)g(s + αi)−

∞∑
s=t

X(t + αi, s + αi + 1)(I − P (s + αi + 1))g(s + αi)

=
t−1∑

s=−∞
A(t + αi − 1) · · ·A(s + αi + 1)P (s + αi + 1)g(s + αi)−

∞∑
s=t

A(t + αi − 1) · · ·A(s + αi + 1)(I − P (s + αi + 1))g(s + αi).

lim
i→∞

x(t + αi) = (Tαx)t =
t−1∑

s=−∞
Ã(t− 1) · · · Ã(s + 1)P̃ (s + 1)g̃(s)−

∞∑
s=t

Ã(t− 1) · · · Ã(s + 1)(I − P̃ (s + 1))g̃(s)

=
t−1∑

s=−∞
(TαA)t−1 · · · (TαA)s+1 (TαP )s+1 (Tαg)s −

∞∑
s=t

(TαA)t−1 · · · (TαA)s+1 (I − TαP )s+1 (Tαg)s .

Moreover,

(TγTαx)t =
t−1∑

s=−∞
(TγTαA)t−1 · · · (TγTαA)s+1 (TγTαP )s+1 (TγTαg)s −

t−1∑
s=t

(TγTαA)t−1 · · · (TγTαA)s+1 (I − TγTαP )s+1 (TγTαg)s

= (Tγ+αx)t .
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Hence, {x(t)}t∈Z+
∈ AP (Z+).

¤

Corollary 4.5. If the zero solution of Eq. (2.2) is uniformly asymptotically stable,
then Eq. (2.3) has a unique globally asymptotically stable almost periodic solution,

x(t) =
t−1∑
r=0

(
t−1∏
s=r

A(s)

)
g(r).

Moreover,

‖x(t)‖ ≤ Mβ

1− β
‖g‖ .

Proof. Let y(t) be a solution of Eq. (2.3) with y(0) = y0. Then,

y(t) = X(t)y0 +
t−1∑
r=0

(
t−1∏
s=r

A(s)

)
g(r).

Therefore,
y(t) = γ(t) + x(t),

where γ(t) is a null sequence. Thus, y(t) is an asymptotically almost periodic
solution of Eq. (2.3). By Lemma 2.9, y(t) ∈ AP (Z+) implies that y = x. Hence,

x(t) =
t−1∑
r=0

(
t−1∏
s=r

A(s)

)
g(r)

is the only almost periodic solution of Eq. (2.3).

It is easy to see that ‖x(t)‖ ≤ Mβ

1− β
‖g‖.

Theorem 4.6. Suppose that f is Lipschitz with Lipschitz constant L. Then Eq. (2.1)
has a unique globally asymptotically stable almost periodic solution if

(4.3)
MβL

1− β
< 1.

Proof. Consider the Banach space AP (Z+) equipped with the sup norm. By The-
orem 2.12, if ϕ ∈ AP (Z+) then f(t, ϕ(t)) ∈ AP (Z+). Let

Γ : AP (Z+) → AP (Z+)

be the nonlinear operator defined by

(Γϕ) (t) :=
t−1∑
r=0

(
t−1∏
s=r

A(s)

)
f(r, ϕ(r)).

By Theorem 4.4, Γ is well defined. Moreover, for ϕ,ψ ∈ AP (Z+),

‖(Γϕ) (t)− (Γψ) (t)‖ ≤ Mβ

1− β
‖f(t, ϕ(t))− f(t, ψ(t))‖ ,

and

‖Γϕ− Γψ‖∞ ≤ MβL

1− β
‖ϕ− ψ‖∞ .
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Γ is a contraction whenever
MβL

1− β
< 1. Using the Banach fixed point theorem, we

obtain that Γ has a unique fixed point, x. Moreover, x is the globally asymptotically
stable almost periodic solution of Eq. (2.1). ¤

5. Population Models With Non-overlapping Generations

In some plant populations, growth is a discrete process and generations do not
overlap. To study the impact of periodic environments on the long-term population
dynamics of such populations, various researchers have used simple models of the
general form

(5.1) x(t + 1) = f(t, x(t)), t ∈ Z+.

where x(t) is the population size at generation t [13-16, 20-23]. The smooth map
f : Z+ × [0,∞) → (0,∞) is the per capita growth rate.

In periodic environments, f is periodic with period p. That is, there exists a
smallest positive integer p satisfying f(t + p, x) = f(t, x).

The periodic Beverton-Holt model,

(5.2) x(t + 1) =
µKtx(t)

Kt + (µ− 1)x(t)
,

where the constant intrinsic growth rate µ > 1 and the carrying capacity Kt is
periodic with minimal period p ≥ 2,

Kt+p = Kt > 0,

is an example of Eq. (5.2) in periodic environments.
Eq. (2.1) with the linear part, A(t)x(t), missing reduces to Eq. (5.1). In this

case, one may contemplate the variational system

y(t + 1) = B(t)y(t) + g(t, y(t)), t ∈ Z+

where

B(t) =
∂

∂x
f(t, z(t)),

for some solution z(t) of Eq. (5.1), and

g(t, y(t)) = f(t, y(t))−B(t)y(t).

However, this approach has at least two basic problems. The first problem is that,
it is difficult to find the solution z(t) of Eq. (5.1). The second problem is that, the
linear part of Eq. (5)) does not satisfy the hypotheses of Theorem 4.6.

To illustrate the difficulties in a specific example, we consider the almost period-
ically forced Beverton-Holt model. That is, in Eq. (5.2) we assume that {Kt}t∈Z+

is almost periodic in Z+ and µ > 1. The variational equation around z(t) = 0
associated with Eq. (5.2) is given by

x(t + 1) = µx(t)− µ(µ− 1) (x(t))2

Kt + (µ− 1)x(t)
.

However, µ > 1 implies that Theorem 4.6 does not apply.
A simple substitution transforms Eq. (5.2) into a linear equation. To be more

specific,

y(t) =
1

x(t)
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in Eq. (5.2) yields

(5.3) y(t + 1) =
1
µ

y(t) +
µ− 1
µKt

, t ∈ Z+

Since Kt ∈ AP (Z+), we have µ−1
µKt

∈ AP (Z+). Hence, Corollary 4.5 applies and

Eq. (5.3) has a unique globally asymptotically stable almost periodic solution y(t).
Consequently,

x(t) =
1

y(t)
is the unique almost periodic solution of Eq. (5.2), where Kt ∈ AP (Z+) and µ > 1.
Moreover, for any solution x(t) of Eq. (5.2) we have

∣∣∣x(t)− x(t)
∣∣∣ =

∣∣∣∣∣
1

y(t)
− 1

y(t)

∣∣∣∣∣ =

∣∣∣y(t)− y(t)
∣∣∣

∣∣∣y(t)y(t)
∣∣∣

.

So both y(t) and y(t) are bounded away from zero. As a result,
∣∣∣x(t)− x(t)

∣∣∣ ≤ M
∣∣∣y(t)− y(t)

∣∣∣ .

Hence, x(t) is globally asymptotically stable. This result was obtained in [32] under
the assumption that the sequence { Kt} is defined for all t ∈ Z+.

6. Population Models With Overlapping Generations

In constant environments, theoretical discrete-time population models are usu-
ally formulated under the assumption that the dynamics of the total population
size in generation t, denoted by x(t), are governed by equations of the form

(6.1) x(t + 1) = f(x(t)) + γx(t),

where γ ∈ (0, 1) is the constant “probability” of surviving per generation, and
f : R+ → R+ models the birth or recruitment process [23].

Almost periodic effects can be introduced into Eq. (6.1) by writing the recruit-
ment function or the survival probability as almost periodic sequences. This is
modeled with the equation

(6.2) x(t + 1) = f(t, x(t)) + γtx(t),

where either {γt}t∈Z+
or f(t, x(t)) ∈ AP (Z+) and each γt ∈ (0, 1).

In a recent paper, Franke and Yakubu, in [23], studied Eq. (6.2) with the periodic
constant recruitment function

(6.3) f(t, x(t)) = Kt(1− γt),

and with the periodic Beverton-Holt recruitment function

(6.4) f(t, x(t)) =
(1− γt)µKtx(t)

(1− γt)Kt + (µ− 1 + γt)x(t)
,

where the carrying capacity Kt is p − periodic, Kt+p = Kt for all t ∈ Z+ and
µ > 1 [10, 23]. Franke and Yakubu proved that, the periodically forced recruitment
functions Eq. (6.3) and Eq. (6.4) generate globally attracting cycles in Eq. (6.2),
see [23]. Here, we use Theorem 4.3 to show that when both {Kt}t∈Z+

and {γt}t∈Z+
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are almost periodic, then Eq. (6.2) supports a unique globally asymptotically sta-
ble almost periodic solution whenever the recruitment function is either Eq. (6.3)
(almost periodic constant) or Eq. (6.4) (Almost periodic Beverton-Holt’s model).

Theorem 6.1. Let

f(t, x(t)) =
(1− γt)µKtx(t)

(1− γt)Kt + (µ− 1 + γt)x(t)
,

where both {Kt}t∈Z+
and {γt}t∈Z+

are almost periodic, each γt ∈ (0, 1), Kt > 0 and
µ > 1. Then Eq. (6.2) has a unique globally asymptotically stable almost periodic
solution whenever

sup
{
γt |t∈Z+

}
<

1
µ + 1

.

Proof. Eq. (6.2) is in the form of Eq. (2.1), where

A(t) = γt,

and

f(t, x(t)) =
(1− γt)µKtx(t)

(1− γt)Kt + (µ− 1 + γt)x(t)
.

Consequently,

|f(t, x)− f(t, y)| ≤ (1− γt)2µKt2 |x− y|
(1− γt)2K2

t + (µ− 1 + γt)(1− γt)Kt(x + y) + (µ− 1 + γt)2xy

≤ µ |x− y| .
Hence, f is Lipschitz with the Lipschitz constant L = µ. Let M = 1 and

β = sup
{
γt |t∈Z+

}
. Then, sup

{
γt |t∈Z+

}
<

1
µ + 1

implies that

MβL

1− β
=

µ . sup
{
γt |t∈Z+

}

1− sup
{
γt |t∈Z+

} < 1

and Eq. (4.3), is satisfied. Applying Theorem 4.6 yields the result.
¤

Proceeding exactly as in the proof of Theorem 6.1, it is easy to see that, when
f(t, x(t)) = Kt(1− γt), then f(t, x)− f(t, y) = 0 and the following result is imme-
diate.

Corollary 6.2. Let f(t, x(t)) = Kt(1 − γt), where both {Kt}t∈Z+
and {γt}t∈Z+

are almost periodic, each γt ∈ (0, 1) and Kt > 0. Then Eq. (6.2) has a unique
globally asymptotically stable almost periodic solution whenever

sup
{
γt |t∈Z+

}
< 1.

7. Attenuance and Resonant Cycles in Almost Periodic
Environments

Periodic environments usually diminish (respectively, enhance) populations via
attenuant (respectively, resonant) stable cycles [7, 8, 9, 10], [13, 14, 15, 16], and
[21, 22, 23, 24]. In this section, we focus on using precise mathematical definitions of
attenuance and resonance to access evidence for attenuance or resonance in almost
periodic environments. In particular, we prove that Model, Eq. (6.2), supports
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attenuant cycles when the recruitment function is the almost periodically forced
Beverton-Holt model and the survival probability is constant (non-almost periodic).

To be precise, define

M(at) = lim
i→∞

[
at+1 + ... + at+i

i

]

as the mean value of an almost periodic sequence {at} on Z+. (see [25] for a similar
proof for almost periodic sequence {at} on Z.) M(at) is then called the mean value
of {at}.
Lemma 7.1. Let {xt} be an almost periodic scalar sequence on Z+. Then M(xt)
exists.

Proof. The proof is similar to the proof of Theorem 5, p. 690 in Kay Fan [18] and
will be omitted.

Remark 7.2. The above proof of Lemma 7.1 can be extended to Rn or Banach
spaces.

In Eq. (6.2), let

f(t, x(t)) =
(1− γt)µKtx(t)

(1− γt)Kt + (µ− 1 + γt)x(t)
,

where {Kt}t∈Z+
and {γt}t∈Z+

are almost periodic, and each γt ∈ (0, 1), Kt > 0 and
µ > 1. By Corollary 6.2, Eq. (6.2) has a globally asymptotically almost periodic
solution {x(t)} whenever sup

{
γt |t∈Z+

}
< 1

µ+1 .

Open Problem: Under what conditions do we have

(7.1) M(x(t)) < M(Kt)? (attenuance)

(7.2) M(x(t)) > M(Kt)? (resonance)

Theorem 7.3. . In Eq. (6.2), let

f(t, x(t)) =
(1− γt)µKtx(t)

(1− γt)Kt + (µ− 1 + γt)x(t)
,

where {Kt}t∈Z+
is almost periodic, and each γt = γ ∈ (0, 1), Kt > 0 and µ > 1.

Then,
(1) M(Kt) ≤ sup

{
Kt |t∈Z+

}
< ∞;

(2) lim
t→∞

sup
1
t

t−1∑
t=0

x(t) ≤ lim
t→∞

sup
1
t

t−1∑
t=0

Kt;

for any solution x(t). If x(t) is the unique almost periodic solution, then

M(x(t)) ≤ M(Kt).

Proof. By Lemma 2.6, {Kt}t∈Z+
is almost periodic implies {Kt}t∈Z+

is bounded.
Hence, sup

{
Kt |t∈Z+

}
< ∞.

M(Kt) = lim
i→∞

1
i

n−1∑

i=0

Ki ≤ lim
i→∞

1
i
i sup

{
Kt |t∈Z+

}
= sup

{
Kt |t∈Z+

}
< ∞.
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This establishes (1).

To prove (2), let z(t) =
1
t

t−1∑

i=0

x(i), Kt = 1
t

t−1∑
i=0

Ki.

z(t + 1) =
1

t + 1

t∑

i=0

x(i)

=
x(0)
t + 1

+
1

t + 1

t∑

i=0

x(i + 1)

=
x(0)
t + 1

+
1

t + 1

t∑

i=0

[
(1− γ)µKix(i)

(1− γ)Ki + (µ− 1 + γ)x(i)
+ γx(i)

]
.

z(t + 1) =
x(0)
t + 1

+
γ

t + 1

t−1∑

i=0

x(i) +
(1− γ)µ
(t + 1)

t−1∑

i=0

Ki

(µ−1+γ)

(
(µ−1+γ)x(i)

(1−γ)Ki

)

1 +
[

µ−1+γ
(1−γ)Ki

]
x(i)

=
x(0)
t + 1

+
γt

t + 1
z(t)

+
t−1∑

i=0

Ki
(1− γ)µ

(i + 1)(µ− 1 + γ)

t−1∑

i=0

Kih

(
(µ− 1 + γ)x(i)

(1− γ)Ki

)

t−1∑

i=0

Ki

,

where h(t) =
t

1 + t
, h′′ < 0.

Notice that h is strictly convex and satisfies Jensen’s inequality. Thus,

z(t + 1) <
x(0)

t + 1
+

γt

t + 1
z(t) +

(1− γ)µ

(t + 1)(µ− 1 + γ)

t−1X

i=0

Kih

0
BBBBB@

t−1X

i=0

Ki
(µ− 1 + γ)x(i)

(1− γ)Ki

t−1X

i=0

Ki

1
CCCCCA

=
x(0)

t + 1
+

γt

t + 1
z(t) +

(1− γ)µtKt

(t + 1)(µ− 1 + γ)

1
t

t−1X

i=0

Ki(µ− 1 + γ)

(1− γ)Ki

x(i)
n−1X

r=0

Ki

1
t

t−1X

i=0

Ki +
1

t

t−1X

i=0

Ki(µ−1+γ)
(1−γ)Ki

x(i)

t−1X

i=0

Ki

.

z(t + 1) <
x(0)

t + 1
+

γt

t + 1
z(t) + µ

t

t + 1
Kt

z(t)

Kt + µ−1+γ
1−γ

z(t)
.

Let λ = lim sup sup z(t) and θ = lim sup Kn. Then, there exists a sequence
ti →∞ such that lim

t→∞
z(ti + 1) = λ and subsequence {z(ti)} and {Kti} satisfying

lim z(ti) ≤ λ, and lim Kti ≤ θ.
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Since H(u, v) =
uv

u + v
is increasing in both arguments and (0, γ)2, we have

λ = lim
i→∞

z(ti + 1) ≤ lim
i→∞

x0

ti + 1
+ γλ +

µθλ

θ + µ−1+γ
1−γ λ

.

Therefore, (1− γ)λθ + (µ− 1 + γ)λ2 ≤ µθλ

⇒ (µ− 1 + γ)λ ≤ (µ− 1 + γ)θ
⇒ λ ≤ θ.

Investigate attenuance and resonance of the general Beverton–Holt equation

xn+1 =
(1− γn)µKnxn

(1− γn)Kn + (µ− 1 + γn)xn
+ γnxn

γn, Kn ∈ AP (Z+).

8. Population Models With Delay

To study population models with constant delay in almost periodic environments,
we consider delay difference equations. Our main concern in this section is to
find sufficient conditions for the existence of a globally attracting almost periodic
solution of the semilinear systems of difference equations with delay

(8.1) x(t + 1) = A(t)x(t) + f(t, x(t− r), x(t− r + 1), ..., x(t)), t ∈ Z+

where A(t) is a continuous k × k almost periodic matrix defined on Z+ and the
function f : Z+×(Rk)r+1 7→ Rk, (t, u) 7→ f(t, u) is almost periodic in t ∈ Z+

uniformly in u ∈ (Rk)r+1. The proof of the following Lemma is straightforward.

Lemma 8.1. Let x = {x(t)}t∈Z+ be an Rp-valued almost periodic sequence. Then
the sequence defined by y(t) := x(t − r) for all t ≥ r, for some fixed r ∈ Z+, is
almost periodic.

Proposition 8.2. Suppose that f is globally Lipschitz with Lipschitz constant L.
Then Eq. (8.1)has a unique globally asymptotically stable almost periodic solution
whenever

MβL
√

r + 1
1− β

< 1,

where M and β are the dichotomy constants for the linear part of Eq. (8.1) and r
is the delay time.

9. The Beverton-Holt’s Model with Delay

In this section, we study the Beverton-Holt model with delay in almost periodic
environments. Thus, we consider the equation

(9.1) x(t + 1) = γtx(t) + f(t, x(t− r), x(t− r + 1), ..., x(t))

for all t ∈ Z+, where (γt)t∈Z+ is an almost periodic sequence and f : Z+ ×
[0,∞)r+1 7→ [0,∞), (t, u) 7→ f(t, u) is almost periodic in t ∈ Z+ uniformly in
u = (u0, u1, ...., ur) ∈ [0,∞)r+1.

One requires the following assumption:
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(H) f : Z+ × [0,∞)r+1 7→ [0,∞), (t, u) 7→ f(t, u) is almost periodic in t ∈ Z+

uniformly in u ∈ [0,∞)r+1. Moreover, f is Lipschitz in u ∈ [0,∞)r+1 uniformly
in t ∈ Z+, i.e., there exists L > 0 such that

|f(t, u0, u1, ..., ur)− f(t, v0, v1, ..., vr)| ≤ L .

(
r∑

k=0

|uk − vk|2
)1/2

for all t ∈ Z+ and (u0, ..., ur), (v0, ..., vr) ∈ [0,∞)r+1.
For instance

f(t, x) =
(1− γt)µKtx

(1− γt)Kt + (µ− 1 + γt)x
for t ∈ Z+ and x ∈ [0,∞) satisfies assumption (H) whenever both (γt)t∈Z+ and
(Kt)t∈Z+ are almost periodic. In that case, L = µ.

The constants of dichotomy related to Eq. (9.1) are respectively M = 1 and
β = supt∈Z+

γt ∈ (0, 1).

Corollary 9.1. Under assumption (H), Eq. (9.1) has a unique globally asymptot-
ically stable almost periodic solution whenever

β <
1

1 + L
√

r + 1
.

For instance if L = 1.01, we then get the following approximations of β0 in terms
of r, the number of delays being considered:

r β0 =
1

1 + 1.01
√

r + 1
0 ≈ 0.4975
1 ≈ 0.4118
2 ≈ 0.3637
3 ≈ 0.3311
4 ≈ 0.3068
5 ≈ 0.2878
6 ≈ 0.2723
... .......
... ......
20 ≈ 0.1776
100 ≈ 0.0896

In view of the above, the following version of the Beverton-Holt equation with
delay given by

x(t + 1) = γtx(t) +
(1− γt)µKtx(t− 1)

(1− γt)Kt + (µ− 1 + γt)x(t)
, t ≥ 1

x(0) = x0

has a unique globally asymptotically stable almost periodic solution whenever

β <
1

1 + µ
√

2
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with µ > 1. However, if we consider the original version of Beverton-Holt equation
with delay in the form

x(t + 1) = γtx(t) +
(1− γt)µKtx(t− 1)

(1− γt)Kt + (µ− 1 + γt)x(t− 1)
, t ≥ 1

x(0) = x0

we obtain a better result if we convert the equation into a two-dimensional system
with no delay and apply Theorem 4.6 directly. It follows that this equation has a
unique globally asymptotically stable almost periodic solution whenever

β <
1

1 + µ

with µ > 1.

10. Conclusion

Almost periodic deterministic models are more likely to capture the “noise”
associated with real-population data. Using these models, we study the effects
of almost periodic forcing of the carrying capacity, the demographic characteristic
and survival rates of species on the long-term behavior of discretely reproducing
populations. Others have studied the effects of periodic forcing of the carrying
capacity, the demographic characteristic and survival rates of species on population
dynamics [8, 9, 10], [12, 13, 14, 15, 16], [20, 21, 22, 23, 24], [28, 29, 30, 31], and
[34, 35, 36, 37]. Typically, such periodically forced models support attracting cycles
that are either enhance via resonance or diminished via attenuance.

In almost periodic environments, simple population models support a globally
attracting almost periodic solution. Developing a signature function for determining
whether the almost periodic solution is attenuance or resonance is an interesting
question that we plan to explore elsewhere.
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