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1 Introduction

Much research has been conducted examining functions mapping a finite
field into itself. Dickson [?] established that each multivariate function that
maps IF k

q → IFs can be represented by a polynomial function in the ring
IFq[x1, ...xk]. Redéı [?] examined polynomials that mapped IFq → IFs where
IFs is a subfield of IFq. We shall use the notation of Redéı beginning with
the following definition.

Definition 1. A polynomial f(x) ∈ IFq[x] is called an (IFq, IFs)-polynomial
if all the values of f(γ) (with γ ∈ IFq) are contained in a subfield IFs of IFq.

Polynomials that map IF k
4 → IF2 has not been an area that has been ex-

amined extensively. By examining these polynomials, we will establish neces-
sary and/or sufficient conditions for identification of these so-called (IF k

4 , IF2)-
polynomials.

Recall, IF4 is the finite field with 4 elements, i.e. IF4 = {0, 1, α, α2} where
α2 = α+1. From this we have the additional relationships α3 = 1 and α4 = α.
The field IF4 has only one proper subfield, namely IF2 = {0, 1}. Dickson [?]
determined that all functions that map IF4 into itself can be represented as
polynomials of degree less than four. The following table illustrates Dickson’s
reasoning:

x x4

0 0
1 1
α α4 = α
α2 (α2)4 = α8 = α2
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The polynomials f(x) = x and g(x) = x4 are the same function. Therefore,
any polynomial of degree four or higher is equivalent (as functions) to one
whose degree does not exceed 3.

2 (IF4, IF2)-polynomials

The first type of polynomials we will investigate are (IF4, IF2)-polynomials.
Let α denote a fixed primitive element of IF4, i.e. IF4 = {0, 1, α, α2} where
α2 = α + 1. The following is an example of an (IF4, IF2)-polynomial.

x f(x) = x2 + x+ 1
0 1
1 12 + 1 + 1 = 1
α α2 + α + 1 = 0
α2 α4 + α2 + 1 = α + α2 + 1 = 0

Since IF (γ) is in {0, 1} for all γ ∈ IF4, we know that this polynomial does
map IF4 into IF2. On the other hand, an example of a function that is not
an (IF4, IF2)-polynomial is x2. The following table illustrates this fact.

x g(x) = x2

0 0
1 1
α α2

α2 α4 = α

We see that since g(α) = α2 /∈ IF2, we have that g(x) does not map to IF2.
By Dickson’s observations [?], all functions that map IF4 into IF2 are

precisely represented by the polynomials in IF4[x] of degree less than four.
In 1973, Redéı [?] examined the more general case of (IFq, IFs)-polynomials
where IFs is a subfield of IFq. He was able to classify all (IFq, IFs)-polynomials
with the following theorem.
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Theorem 1. (Redéı): A polynomial

f(x) =
q−1∑
i=0

βix
i (βi ∈ IFq)

is an (IFq, IFs)-polynomial if and only if its coefficients satisfy the two follow-
ing conditions:

(i) βj = βsi whenever j ≡ si mod(q − 1) for 0 ≤ i, j < q − 1; and
(ii) βq−1 = βsq−1.

We claim that there are 16 (IF4, IF2)-polynomials. Given such a poly-
nomial f , for each domain element γ ∈ IF4 we have two choices for f(γ),
namely 0 or 1. Since there are four domain elements we have 24 = 16
possibilities. By Redéı’s Theorem, when q = 4 and s = 2 we have that
f(x) = β0 +β1x+β2x

2 +β3x
3 is a (IF4, IF2)-polynomial if and only if βj = β2

i

when j ≡ 2i (mod 3) for i, j ∈ {0, 1, 2} and β3 = β2
3 . This implies that

β2
1 = β2 and β2

2 = β1 and both β0 and β3 are in IF2. In our case this reduces
to the following polynomials of degree less than four.

The (IF4, IF2) polynomials of degree zero are f(x) = 0 and f(x) = 1.
There are no such polynomials of degree one. The polynomials of degree two
are

f(x) = x2 + x; f(x) = x2 + x+ 1; f(x) = αx2 + α2x;
f(x) = αx2 + α2x+ 1; f(x) = α2x2 + αx; f(x) = α2x2 + αx + 1,

where α denotes a primitive element of IF4. Finally, the polynomials of degree
three are of the form x3 plus some IF2-linear combination of the preceding
(IF4, IF2)-polynomials of lesser degree. By inspection we see that

{1, x2 + x, α2x2 + αx, x3},

is an IF2 basis for the (IF4, IF2)-polynomials. Furthermore, note that no
proper summand of any polynomial of this basis is an (IF4, IF2)-polynomial.
In other words, if you partition the terms of a polynomial to form two poly-
nomials, neither polynomial will be an (IF4, IF2)-polynomial. For example,
for the basis polynomial x2 + x, neither x2 nor x is an (IF4, IF2)-polynomial.
In this manner, we may say this basis is minimal.

We shall extend the definition of an (IFq, IFs)-polynomial to include mul-
tivariable functions.
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Definition 2. A multivariate polynomial f(x1, ..., xk) ∈ IFq[x1, ..., xk] shall
be called an (IF k

q , IFs)-polynomial if all the values of f(γ) (with γ ∈ IFq) are
contained in a subfield IFs of IF k

q . .

Lemma 1. Suppose f is in IF4[x1, x2, ..., xk]. Then f is an (IF k
4 , IF2)-polynomial

if and only if [f(γ)]2 = f(γ).

Proof. Let f be a polynomial in IF4[x1, x2, ..., xk]. If f is an (IF k
4 , IF2)-

polynomial, then f(γ) ∈ IF2 for all γ ∈ IF k
4 . Therefore, [f(γ)]2 = f(γ).

Conversely, since f ∈ IF4[x1, x2, ..., xk], then for each γ ∈ IF k
4 we have that

f(γ) ∈ IF4. If in addition, [f(γ)]2 = f(γ) for all γ, then f(γ) ∈ IF2. Thus, f
is an (IF k

4 , IF2)-polynomial.

Theorem 2. The function f(x1, ..., xk) = c2x2e1
1 x2e2

2 ...x2ek
k + cxe11 ...x

ek
k with

c ∈ IF4 is an (IF k
4 , IF2)-polynomial.

Proof. By the lemma, we need to show that (f 2 − f)(γ) = 0 for all γ ∈ IF k
4 .

Note that modulo 2,we have

f 2 − f = (c2x2e1
1 ...x2ek

k + cxe11 ...x
ek
k )2 − (c2x2e1

1 ...x2ek
k + cxe11 ...x

ek
k )

= c4x4e1
1 ...x4ek

k + 2(c3x3e1
1 ...x3ek

k ) + (c2x2e1
1 ...x2ek

k )

−(c2x2e1
1 ...x2ek

k + cxe11 ...x
ek
k )

= c4x4e1
1 ...x4ek

k + (c2x2e1
1 ...x2ek

k − c
2x2e1

1 ...x2ek
k )− cxe11 ...x

ek
k

= (cxe11 x
e2
2 ...x

ek
k )4 − (cxe11 x

e2
2 ...x

ek
k ).

Then we must have that (f 2 − f)(γ) = 0 since γ ∈ IF k
4 implies that

cxe11 x
e2
2 ...x

ek
k ∈ IF4.

3 (IF 2
4 , IF2)-polynomials

Put S = {1, x2 +x, α2x2 +αx, x3} and T = {1, y2 +y, α2y2 +αy, y3}. A basis
for the (IF 2

4 , IF2)-polynomials consists of the elements of the set ST where
ST = {st|s ∈ S and t ∈ T}. Since S and T are each IF2-linearly independent
and span(S)

⋂
span(T ) = {1}, then the set ST is IF2-linearly independent

as well [?]. These basis polynomials are the following:

1 x2 + x α2x2 + αx x3

y2 + y (x2 + x)(y2 + y) (α2x2 + αx)(y2 + y) x3(y2 + y)
α2y2 + αy (x2 + x)(α2y2 + αy) (α2x2 + αx)(α2y2 + αy) x3(α2y2 + αy)

y3 (x2 + x)y3 (α2x2 + αx)y3 x3y3
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However, these basis polynomials fail to have the property that no proper
summand is a basis polynomial. For example, consider the (IF 2

4 , IF2)-polynomial
(x2 + x)(y2 + y). Observe that

(x2 + x)(y2 + y) = x2y2 + x2y + xy2 + xy

= (x2y2 + xy) + (x2y + xy2).

However, it can be verified that x2y2 + xy and x2y + xy2 are both (IF 2
4 , IF2)-

polynomials.
Our goal is to build a basis that maintains this property. The only mono-

mials which are (IF 2
4 , IF2)-polynomials are 1, x3, y3, and x3y3. In order to

find the non-monomial (IF 2
4 , IF2)-polynomials we first introduce some nota-

tion and comments about general multivariable polynomial functions. Given
a term m = cxe11 x

e2
2 ...x

ek
k , where ei ∈ {0, 1, 2, 3} for all i and c ∈ IF4. We

define m2 to be the term given by m2 = c2xp1

1 x
p2

2 ...x
pk
k where

pi =

{
2ei if ei < 2
2ei − 3 if ei ≥ 2.

In other words, the term m2, is the reduction of m2 modulo the ideal

(x4
1 − x1, x

4
2 − x2, ..., x

4
k − xk).

Remarks.
(i) ei = 0 if and only if pi = 0

(ii) m2 divides m2

Proposition 1. Let m = cxe11 x
e2
2 ...x

ek
k be a term and m2 = c2xp1

1 x
p2

2 ...x
pk
k

as defined above. Then, viewing m and m2 as functions we see that for any
choice of γ = (x1, ..., xk) ∈ IF k

4 , we have m2(γ) = m2(γ).

Proof. Suppose that m2(γ) = 0. This implies that xi = 0 for some xi ∈ γ
and ei 6= 0. By the above remark, pi 6= 0 implies that m2(γ) = 0. Now, we
may assume that m2(γ) 6= 0. Note that m2 = m2(xr11 ...x

rk
k ) where

ri = 2ei − pi ∈ {0, 3}. Thus, xr11 ...x
rk
k = 1 for any γ ∈ IF k

4 . Therefore, m2 is
the same function as m2.
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From Theorem 2 and Proposition 1 we receive the following corollary.

Corollary 1. For a term m, the polynomial m+m2 is an (IF k
4 , IF2)-polynomial.

Hence, the 216-many (IF 2
4 , IF2)-polynomials are generated by the following

16 polynomials:

1, x3, y3, x3y3,

x+ x2 αx + α2x2,

y + y2 αy + α2y2,

xy + x2y2 αxy + α2x2y2,

xy2 + x2y αxy2 + α2x2y,

x3y + x3y2 αx3y + α2x3y2,

xy3 + x2y3 αxy3 + α2x2y3

Clearly, the first 4 polynomials, namely 1, x3, y3, and x3y3, cannot be repre-
sented as an IF2-linear combination of the other 12 polynomials since none
of 1, x3, y3, or x3y3 appear in the other 12 polynomials. Further note that no
two polynomials in the left column possess an identical monomial. Also, for
each polynomial m+m2 in the left column, there is a corresponding polyno-
mial αm + α2m2 in the right column. Since
(m + m2) + (αm + α2m2) = (1 + α)m + (1 + α2)m2 = α2m + (α2)2m2 6= 0,
then these 16 polynomials are an IF2-linearly independent set.

Remarks.

(i) A polynomial f is an (IF 2
4 , IF2)-polynomial if and only if it is an

IF2-linear combination of these 16.
(ii) A polynomial f is an (IF 2

4 , IF2)-polynomial if and only if for every

m in f, the term m2 is also in f.

This gives us the two following benefits. First, it is very easy to form the
(IF 2

4 , IF2)-polynomials from this basis. That is, we can take any number of the
16 basis polynomials and add them together to find an (IF 2

4 , IF2)-polynomial.
Secondly, we can tell by inspection whether or not a polynomial f is an
(IF 2

4 , IF2)-polynomial by remark (ii).
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4 (IF k
4 , IF2)-polynomials

There are 24k (IF k
4 , IF2)-polynomials. Hence, an IF2-basis would consist of 4k

polynomials. We will proceed to find a basis in a simliar vein as in section 3.
For which monomials m does m2 = m hold? All the monomials of the form
xe11 x

e2
2 ...x

ek
k where ei ∈ {0, 3} have this property. There are 2k of this type.

All of these are (IF k
4 , IF2)-polynomials, since γ3 ∈ {0, 1} for all γ ∈ IF4.

This leaves, 4k−2k monomial whose “squares” are not themselves. There-
fore, there are 1

2
(4k − 2k) many (IF k

4 , IF2)-polynomials of the form m + m2

where m <t m2 under some total monomial ordering <t.
We have

1
2
(4k − 2k) of the form m+m2; and

1
2
(4k − 2k) of the form αm + α2m2.

¿From corollary 1, we know that all of these are (IF k
4 , IF2)-polynomials also.

We now have

2k + 1
2
(4k − 2k) + 1

2
(4k − 2k) = 4k,

IF 2-linearly independent (IF k
4 , IF2)-polynomials. These form a basis for the

(IF k
4 , IF2)-polynomials. Therefore, a polynomial f is an (IF k

4 , IF2)-polynomial
if and only if it is an IF2-linear combination of these 4k polynomials. By our
earlier argument on the two-dimentional case, since
(m+m2) + (αm+α2m2) = (1 +α)m+ (1 +α2)m2 = α2m+ (α2)2m2 6= 0, is
true for any term m in k variables, we see that we also obtain the following
theorem.

Theorem 3. A polynomial f is a (IF k
4 , IF2)-polynomial if and only if for

every term m in f , the term m2 is also in f .

5 Conclusion

By carefully examining the (IF4, IF2)-polynomials we were able to generate
bases for (IF 2

4 , IF2)-polynomials and produced some very interesting results.
We extended the case that we proved true for (IF 2

4 , IF2)-polynomials to hold
for (IF k

4 , IF2)-polynomials. Through this we are able to tell by inspection
if a polynomial is an (IF k

4 , IF2)-polynomial. It is also very easy to generate
an (IF k

4 , IF2)-polynomial by simple addition of any number of the 24k basis
polynomials.
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