Classifications of $(I\!F_4^k, I\!F_2)$ -polynomials

Jaime Lamb

June 6, 2002

1 Introduction

Much research has been conducted examining functions mapping a finite field into itself. Dickson [?] established that each multivariate function that maps $I\!\!F_q^k \to I\!\!F_s$ can be represented by a polynomial function in the ring $I\!\!F_q[x_1, ...x_k]$. Redeí [?] examined polynomials that mapped $I\!\!F_q \to I\!\!F_s$ where $I\!\!F_s$ is a subfield of $I\!\!F_q$. We shall use the notation of Redeí beginning with the following definition.

Definition 1. A polynomial $f(x) \in \mathbb{F}_q[x]$ is called an $(\mathbb{F}_q, \mathbb{F}_s)$ -polynomial if all the values of $f(\gamma)$ (with $\gamma \in \mathbb{F}_q$) are contained in a subfield \mathbb{F}_s of \mathbb{F}_q .

Polynomials that map $I\!\!F_4^k \to I\!\!F_2$ has not been an area that has been examined extensively. By examining these polynomials, we will establish necessary and/or sufficient conditions for identification of these so-called $(I\!\!F_4^k, I\!\!F_2)$ polynomials.

Recall, $I\!\!F_4$ is the finite field with 4 elements, i.e. $I\!\!F_4 = \{0, 1, \alpha, \alpha^2\}$ where $\alpha^2 = \alpha + 1$. From this we have the additional relationships $\alpha^3 = 1$ and $\alpha^4 = \alpha$. The field $I\!\!F_4$ has only one proper subfield, namely $I\!\!F_2 = \{0, 1\}$. Dickson [?] determined that all functions that map $I\!\!F_4$ into itself can be represented as polynomials of degree less than four. The following table illustrates Dickson's reasoning:

$$\begin{array}{c|cc} x & x^4 \\ \hline 0 & 0 \\ 1 & 1 \\ \alpha & \alpha^4 = \alpha \\ \alpha^2 & (\alpha^2)^4 = \alpha^8 = \alpha^2 \end{array}$$

The polynomials f(x) = x and $g(x) = x^4$ are the same function. Therefore, any polynomial of degree four or higher is equivalent (as functions) to one whose degree does not exceed 3.

2 $(I\!\!F_4, I\!\!F_2)$ -polynomials

The first type of polynomials we will investigate are $(I\!F_4, I\!F_2)$ -polynomials. Let α denote a fixed primitive element of $I\!F_4$, i.e. $I\!F_4 = \{0, 1, \alpha, \alpha^2\}$ where $\alpha^2 = \alpha + 1$. The following is an example of an $(I\!F_4, I\!F_2)$ -polynomial.

$$\begin{array}{c|c|c} x & f(x) = x^2 + x + 1 \\ \hline 0 & 1 \\ 1 & 1^2 + 1 + 1 = 1 \\ \alpha & \alpha^2 + \alpha + 1 = 0 \\ \alpha^2 & \alpha^4 + \alpha^2 + 1 = \alpha + \alpha^2 + 1 = 0 \end{array}$$

Since $I\!\!F(\gamma)$ is in $\{0,1\}$ for all $\gamma \in I\!\!F_4$, we know that this polynomial does map $I\!\!F_4$ into $I\!\!F_2$. On the other hand, an example of a function that is not an $(I\!\!F_4, I\!\!F_2)$ -polynomial is x^2 . The following table illustrates this fact.

$$\begin{array}{c|c} x & g(x) = x^2 \\ \hline 0 & 0 \\ 1 & 1 \\ \alpha & \alpha^2 \\ \alpha^2 & \alpha^4 = \alpha \end{array}$$

We see that since $g(\alpha) = \alpha^2 \notin I\!\!F_2$, we have that g(x) does not map to $I\!\!F_2$.

By Dickson's observations [?], all functions that map $I\!\!F_4$ into $I\!\!F_2$ are precisely represented by the polynomials in $I\!\!F_4[x]$ of degree less than four. In 1973, Redeí [?] examined the more general case of $(I\!\!F_q, I\!\!F_s)$ -polynomials where $I\!\!F_s$ is a subfield of $I\!\!F_q$. He was able to classify all $(I\!\!F_q, I\!\!F_s)$ -polynomials with the following theorem. **Theorem 1.** (Redeí): A polynomial

$$f(x) = \sum_{i=0}^{q-1} \beta_i x^i \quad (\beta_i \in I\!\!F_q)$$

is an $(I\!\!F_q, I\!\!F_s)$ -polynomial if and only if its coefficients satisfy the two following conditions:

(i)
$$\beta_j = \beta_i^s$$
 whenever $j \equiv si \mod(q-1)$ for $0 \leq i, j < q-1$; and
(ii) $\beta_{q-1} = \beta_{q-1}^s$.

We claim that there are 16 $(I\!\!F_4, I\!\!F_2)$ -polynomials. Given such a polynomial f, for each domain element $\gamma \in I\!\!F_4$ we have two choices for $f(\gamma)$, namely 0 or 1. Since there are four domain elements we have $2^4 = 16$ possibilities. By Redeí's Theorem, when q = 4 and s = 2 we have that $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$ is a $(I\!\!F_4, I\!\!F_2)$ -polynomial if and only if $\beta_j = \beta_i^2$ when $j \equiv 2i \pmod{3}$ for $i, j \in \{0, 1, 2\}$ and $\beta_3 = \beta_3^2$. This implies that $\beta_1^2 = \beta_2$ and $\beta_2^2 = \beta_1$ and both β_0 and β_3 are in $I\!\!F_2$. In our case this reduces to the following polynomials of degree less than four.

The $(I\!\!F_4, I\!\!F_2)$ polynomials of degree zero are f(x) = 0 and f(x) = 1. There are no such polynomials of degree one. The polynomials of degree two are

$$\begin{array}{ll} f(x) = x^2 + x; & f(x) = x^2 + x + 1; & f(x) = \alpha x^2 + \alpha^2 x; \\ f(x) = \alpha x^2 + \alpha^2 x + 1; & f(x) = \alpha^2 x^2 + \alpha x; & f(x) = \alpha^2 x^2 + \alpha x + 1; \end{array}$$

where α denotes a primitive element of $I\!\!F_4$. Finally, the polynomials of degree three are of the form x^3 plus some $I\!\!F_2$ -linear combination of the preceding $(I\!\!F_4, I\!\!F_2)$ -polynomials of lesser degree. By inspection we see that

$$\{1, x^2 + x, \alpha^2 x^2 + \alpha x, x^3\},\$$

is an $I\!\!F_2$ basis for the $(I\!\!F_4, I\!\!F_2)$ -polynomials. Furthermore, note that no proper summand of any polynomial of this basis is an $(I\!\!F_4, I\!\!F_2)$ -polynomial. In other words, if you partition the terms of a polynomial to form two polynomials, neither polynomial will be an $(I\!\!F_4, I\!\!F_2)$ -polynomial. For example, for the basis polynomial $x^2 + x$, neither x^2 nor x is an $(I\!\!F_4, I\!\!F_2)$ -polynomial. In this manner, we may say this basis is minimal.

We shall extend the definition of an $(I\!\!F_q, I\!\!F_s)$ -polynomial to include multivariable functions.

3 (F_4^2, F_2) -POLYNOMIALS

Definition 2. A multivariate polynomial $f(x_1, ..., x_k) \in \mathbb{F}_q[x_1, ..., x_k]$ shall be called an $(\mathbb{F}_q^k, \mathbb{F}_s)$ -polynomial if all the values of $f(\gamma)$ (with $\gamma \in \mathbb{F}_q$) are contained in a subfield \mathbb{F}_s of \mathbb{F}_q^k .

Lemma 1. Suppose f is in $\mathbb{F}_4[x_1, x_2, ..., x_k]$. Then f is an $(\mathbb{F}_4^k, \mathbb{F}_2)$ -polynomial if and only if $[f(\gamma)]^2 = f(\gamma)$.

Proof. Let f be a polynomial in $I\!\!F_4[x_1, x_2, ..., x_k]$. If f is an $(I\!\!F_4^k, I\!\!F_2)$ polynomial, then $f(\gamma) \in I\!\!F_2$ for all $\gamma \in I\!\!F_4^k$. Therefore, $[f(\gamma)]^2 = f(\gamma)$. Conversely, since $f \in I\!\!F_4[x_1, x_2, ..., x_k]$, then for each $\gamma \in I\!\!F_4^k$ we have that $f(\gamma) \in I\!\!F_4$. If in addition, $[f(\gamma)]^2 = f(\gamma)$ for all γ , then $f(\gamma) \in I\!\!F_2$. Thus, f is an $(I\!\!F_4^k, I\!\!F_2)$ -polynomial.

Theorem 2. The function $f(x_1, ..., x_k) = c^2 x_1^{2e_1} x_2^{2e_2} ... x_k^{2e_k} + c x_1^{e_1} ... x_k^{e_k}$ with $c \in I\!\!F_4$ is an $(I\!\!F_4^k, I\!\!F_2)$ -polynomial.

Proof. By the lemma, we need to show that $(f^2 - f)(\gamma) = 0$ for all $\gamma \in I\!\!F_4^k$. Note that modulo 2, we have

$$\begin{split} f^2 - f &= (c^2 x_1^{2e_1} \dots x_k^{2e_k} + c x_1^{e_1} \dots x_k^{e_k})^2 - (c^2 x_1^{2e_1} \dots x_k^{2e_k} + c x_1^{e_1} \dots x_k^{e_k}) \\ &= c^4 x_1^{4e_1} \dots x_k^{4e_k} + 2(c^3 x_1^{3e_1} \dots x_k^{3e_k}) + (c^2 x_1^{2e_1} \dots x_k^{2e_k}) \\ &\quad -(c^2 x_1^{2e_1} \dots x_k^{2e_k} + c x_1^{e_1} \dots x_k^{e_k}) \\ &= c^4 x_1^{4e_1} \dots x_k^{4e_k} + (c^2 x_1^{2e_1} \dots x_k^{2e_k} - c^2 x_1^{2e_1} \dots x_k^{2e_k}) - c x_1^{e_1} \dots x_k^{e_k} \\ &= (c x_1^{e_1} x_2^{e_2} \dots x_k^{e_k})^4 - (c x_1^{e_1} x_2^{e_2} \dots x_k^{e_k}). \end{split}$$

Then we must have that $(f^2 - f)(\gamma) = 0$ since $\gamma \in I\!\!F_4^k$ implies that $cx_1^{e_1}x_2^{e_2}...x_k^{e_k} \in I\!\!F_4.$

3 $(I\!\!F_4^2, I\!\!F_2)$ -polynomials

Put $S = \{1, x^2 + x, \alpha^2 x^2 + \alpha x, x^3\}$ and $T = \{1, y^2 + y, \alpha^2 y^2 + \alpha y, y^3\}$. A basis for the $(I\!F_4^2, I\!F_2)$ -polynomials consists of the elements of the set ST where $ST = \{st | s \in S \text{ and } t \in T\}$. Since S and T are each $I\!F_2$ -linearly independent and span $(S) \cap \text{span}(T) = \{1\}$, then the set ST is $I\!F_2$ -linearly independent as well [?]. These basis polynomials are the following:

However, these basis polynomials fail to have the property that no proper summand is a basis polynomial. For example, consider the $(\mathbb{F}_4^2, \mathbb{F}_2)$ -polynomial $(x^2 + x)(y^2 + y)$. Observe that

$$(x^{2} + x)(y^{2} + y) = x^{2}y^{2} + x^{2}y + xy^{2} + xy = (x^{2}y^{2} + xy) + (x^{2}y + xy^{2}).$$

However, it can be verified that $x^2y^2 + xy$ and $x^2y + xy^2$ are both $(I\!F_4^2, I\!F_2)$ -polynomials.

Our goal is to build a basis that maintains this property. The only monomials which are $(I\!\!F_4^2, I\!\!F_2)$ -polynomials are $1, x^3, y^3$, and x^3y^3 . In order to find the non-monomial $(I\!\!F_4^2, I\!\!F_2)$ -polynomials we first introduce some notation and comments about general multivariable polynomial functions. Given a term $\underline{m} = cx_1^{e_1}x_2^{e_2}...x_k^{e_k}$, where $e_i \in \{0, 1, 2, 3\}$ for all i and $c \in I\!\!F_4$. We define $\overline{m^2}$ to be the term given by $\overline{m^2} = c^2x_1^{p_1}x_2^{p_2}...x_k^{p_k}$ where

$$p_i = \begin{cases} 2e_i & \text{if } e_i < 2\\ 2e_i - 3 & \text{if } e_i \ge 2. \end{cases}$$

In other words, the term $\overline{m^2}$, is the reduction of m^2 modulo the ideal

$$(x_1^4 - x_1, x_2^4 - x_2, \dots, x_k^4 - x_k).$$

Remarks.

(i)
$$e_i = 0$$
 if and only if $p_i = 0$
(ii) $\overline{m^2}$ divides m^2

Proposition 1. Let $m = cx_1^{e_1}x_2^{e_2}...x_k^{e_k}$ be a term and $\overline{m^2} = c^2x_1^{p_1}x_2^{p_2}...x_k^{p_k}$ as defined above. Then, viewing m and $\overline{m^2}$ as functions we see that for any choice of $\gamma = (x_1, ..., x_k) \in \mathbb{F}_4^k$, we have $\overline{m^2}(\gamma) = m^2(\gamma)$.

Proof. Suppose that $m^2(\gamma) = 0$. This implies that $x_i = 0$ for some $x_i \in \gamma$ and $e_i \neq 0$. By the above remark, $p_i \neq 0$ implies that $\overline{m^2}(\gamma) = 0$. Now, we may assume that $m^2(\gamma) \neq 0$. Note that $m^2 = \overline{m^2}(x_1^{r_1}...x_k^{r_k})$ where $r_i = 2e_i - p_i \in \{0, 3\}$. Thus, $x_1^{r_1}...x_k^{r_k} = 1$ for any $\gamma \in \mathbb{F}_4^k$. Therefore, $\overline{m^2}$ is the same function as m^2 . From Theorem 2 and Proposition 1 we receive the following corollary.

Corollary 1. For a term m, the polynomial $m + \overline{m^2}$ is an $(I\!\!F_4^k, I\!\!F_2)$ -polynomial.

Hence, the 2¹⁶-many $(I\!F_4^2, I\!F_2)$ -polynomials are generated by the following 16 polynomials:

Clearly, the first 4 polynomials, namely $1, x^3, y^3$, and x^3y^3 , cannot be represented as an $I\!F_2$ -linear combination of the other 12 polynomials since none of $1, x^3, y^3$, or x^3y^3 appear in the other 12 polynomials. Further note that no two polynomials in the left column possess an identical monomial. Also, for each polynomial $m + m^2$ in the left column, there is a corresponding polynomial $\alpha m + \alpha^2 \overline{m^2}$ in the right column. Since $(m + \overline{m^2}) + (\alpha m + \alpha^2 \overline{m^2}) = (1 + \alpha)m + (1 + \alpha^2)\overline{m^2} = \alpha^2 m + (\alpha^2)^2 \overline{m^2} \neq 0$,

then these 16 polynomials are an \mathbb{F}_2 -linearly independent set.

Remarks.

- (i) A polynomial f is an $(I\!F_4^2, I\!F_2)$ -polynomial if and only if it is an $I\!F_2$ -linear combination of these 16.
- (ii) A polynomial f is an $(I\!F_4^2, I\!F_2)$ -polynomial if and only if for every m in f, the term $\overline{m^2}$ is also in f.

This gives us the two following benefits. First, it is very easy to form the $(\mathbb{F}_4^2, \mathbb{F}_2)$ -polynomials from this basis. That is, we can take any number of the 16 basis polynomials and add them together to find an $(\mathbb{F}_4^2, \mathbb{F}_2)$ -polynomial. Secondly, we can tell by inspection whether or not a polynomial f is an $(\mathbb{F}_4^2, \mathbb{F}_2)$ -polynomial by remark (ii).

4 $(I\!\!F_4^k, I\!\!F_2)$ -polynomials

There are 2^{4^k} (\mathbb{F}_4^k , \mathbb{F}_2)-polynomials. Hence, an \mathbb{F}_2 -basis would consist of 4^k polynomials. We will proceed to find a basis in a similar vein as in section 3. For which monomials m does $\overline{m^2} = m$ hold? All the monomials of the form $x_1^{e_1}x_2^{e_2}...x_k^{e_k}$ where $e_i \in \{0,3\}$ have this property. There are 2^k of this type. All of these are (\mathbb{F}_4^k , \mathbb{F}_2)-polynomials, since $\gamma^3 \in \{0,1\}$ for all $\gamma \in \mathbb{F}_4$.

This leaves, $4^k - 2^k$ monomial whose "squares" are not themselves. Therefore, there are $\frac{1}{2}(4^k - 2^k)$ many $(I\!\!F_4^k, I\!\!F_2)$ -polynomials of the form $m + \overline{m^2}$ where $m <_t \overline{m^2}$ under some total monomial ordering $<_t$. We have

$$\frac{1}{2}(4^k - 2^k)$$
 of the form $m + \overline{m^2}$; and $\frac{1}{2}(4^k - 2^k)$ of the form $\alpha m + \alpha^2 \overline{m^2}$.

; From corollary 1, we know that all of these are $(I\!\!F_4^k, I\!\!F_2)$ -polynomials also. We now have

$$2^{k} + \frac{1}{2}(4^{k} - 2^{k}) + \frac{1}{2}(4^{k} - 2^{k}) = 4^{k},$$

 $I\!\!F^2$ -linearly independent $(I\!\!F_4^k, I\!\!F_2)$ -polynomials. These form a basis for the $(I\!\!F_4^k, I\!\!F_2)$ -polynomials. Therefore, a polynomial f is an $(I\!\!F_4^k, I\!\!F_2)$ -polynomial if and only if it is an $I\!\!F_2$ -linear combination of these 4^k polynomials. By our earlier argument on the two-dimensional case, since

 $(m + \overline{m^2}) + (\alpha m + \alpha^2 \overline{m^2}) = (1 + \alpha)m + (1 + \alpha^2)\overline{m^2} = \alpha^2 m + (\alpha^2)^2 \overline{m^2} \neq 0$, is true for any term m in k variables, we see that we also obtain the following theorem.

Theorem 3. A polynomial \underline{f} is a $(I\!F_4^k, I\!F_2)$ -polynomial if and only if for every term m in f, the term $\overline{m^2}$ is also in f.

5 Conclusion

By carefully examining the $(I\!\!F_4, I\!\!F_2)$ -polynomials we were able to generate bases for $(I\!\!F_4^2, I\!\!F_2)$ -polynomials and produced some very interesting results. We extended the case that we proved true for $(I\!\!F_4^2, I\!\!F_2)$ -polynomials to hold for $(I\!\!F_4^k, I\!\!F_2)$ -polynomials. Through this we are able to tell by inspection if a polynomial is an $(I\!\!F_4^k, I\!\!F_2)$ -polynomial. It is also very easy to generate an $(I\!\!F_4^k, I\!\!F_2)$ -polynomial by simple addition of any number of the 2^{4^k} basis polynomials.

References

- [1] L.E. Dickson, *General Theory of Modular Invariants*, Trans. America Mathematics Society, 1909.
- [2] Rudolf Lidl, *Finite Fields*, Cambridge University Press, 1997.
- [3] László Rédei, *Lacunary Polynomials Over Finite Fields*, Budapest, Akademiai Kiado, 1973.