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1 Introduction

Much research has been conducted examining functions mapping a finite
field into itself. Dickson [?] established that each multivariate function that
maps ZF: — IF, can be represented by a polynomial function in the ring
IF, [z, ...x). Redef [?] examined polynomials that mapped IF, — IF,; where
IF, is a subfield of IF,. We shall use the notation of Redei beginning with
the following definition.

Definition 1. A polynomial f(x) € IF,[z] is called an (IF,, IFs)-polynomial
if all the values of f(v) (with v € IF,) are contained in a subfield IFs of IFy,.

Polynomials that map IF} — IF, has not been an area that has been ex-
amined extensively. By examining these polynomials, we will establish neces-
sary and /or sufficient conditions for identification of these so-called (IF}, IFy)-
polynomials.

Recall, IF} is the finite field with 4 elements, i.e. IFy = {0,1, a, o®} where
a? = a+1. From this we have the additional relationships a® = 1 and a* = «a.
The field IF; has only one proper subfield, namely F» = {0, 1}. Dickson [?]
determined that all functions that map IF} into itself can be represented as
polynomials of degree less than four. The following table illustrates Dickson’s

reasoning:

T |z

0 |0

1 |1

a |at=a

o | (a2t = a8 = a2




2 2 (F,, F,)-POLYNOMIALS

The polynomials f(x) = x and g(x) = x* are the same function. Therefore,
any polynomial of degree four or higher is equivalent (as functions) to one
whose degree does not exceed 3.

2 ([}, IF,)-polynomials

The first type of polynomials we will investigate are (IFy, IF»)-polynomials.

Let o denote a fixed primitive element of IFy, i.e. IFy; = {0,1,,a?} where

a? = a + 1. The following is an example of an (IF}, IF)-polynomial.

r | fle)=2>+2+1
0 |1

1 | 2+14+1=1

a |[?+a+1=0
a

2ot +al+1l=a+a’+1=0

Since IF'(7y) is in {0,1} for all v € IFy, we know that this polynomial does
map IF, into IF5. On the other hand, an example of a function that is not
an (IFy, IF;)-polynomial is z%. The following table illustrates this fact.

O O~ OlR

We see that since g(a) = o? ¢ IFy, we have that g(z) does not map to IFy.

By Dickson’s observations [?], all functions that map IF, into IF, are
precisely represented by the polynomials in [Fy[z] of degree less than four.
In 1973, Redef [?] examined the more general case of (IF,, IFs)-polynomials
where IFy is a subfield of IFj,. He was able to classify all (IF,, IF;)-polynomials
with the following theorem.



Theorem 1. (Redei): A polynomial

q—1 )
flx) = ;)M (6 € IFy)

is an (IF,, IFy)-polynomial if and only if its coefficients satisfy the two follow-
ing conditions:

(i) B; = B¢ whenever j = si mod(q—1) for 0<i,j<q—1; and
(%) Bg—1 = B-1-

We claim that there are 16 ([Fy, IF;)-polynomials. Given such a poly-
nomial f, for each domain element v € IF; we have two choices for f(v),
namely 0 or 1. Since there are four domain elements we have 2 = 16
possibilities. By Redei’s Theorem, when ¢ = 4 and s = 2 we have that
f(z) = Bo+ iz + Box® + 323 is a (IF}y, IFy)-polynomial if and only if 8; = 37
when j = 2i (mod 3) for 7,57 € {0,1,2} and §3 = (3. This implies that
(% = B, and 32 = 31 and both 3y and (33 are in IF;. In our case this reduces
to the following polynomials of degree less than four.

The (IFy, IF;) polynomials of degree zero are f(x) = 0 and f(z) = 1.
There are no such polynomials of degree one. The polynomials of degree two
are

f(x):xz—i—x; f(x)zﬂﬁz-l-l’—i-l; f(x)zosz—i—ozzx;
flx) =+ x4+ 1; f(z) =2 +oax; f(z)=co2*+ar+1,

where o denotes a primitive element of [F;. Finally, the polynomials of degree
three are of the form 22 plus some I[Fy-linear combination of the preceding
(IFy, IF5)-polynomials of lesser degree. By inspection we see that

{1, 22 + x, 2% + ax, 23},

is an [Fy basis for the (IFy, IF,)-polynomials. Furthermore, note that no
proper summand of any polynomial of this basis is an ([F}, IF5)-polynomial.
In other words, if you partition the terms of a polynomial to form two poly-
nomials, neither polynomial will be an ([Fy, IF;)-polynomial. For example,
for the basis polynomial x? + z, neither x? nor z is an (IF}, IF,)-polynomial.
In this manner, we may say this basis is minimal.

We shall extend the definition of an ([Fy, IF;)-polynomial to include mul-
tivariable functions.



4 3 (F2,F,)-POLYNOMIALS

Definition 2. A multivariate polynomial f(xy,...,x) € IFy[zq, ..., x| shall
be called an (Ff,]FS)-polynomml if all the values of f(y) (with v € IF,) are
contained in a subfield IFy of JFqk.

Lemma 1. Suppose f isin IFy[x1, zo, ..., xx]. Then f is an (IF}, IFy)-polynomial
if and only if [f(7)]* = f(7).

Proof. Let f be a polynomial in IFy[xy, 2o, ...,2x]. If f is an (IEF, IFy)-
polynomial, then f(v) € IF; for all v € IFF. Therefore, [f(7)]? = f(7).

Conversely, since f € IFy[x1,Zo, ..., 73], then for each v € IFF we have that
f(v) € IFy. If in addition, [f(7)]? = f(v) for all , then f(vy) € IF5. Thus, f
is an (IFF, IFy)-polynomial. O

Theorem 2. The function f(x1,..., ;) = a3 a3 .07 + cat..afh with
c € IFy is an (IF}, IFy)-polynomial.

Proof. By the lemma, we need to show that (f2 — f)(y) = 0 for all v € IF}.
Note that modulo 2,we have
2 o 2 2e; 2ep el er\2 2 2e1 2ep el ek
fF=f = (oo +eal o alk) — (™ot cattank)
4 3 2
= A2l 2(Pr ) 4 (P )
2 2ep 2eg el €k
—(cC et + calt )
1 4 2 2 2 2
Al (Pt — Al *) — ca gk
el e er\4 €1 .62 €k
(cxtad?...aff)® — (caf'a?...ak).

Then we must have that (f2 — f)(v) = 0 since v € IF} implies that
cxita?. ak € IFy. O

3 (IF?, IF;)-polynomials

Put S = {1,2% +x,a*x* +ax, 23} and T = {1,y* +y, *y* + ay,y*}. A basis
for the (IF7, IFy)-polynomials consists of the elements of the set ST where
ST = {st|]s € Sand t € T'}. Since S and T" are each I[Fy-linearly independent
and span(.S) () span(T') = {1}, then the set ST is [Fy-linearly independent
as well [?]. These basis polynomials are the following:

1 2+ a’z? + ax a3

v+y @4l +y) (@ +arn)(yP+y) 2 +y)
oy’ +ay (2 +2)(@*y’ +ay) (o2’ +ax)(a®y’ +ay) 2°(a’y’ +ay)
v’ (¢* + )y’ (o®2? + az)y’ z’y’



However, these basis polynomials fail to have the property that no proper
summand is a basis polynomial. For example, consider the (IF}?, IF,)-polynomial
(2% + z)(y* + y). Observe that

(@ +2) (P +y) = 22y +2y+ay’ +ay
= (2 +zy) + (2Py + 2”).

However, it can be verified that 2%y + zy and 2y + zy* are both (F7, IF»)-
polynomials.

Our goal is to build a basis that maintains this property. The only mono-
mials which are (IF7, IFy)-polynomials are 1,23, 9%, and x*y®. In order to
find the non-monomial (IF}, IF,)-polynomials we first introduce some nota-
tion and comments about general multivariable polynomial functions. Given

a term m = ca{'xy’..xy}, where e; € {0,1,2,3} for all i and ¢ € IF,. We

define m? to be the term given by m? = c?af'25?...2t* where

o 2¢e; if e; <2
Pi=9 2, -3 ife;, >2.

In other words, the term m2, is the reduction of m? modulo the ideal
(2] — 21,25 — @9, ..., T} — 13).

Remarks.

(i) e, =0 if and only if p; =0

(id) m2 divides m>
Proposition 1. Let m = ca$'a$..a{* be a term and m? = Aalah?. ot
as defined above. Then, viewing m and m? as functions we see that for any
choice of ¥ = (z1, ..., w) € IFF, we have m2(y) = m?(v).

Proof. Suppose that m?(y) = 0. This implies that x; = 0 for some z; € ~y
and e; # 0. By the above remark, p; # 0 implies that m2(y) = 0. Now, we
may assume that m?(vy) # 0. Note that m? = m2(z]"...z}*) where

ri = 2¢; — p; € {0,3}. Thus, z}'...2}* = 1 for any v € IFf. Therefore, m? is
the same function as m?. 0



6 3 (F2,F,)-POLYNOMIALS

From Theorem 2 and Proposition 1 we receive the following corollary.
Corollary 1. For a termm, the polynomial m-+m? is an (IFF, IFy)-polynomial.

Hence, the 2'%-many (IF, IF,)-polynomials are generated by the following
16 polynomials:

3 3 3,3
L, 22, y°, x°y°,

r+22  ar+ ao??

vty ay+a’y?
Yy + x2y2 oaxy + a2x2y2,
vy + 2%y axy? + o2y,
By + 2352 ardy + ooyl
2+ 24P axy® + ey
Clearly, the first 4 polynomials, namely 1,23, y3, and 23y3, cannot be repre-
sented as an [F5-linear combination of the other 12 polynomials since none
of 1, 23,93, or x3y> appear in the other 12 polynomials. Further note that no
two polynomials in the left column possess an identical monomial. Also, for
each polynomial m + m? in the left column, there is a corresponding polyno-
mial am + a®m? in the right column. Since o o
(m 4+ m?2) + (am + a?m?) = (1 + a)m + (1 + o*)m? = o’*m + (a?)*m? #£ 0,
then these 16 polynomials are an IFb-linearly independent set.

Remarks.

(i) A polynomial f is an (IF}, IFy)-polynomial if and only if it is an
IF5-linear combination of these 16.

(1) A polynomial f is an (IF}, IFy)-polynomial if and only if for every
m in f, the term m? is also in f.

This gives us the two following benefits. First, it is very easy to form the
(IF?, IFy)-polynomials from this basis. That is, we can take any number of the
16 basis polynomials and add them together to find an (I, IF,)-polynomial.
Secondly, we can tell by inspection whether or not a polynomial f is an
(IF?, IFy)-polynomial by remark (ii).



4 (IF}, IF,)-polynomials

There are 24 (IFF, IF,)-polynomials. Hence, an IFy-basis would consist of 4
polynomials. We will proceed to find a basis in a simliar vein as in section 3.
For which monomials m does m2 = m hold? All the monomials of the form
P r?...a where e; € {0,3} have this property. There are 2% of this type.
All of these are (IFF, IFy)-polynomials, since v* € {0, 1} for all v € IF}.

This leaves, 4 —2¥ monomial whose “squares” are not themselves. There-
fore, there are 1(4¥ — 2¥) many (IFf, IF3)-polynomials of the form m + m?
where m <; m2 under some total monomial ordering <;.

We have L
5(4% — 2%) of the form m +m?; and
1(4F — 2%) of the form am + a?m?.

.From corollary 1, we know that all of these are (IF}, IF,)-polynomials also.
We now have

28 + 1l(ah—2%) + 14k -2F) = 4%,

IF?-linearly independent (IF}F, IF;)-polynomials. These form a basis for the
(IFF, IF;)-polynomials. Therefore, a polynomial f is an (IFF, IFy)-polynomial
if and only if it is an IF,-linear combination of these 4* polynomials. By our
earlier argument on the two-dimentional case, since

(m+m2) + (am + a?m?2) = (1+a)m + (1 +a?)m? = a®m + (a?)*m2 # 0, is
true for any term m in k variables, we see that we also obtain the following
theorem.

Theorem 3. A polynomial f is a (IFF, IFy)-polynomial if and only if for
every term m in f, the term m?2 is also in f.

5 Conclusion

By carefully examining the ([Fy, IF)-polynomials we were able to generate
bases for (IFZ, IFy)-polynomials and produced some very interesting results.
We extended the case that we proved true for (IF?, IF,)-polynomials to hold
for (IF}, IFy)-polynomials. Through this we are able to tell by inspection
if a polynomial is an (IF}, IF,)-polynomial. It is also very easy to generate
an (IF}, IFy)-polynomial by simple addition of any number of the 24 Dasis
polynomials.
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