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Abstract

Jump systems are sets of lattice points of varying sizes, and which
satisfy a “two-step” axiom. This paper explores the question of whether
the union of two-dimensional bounded sets of integer points embedded in
Z? form a jump system, and other results such as varied operations on
three-dimensional jump systems.

1 An Introduction to Jump Systems

The concept of jump systems, that is, nonempty sets of vectors satisfying a
“two-step” axiom, was created in 1995 by Bouchet and Cunningham. Jump
systems are primarily used to describe degree systems of graphs and in problems
of matroid theory. We introduce the basic definitions and concepts needed to
analyze jump systems in this introductory section. For more information, see
other papers on jump systems. [1, 2, 3, 4]

First fix a finite set S. For elements of Z~, we use the “taxicab” norm |z| =
Y ics |zi| and corresponding distance d(z,y) = |z — y|.

For convenience in our proofs, we introduce the concept of the generalized
interval of integers a and b denoted [[a,b]] and defined as follows: [[a,b]] =: {z €
Z : min(a,b) < z < max(a,b), }.

We also use the concept of a box, which is important in the proofs of this
paper. For ab € Z°, define box(a,b) =: {x € Z% : z; € [[a;,b;]],Vi} For
x,y € 75, the box of 2 and y, denoted box(z, y), is defined as follows:

box (z,y) := {2z € Z5 : z; € [[zi,yi]],i € S}

For z,y € Z°, we call z a step from x to y or an (z,y)-step if d(z,z) = 1
and z € box(z,y). We say that a collection of integer points J C Z° is a jump
system if it satisfies Axiom 1.



Axiom 1 (Two-Step Axiom). Given z,y € J and (z,y)-step z, either z € J
or 3 (z,y)-step z' such that 2’ € J.

The following operations on jump systems preserve Axiom 1.1 and greatly
simplify proofs concerning the properties of jump systems:

Reflection: For given i € S, the reflection of J in the i** coordinate is the set
obtained by negating z; in each point x.

Translation: Given v € Z5, adding v to each point in J translates J by v.

Intersection with a Box: Given box B such that JN B # 0, then JN B is a
jump system. This is a special case of a result of Lovdsz [3].

We will proceed with a discussion of faces of jump systems and the rela-
tionship of these faces to our Manhattan polytopes. We will discuss Manhattan
polytopes and their properties, and then present several theorems involving
these polytopes, followed by an examination of some additional operations that
can be performed on jump systems.

Understanding the concept of faces is necessary for the understanding of
many theorems and proofs about jump systems. We give the definition of faces
as follows:

Let J C Z°be a jump system. Let v € R¥ v # 0, and let m, = max{viz,z €
J}. The set f, = {z € J : vTx = m,} is called a face of J. The value m,, is
called the face value of f,. In short, the points on the “v-face,” f,, of J, are
the points in J that lie furthest in the direction indicated by the vector v.

It is a useful fact that the only faces f, of a jump system that can contain
more than one point are the faces which have v € {—1,0,1}° (v # 0). These
faces are sufficient for describing jump systems.

2 Three-Dimensional Jump Systems: Manhat-
tan Polytopes

In this section, we present some theorems and definitions necessary for the
introduction of Manhattan polytopes and following theorems and results.

2.1 Properties of MPs

We now define Manhattan polytope. Let S C Z2 x {r},r € Z. Let v €
{-1,0,1}2 x {0} (v # 0), and let m, be the face value of the face f,. We
define the Manhattan polytope (MP), Ps associated with S as follows:

Ps={z € Z?x {r} :vTz <m,}.

We say that a point z in S is in the MP if for all nonzero v € {-1,0,1}? x {0},
vT2x < m,. Note that Manhattan polytopes are a special class of jump systems,
namely those with no holes, or ”gaps”.



2.2 MP Translation

We now present a theorem that answers the question: Given Jy, Jo, MPs, and
Ji = Ja+v+es for vector of translation v and unit vector in the third coordinate
es, when is J; U Jo a jump system? This result sheds light on some necessary
geometric conditions for three dimensional Manhattan polytopes, which are
special-case jump systems.

We define corresponding points a € J; and b € J, as points that share the
relationship b = a + v, where v is some vector of translation.

We also define feasible points to be points that are not in the jump system J.

Theorem 1 (Translation Theorem). We have Ji, a Manhattan polytope
(MP) embedded in Z* via Z2 x {p}. Jo, which is also a MP, equals Jy translated
by some vector v. We have that Jo C Z? x {r}, and |p—r| = 1.

For J1,J2, MPs, the following are equivalent:

1. J1 U Jy CZ3 is a jump system.
2. For any two corresponding points, a = (a1, az,p) and b = (by, by, 1), Fither
a) ay =by and |az —be| <1, or

b) as = b2 and |a1 —b1| S 1.

Proof. (1= 2)

We look at corresponding corners a and b, such that they are the intersections
of the North and Northeast faces of their respective MPs. For a = (ay, az,p)
and b = (b1, be,r) corresponding corners where |p — r| = 1, we prove by way of
contradiction.

There are four possibilities for the relationships of a; and b; and as and by if
neither a; = by nor as = by. That is, when a; > by and as > bs, when a1 < by
and as < by, when a; < b; and ax > bs, and when a; > b; and ay < by. See
Figure 1. We notice that by coordinate swapping and reflection, all of the above
cases collapse to case 1, where a; > by and as > bs. We examine this case, the
result of which will lead to further restrictions on the variables.

Case 1: Assume a; > by and az > be. jFrom a; > by, we have a; — by > 0,
and thus a; — b; > 1. Similarly, from as > by, we have as — by > 0, and thus
az — by > 1. Taken together, these inequalities produce the joint inequality
(a1 + a2) — (by + by) > 2. We have a,b € J, so, consider an (a,b)-step z
st. z = (a1,a2,7) ¢ J. By the jump system axiom, 3z', a (z,b)-step s.t.
e J. 2 = (a1 —1,a9,r) or 2’ = (a1,a2 — 1,r). Either case produces a
2! € J because z' would give ((ag — 1) +az) —(by +b2) > 2—-1> 1 or
(a1 + (az — 1)) — (by + b2) > 2 —1 > 1, separating 2’ and the nearest point in
J, b, by at least one unit. So z’ ¢ J and the two step axiom does not hold. We
have a contradiction.
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Figure 1: Manhattan Polytope Translation
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Case 2: Since we have determined that cases in which neither a; = b; nor
as = bs are impossible, we can conclude that either a; = b; or as = by or both.

Subcase 1: If both a; = by and ay = by, we satisfy (2), because J; and Jo
line up perfectly.

Subcase 2: Given a; = by, we determine the restrictions on as and bs.
By way of contradiction, assume |by —as| > 1. Given corresponding corners
a = (a1,a2,p) and b = (b, b2,7) We take step z = (a1,a2,7) = (b1,a2,7), and
we know that z ¢ J because b is on the North face of Jo. By the Jump System
axiom, 2z’ = (b1, a2 — 1,r) € J, but without loss of generality from |by — az| > 1
we get ax — ba > 2, or az — by > 1, which yields as — 1 > b, a contradiction
because if that were true, 2’ ¢ J. We conclude, then, that when a; = by,
|b2 — a2| <1.

Subcase 3: Given as = by, we determine the restrictions on a; and b;.
By way of contradiction, assume |b; —a;| > 1. Given corresponding corners
a = (ay,as,p) and b = (by,bs,7) We take step z = (a1,as,7) = (a1, b2,7), and
we know that z ¢ J because b is on the Northeast face of J,. By the Jump
System axiom, 2z’ = (a; — 1,bs — 1,7) € J, but without loss of generality from
|byt —a1| > 1 we get a3 — by > 2, or a; — by > 1, which yields a; — 1 > by, a
contradiction because if that were true, 2’ ¢ J. We conclude, then, that when
az = by, [by —ay| <1.

Thus, (2) holds.

2=1)

(From our criteria, we note that J; can only be vertically or horizontally trans-
lated by a unit vector (v = 0, horizontal translation v = ey, or vertical trans-
lation v = +ey). See Figure 2. Let z,y be arbitrary points in J, and let z be
an (x,y)-step.

Case 1: If z,y € J, or x,y € Jo, we know that since J; and J, are solid MPs,
the two-step axiom holds for any two points in either J; or J;, and we’re done.

Case 2: If z € J1, y € Jo, and (x,y)-step z € J, we’re done. So assume z ¢ J.
We now look for a (z,y)-step 2’ s.t. 2z’ € J. We notice that v # 0 because any
(x,y)-step z we could take would be in J.

Subcase 1: Notice that by reflection and coordinate swapping, cases v = te;
and v = £ey collapse to the single case for v = +e1, without loss of generality.
So for v = +e31, we note that the only interesting case is when x is on a face of
Ji. This is because if x was not on a face, any (x,y)-step z would be in J. We
are interested in all possible (x,y)-steps z s.t. z ¢ J. We look at these steps
for arbitrary = on each face of J;. Before examining each face individually, we
will note that the case for z on the NE face can yield the case for z on the
SE face by reflecting J; in the second coordinate and shifting J; back to its
original position in the first quadrant. Thus without loss of generality we need



Figure 2: Manhattan Polytope Restrictions
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only examine the case for  on the NE face rather than both NE and SE. The
same reflection can be applied to the case for  on the NW face, so we need
not examine the case for z on the SW face. We lastly note that the case for x
on the W face is similar to the NW and SW cases, so we handle the West case
in a small argument following the NW case. We therefore focus mainly on the
cases when z is on E, NE, and NW faces. We also ignore the cases where z is
on either the N or S faces. In these cases, all possible (x,y)-steps z are either in
J, or or outside J and not in the direction of y.

A) For ¢ = (x1,2,p) on the E face of Jyi, possible (x,y)-steps z are: z =
(wl + 1,$27p)az = (371;:172 + 1,p),z = (xl - 1;1'2;17)72 = (1'1,1'2 - 1ap)7z =
(x1,%2,7). Since x is on the E face, 2 = (x1,22 + 1,p),2 = (£1 — 1,22,p) and
z = (x1,22 — 1,p) are all in J. We disregard these cases. We also see that
while z = (z1 + 1, 22,p) ¢ J, it will never be in the direction of y since x is on
the E face and all points have first coordinates less than or equal to z;. We
examine the only feasible point, z = (z1,%2,7). Consider 2’ = (z; — 1, x2,7).
Observe that d(z,2') = 1. We note that the E face is the (1,0) face where x;
is maximized, and we get the inequality z; > y; + 1 > y;. Since z; is the first
coordinate of z, it is clear that 2z’ € box(z,y). If z; is maximized on the E face
of Ji, then ;1 — 1 is maximized on the E face of J> because v = +e;. So if 2’
has first coordinate less than or equal to 21 — 1, which it does, then 2’ is behind
or on the E face of J,. We also see that x, which is on the E face of Ji, has
second coordinate x5. Since 2z’ also has second coordinate x5, it must be on the
corresponding E face of J>. Therefore, 2’ € J> and 2’ € J.

B) For x = (x1,z2,p) on the NE face of J;, possible (x,y)-steps z are:
= (.’1;'1 + ].,IL'Q,p),Z = (.’171,7}2 + ]-7p)7z = (ml - 17$27p)7z = (.Z'l,ilfz - lap)Vz =
(z1,22,7). Since z is on the NE face, z = (1 — 1, x2,p) and z = (z1,22 — 1,p)
are both in J. We disregard these cases. We examine the feasible points z =
(1 +1,22,p),2 = (1,22 + 1,p), or 2 = (¥1,Z2,7)-

a) For z = (z1,22 + 1,p), z ¢ J and could be in the direction of y. Consider
z' = (x1 — 1,29 + 1,p). Observe d(z,2') = 1. Recall that the North and South
faces yield only trivial (x,y)-steps, and thus any points on those faces are not
discussed. We therefore conclude that z' € J because z is not on the North
face. We have only to prove now that z' € box(x,y). Since we know z is on NE
face, £1 + x2 > y1 + y2 + 1 and since z takes us to (1,22 + 1,p), we know that
y2 > x9+ 1. Substituting, we get 1+ 2 > y1 +y=2+1 > y1 + 22+ 2, which yields
x1 > y1 +2. So from z; > y1 +2 and 1 > x; — 1, and from ys > x3 + 1, which
translates to z2 < ys — 1, and 22 < x5 + 1, we clearly see that 2’ € box(z,y).

b) For z = (z1 + 1,22,p), z ¢ J and could be in the direction of y. Consider
2= (x1 + 1,22 — 1,p). Observe d(z,z') = 1. Recall section B under subcase 1,
and the cases dealing with = on the East face. If x were on the East face, we
would follow the given procedure. We therefore know that z' € J because z is
not on E face. We have only to prove now that 2z’ € box(z,y). Since we know
z is on NE face, 1 +x2 > y; +y2 + 1 and since z takes us to (z1 + 1, z2,p), we
know that ¢y > 1 + 1. Substituting, we get 1 + 22 > y1 +y2+1> 21 +y2 + 2,



which yields 2 > y2 + 2. So from z2 > y2 + 2 and 22 > z2 — 1, and from
y1 > 1 + 1, which translates to ;1 < y; — 1, and 21 < x1 + 1, we clearly see
that 2’ € box(z,y).

¢) For z = (z1,%2,7), 2 ¢ J and is in the direction of y. For this z, there are two
possible choices for z’. Both 2z’ are one step from z, and both 2z’ € J. We can
step to 21 = (z1 — 1, z9,7) or 25 = (z1,22 + 1,7). Which step to take depends
on where y is. We must prove that we can always step one way or the other,
and that at least one situation can happen. We have x on the NE face, so we
have the inequality 1 + 22 > y1 + y2 + 1. Assume that neither 2| € box(z,y)
nor z, € box(z,y) and y1 > 1 and y» > x2. Combining the inequalities,
we get y1 + y2 > x1 + x2. Combining this inequality with the first, we get
Y1 +y2 > x1 +2x2 > y1 +y2 + 1, which gives a contradiction. Now that we know
that either one situation or the other must happen, we can proceed to show that
both 2’ steps are in J. Both steps clearly have d(z, 2') = 1. Depending on which
2" step was taken, 2’ was determined to be in the direction of y. We have left to
prove that both 2’ are in J. We know that z is on the NE face of Jy, so z; +
is maximized on J;. Any point on J; with the sum of its first two coordinates
less than or equal to z; + zo — 1, will be behind or on the NE face of J,. Both
of our 2z’ satisfy this requirement and have a sum of x; + 25 — 1 for their first
two coordinates, so both 2’ are on the NE face of J,. We noted before that x
was not on the N face of Ji, so since neither 2’ has increased second coordinate,
we know that both 2’ are below the N face of J>. Both 2’ are safely within Js,
so we can say that both 2’ € J.

C) For ¢ = (z1,22,p) on the NW face of J;, possible (x,y)-steps z are:
= (.’1;'1 + ].,IL'Q,p),Z = (.’171,7}2 + ]-7p)7z = (ml - 17$27p)7z = (.Z'l,.flfz - lap)Vz =
(z1,22,7). Since z is on the NW face, z = (z1 + 1,22,p),2 = (21,22 — 1,p)
and z = (z1,x2,r) are all in J. We disregard these cases. We examine feasible
points z = (z1,22 + 1,p) and z = (1 — 1, z2, p).

For both possible z, we can easily see that either 2z’ can be a step down
from its corresponding z. For z = (x1,22 + 1,p), 2’ = (21,22 + 1,7), and for
z = (zy — 1,29,p), 2’ = (1 — 1,22,7). For both of these 2/, it is clear that
d(z,2') = 1. We also know that both 2’ are in the direction of y since they both
step down to third coordinate r, where y lives. We have only left to show that
both 2’ are in J. Because of v = +ey, if x is on any part of J;, the following
is true: —y; +y2 > —x1 + 2 + 1. Now, if z is on any western face of Ji, the
inequality becomes an equality. ;From the equality we know that before either
of these (x,y)-steps z were taken, any point on a western face of J; was one
step away from its corresponding point on the same western face of J5. So once
that step z is taken, we are still within the boundary of J2’s faces, allowing us
to step down from either step z to make our way towards y, and leaving either
step down (both 2') in J> and thus in J. So both possible 2’ are in J.

D) We note that the case for z on the West face of J; is similar to that for
z on the NW face, except that instead of the two feasible points listed for the



NW case, the West case has only one feasible point, namely, z = (x; — 1,22, p).
The argument remains the same.

We conclude that 2 = 1. O

2.3 Degenerate MPs: The Box Theorem

In this section, we present a result for a special class of three-dimensional jump
systems: those consisting of two“layers” (or cross sections) such that each layer
is a box. First, however, we define some terms that will be used in the statement
of the theorem and its proof:

For points a and b in Z2, let B =box(a, b) be given. A point k € B is called a
corner of B if and only if there exists some point j € Z?2 such that box(k, j) = B.
The two points k£ and j are called opposite corners of B.

Given a box B, it is clear that, for nonzero v € {1,—1} x {0}, f, corresponds
to a corner of B. Given two boxes, B and B’, let f, be a face of B and let f, be
a face of B'. Then f, and f, are corresponding faces of B and B'. Particularly,
fora € B and a' € B, we call a and a' corresponding corners if for some nonzero
ve{l,—-1} x {0}, a € f, and a' € f].

Theorem 2. Given B C Z? x R and B' C Z? x P, for r and p in Z where
|r — p| =1, the following are equivalent:

1. d(q,q") < 2 where q and ¢' are any two corresponding corners in B and B’
respectively.

2. Either: ki = k1 and |ky — k3| < 1 for all corresponding corners, k € B and
k' € B', or kb = ks and |k; — k}| < 1 for all corresponding corners, k € B and
k'e B'.

Proof. Let B =box(a,b) for a = (a1, az2,a3) and b = (by, ba, b3) where ag = b3 =
r and a; < b;. Let B' =box(a’, V') for a’ = (a}, a},as) and b’ = (b}, b}, b}) where
ay = by = p and a} < b}. Call the other two corners of B, ¢ and d. Particularly,
let ¢ = (e1,¢2,¢3) = (a1,be,7) and d = (d1,d2,ds) = (b1,az,r). Call the other
two corners of B', ¢/ and d'. Particularly, let ¢’ = (¢}, ch,c) = (af,b},p) and
d' = (dy,dy, dy) = (b, a3,p)-

(1=2) Assume Vq € {a,b,c,d}, d(q,q¢') < 2. Then, particularly, for ¢ = a,
d(a,a') = |a; —al| + |az —ab| + |r — p| = |ar —al| + |az —ab| +1 < 2. So
la; — a}| + |az — ab| < 1.Thus, either |a; — a}| + |a2 — a}| = 0 implying that
a} = a3 and ab, = ag, or |ag — af| + |az — ab| = 1. If the latter is true, then either
la; —aj| =1 and |az —a)| =0, i.e. @} =a; £1 and @), = ay, or |az —ab| =1
and |a; —aj| =01ie. al=ax+1and @} =a;.

Case 1: (a} = a1,a) = as) Since a} = a1,a, =as, ¢} =a] = a1 = ¢, ie ¢ =
¢1. Either |eo — | <1 or |eg —ch| > 1. Notice that ey —ch| > 1= |ea —ch| > 2
s0, d(c,c') = |e1 — cj| + |ea — ch| + |es — c| = |ea — cb| + 1 > 3 contradicting
the hypothesis that d(q,q') < 2 Vq € {a,b,c,d}. Thus |c; — ch| < 1, i.e. either
|ca —ch| =0or |ca — b = 1.



Subcase 1: (|ca—ch| =1 < 1) We will show that for all corresponding corners
k and k', K} = k1 and |ka — kb| < 1. We consider all pairs of corresponding
corners in turn.

First, consider b and b'. Since, ¢a = bg and ¢}, = b, |ba—by| = [ca—ch| = 1i.e.
|ba — by| < 1. Either bj = by or b} # by. Notice that b # by = |by — | > 0=
[bi—bl] = 1> 1,50 d(b,b') = [by — bl |+ [bs — b + [bs —By| = [by — bl [+ 141> 3
contradicting the hypothesis that d(g,q") < 2 Vq € {a,b,¢,d}. Thus b} = b;.

Now, consider d,d’. Since b} = by, d] = b} = by = d; i.e. d} = dy. Also,
dy=ay=ay=dyso|dy—dy =|az —ay| =0< 1.

Summarizing: a] = a1,ay = ag i.e. |az —ay| =0<1,¢) =cy,|ea —ch| =
1<1, 0 =by,|be—by =1<1,d| =di,|da—dh|=0<1.

Hence, for all corresponding corners k and k', ki = ky and |ks — kj| < 1.

Subcase 2: (|ca — ch| = 0) We will show that for all corresponding corners k
and k', k), = ko and |k; — kj| < 1. Consider ¢ and ¢'. Recall that ¢ = ¢; so
ler — ¢j| = 0 < 1. Since |ca — b| = 0,c0 = ¢

Consider b and b'. Since ¢ = ca, by = ¢, = ¢y = by i.e. by = bs. Now, either
[by — b)| < 1or |by —bj| > 1. Notice that |by — bi| > 1 = |by — bi| > 2, so
d(b,b") = |by — by| + |ba — bh| + |b3 — bs| = |by — b} | + 0+ 1 > 3 contradicting the
hypothesis. Thus |b; — b}] < 1.

Now consider, d and d'. Since d; = by and d} = b, |[di —d}j| =|b1 — | < 1.
Also dlz = a’2 = a2 = d2 i.e. dl2 = dz.

Summarizing: ab = a2,a] = a1 0 |a1 —aj| =0 < 1, ¢y = ¢2,¢) = ¢1 50
er = = 0< L, by =ba, by —b| <1, dy =, |dy —df] < 1.

Hence, for all corresponding corners k, k', ki = ko and |k — ki| < 1.

Case 2: (ah = as,a} = a; = 1) We will show for all corresponding corners k
and k', kb = k2 and |k — k1| < 1. First, consider ¢ and ¢’. Since a] =a; +1,
dh=d =axl=ctlie ¢, =c;x1. Thus|e;—c}| = |1 — (1 £1)| =1 < 1.
Now, either ¢}, = ¢z or ¢ # ¢o. Notice that ¢ # ca = [ca—ch| > 0= |ca—ch| >
1.Sod(c,d) = |en —cf|+|ca—ch|+]es— k| = |en — (1 £1)|+|ca —ch|+|r—p| =
1+ |ca — ch| + 1 > 3 contradicting the hypothesis. Thus ¢ = ca.

Now, consider b and b'. Since ¢y, = ¢, and by, = ¢ = co = baie. by = by.
Either, |b; —b}| < 1or |by —b}| > 1. But notice that |by —bj| > 1 = |by —b}| > 2
so d(b,b") = |by — b |+ |ba — by| + |bg — bs| = |by — b} | + 0+ 1 > 3 contradicting
the hypothesis. Thus |b; — b}| < 1.

Consider d and d'. Since ab = as, d), = ay = as = dz i.e. dy = dy. Also since
dll = bll and d1 = b1, |d1 —dll| = |b1 —bll| S 1.

Summarizing: af = as,|lar —aj] =1 <1, ¢ = eg,Jar — ] =1 <1,
bl2 = b27 |b1 - blll <1, dl2 = d2a |d1 - dlll <L

Hence, for all corresponding corners k, k', ki, = ko and |k — kj| < 1.

Case 3: (a} = a1,ah = az £ 1) We will show for all corresponding corners k and
k', k} = kg and |k2 — kb| < 1. Again, we consider all points in turn.

First consider d and d'. Since ay = ax+1,d, = al =ax +1 =dy + 1.
Thus |d2 — dl2| = |d2 — (d2 + l)l =1 S 1. NOW, either dll = d1 or dll 75 dl.
But notice that di # di = |dy —dj| > 0 = |di — dj| > 1, so d(d,d') =
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ldy —di| +[da —dy| + |ds —d3| = |dy —dy| + 1+ |r —p[=|d1 —dy[ +1+12>3
contradicting the hypothesis. Thus d} = d;.

Now consider b and b'. Since d] = dy, b} = d} = di = by i.e b = b;.
Either |by — by < 1 or |by — b)| > 1. But |by — by| > 1 = |by — by| > 2, so
d(b,bl) = |b1 —bll| +|b2 —b12|+ |b3 —b'3| = |b2 —b'2|+|r—p| = |b2—b12| +1 23
contradicting the hypothesis. Thus |by — b| < 1.

Finally, consider ¢ and ¢'. Since a] = a1, ¢} = aj = a1 = ¢ i.e. ¢| = ¢;.
Also, since ¢, = by and ¢y = by, we have that |ca — ch| = |be — by| < 1.

Summarizing a} = ai,|las —ah] =1 < 1, d] = di,|dx —dy] =1 < 1,
bll = bl, |b2 — bI2| S ]., Cll =1, |Cz - Cl2| S 1.

Hence, for all corresponding corners k and k', ki = k; and |ks — kj| < 1.

( 2= 1) Assume that , either: k{ = k; and |ka —k}| < 1 for all corresponding
corners, k and k' in B and B’, or kf, = k2 and |k; — k| < 1 for all corresponding
corners, k and k' in B and B’. Let ¢ be any corner. Then d(q,q¢’) = |¢1 — q1| +
lgz — bl +|r —pl = lg1 —qi| + g2 — g5| + 1 < 2. -

Theorem 3. Given bozes B C Z? x {r} and B' C Z? x {p} where r and p are
inZ and [r —p| =1, let J = BUB'. Then the following are equivalent:

1. J is a jump system.

2. For all corresponding corners q and ¢' in B and B' respectively, d(q,q') <

Proof. Let the points a and b be opposite corners in B such that a; < b;, and
let the points a’ and b’ be opposite corners in B’ such that a < b;.

(1=2) Let J be a jump system. Assume that 3 a pair of corners k and k'
such that d(k,%') > 2. We seek a contradiction. Specifically, by reflection and
translation, assume k = a and k' = a’. Then d(k, k') = d(a,d’) = |a1 — a}| +
|az —a5| +|as — a3| = |ay —ay |+ |az — ay[+|r —p| = |ar — a1 |+ |az —ab[+1 > 2.
So |a1 —ai|+ a2 —ah| > 1 = |a; —a)|+]|az —ab| > 2. Thus, one of the following
must hold:

1. lar —aj| > 1, laa —ah| > 1
2. lar —ai| >2,]az —ah| =0

3. lap —ai| =0, |ag —ab| > 2

By coordinate-swapping, case 3 is similar to case 2, so we consider cases 1
and 2 without loss of generality.
Case 1: (Ja1 —aj| > 1, |as —ah| > 1) Clearly a1 # a} and a2 # a5. Without loss
of generality, let a] > a;. (If a1 > af, rename B as B’ and vice versa. ) Thus,
aj > a; + 1. We now consider two possibilities for ah: al > as ie. ah > a2 +1
and a) < as i.e. ah <as — 1.
Subcase 1: (ay > ay+ 1) Let £ = a = (a1, a2,7),y = a' = (a},ah,p), and let
%= ('1.17 T2, y3) = (a17a27p)' Thena clearly z € box (ZL', y) = [[$17y1]] X [[x27 y2]] X
[[r,p]], and since |r —p| =1, d(z, 2) = 1. Thus, z is an (z,y)-step.
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But, z ¢ B since z3 = p # r and, since z;1 = a1 < a}] —1 < a] < b}
ie. 2z ¢ [a},b]], 2 ¢ B'. Thus z ¢ J. Now, since J is a jump system, 3 a
(z,y)-step w € J. Thus w € box(z,y) = [a1,a}] X [az,a}] X [p,p]. Particularly,
ws € [p,p] so ws = p. Thus, with the requirement that d(z,w)=1, the only
possibilities for w are: w™) = (ay +1, az, p) and w® = (a1, a2 +1,p). But since
wi = ay < ay < by, wi') ¢ [ah,bh], s0 w ) ¢ B = [af, b1] x [a, b5] x [p, .
Also, since w(? = a; < a} < ¥}, w'? ¢ [a,b}] so w® ¢ B'. Clearly both w®
and w®) are not in B since wgl) = wgz) = p # r. Thus, both possibilities for w
are not in J, so A(z,y)-step in J, contradicting the hypothesis that J is a jump
system. Thus either J is not a jump system or d(a,a’) < 2.

Subcase 2: (ah < as — 1) Again, let = a = (a1,a2,7), y = a’ = (a}, dl,p),
and let z = (z1,29 — 1,23) = (a1,a2 — 1,7). Clearly, d(z,z) = 1. Also,
since, yo = ay) < az — 1 = 29 < ay = Ty, 23 € [y2,T2]50, clearly z € box
(z,y) = [[z1,v1]] X [y2,2=2] X [[r,p]]. Thus, 2 is an (z,y)-step. But z ¢ B’ since
zz3=r #pand z ¢ Bsince z2 = az — 1 < az < by. Thus z ¢ J. Since J is a
jump system, 3 a (z,y)-step w € J. Thus w € box(z,y) N J.

Let ¢t € box(z,y). Then ty € [ay,a2 — 1], s0 t2 < az —1 < az < b2 so

to ¢ [a2,b2]. Thus ¢t ¢ B. Hence V¢t € box(z,y), t ¢ B i.e. box(z,y) N B =0,
s0 box(z,y) N J = box(z,y) N B'. Now, let t € box(z,y) N J = box(z,y) N B’ =
box(z,y)N box(a’,b’). Then: ¢ € [[z1,y1]] N [a},b]] = [a1,a] N [a],b]], so
t1 = ai;ts € [[z3,y3]] N [p,p] = [[,p]] N [p,p] so t3 = p. Thus ¢ has the form
(a},t2,p) where to € [ah,as — 1] N [ah, bs]. Since w € box(z,y) N J,w has form
(a},ws,p) where wy € [ab,as — 1] N [a}, bh]. Recall |a; — aj| > 1, so d(z,w) =
|21 —wi| + |22 —wa| + |r — p| = |a1 — a}| + |(az — 1) — wy| + 1 > 2. But since
w is a (z,y)-step, d(z, w)=1, a contradiction. Hence, no such (z,y)-step, w can
exist, contradicting the hypothesis that J is a jump system. So either J is not
a jump system or d(a,a’) < 2.
Case 2: (la; —a}| > 2, |az — ab| = 0) Again, without loss of generality, assume
aj > a1. Then a} > a; + 2. Also, clearly a) = as. Let z = a = (a1,a2,7), y =
a' = (a},a},p), and let z = (x1,%2,y3) = (a1,a2,p). Then clearly, d(z,z) =1
and z € box(z,y), so z is an (z,y)-step. But since z3 = p # r, z ¢ B, and since
z1=a1 <aj <bi,z ¢[a),b]]soz¢ B'. Thus z ¢ J.

Since J is a jump system 3 a (z,y)-step w € J. Thus w €box(z,y) =
[[z1, y1]] x [[22, y2]] X [p, p] = la1, a1] X [a2, a2] X [p, p]. Particularly ws = p. Thus
w ¢ B. So, with the requirement that d(z,w) = 1, the only possibility for w is
w= (a1 + 1,a2,p) = (21 +1,22,p). But then wy = a1 +1 < a1 +2<aj <b) so
w ¢ [a},b]]. i.e. w ¢ B'. Thus w ¢ J and so A a (z,y)-step in J, contradicting
the fact that J is a jump system. Thus, either J is not a jump system or
d(a,a") < 2.

(2=1)

Assume that Vg € {a,b,c,d}, d(gq,q') < 2. By the preceding theorem, either
of the following holds:

1. k] = k1 and |k2 — k4| <1 for all corresponding corners, k € B and k' € B’,
2. kb = ko and |k1 — kj| <1 for all corresponding corners, k € B and k' € B'.
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By coordinate-swapping, without loss of generality, consider case 2. We will
show that J is a jump system. Since ¢; = a3, di = b1, ¢} = a}, and d} = b,
clearly k1 € {a1,b1} and k] € {a},b}}. Thus, for k; = a1, |k1 — k]| = |a1 —a}| <
1= ]a; —aj| =0 or |a; — a}| = 1. By identical reasoning, for k; = b, we have
that |[by —b)| =0or |by — bj| = 1.

Thus we obtain the following cases:
1.|a1 - CLI1| = 0, |b1 — bI1| =0
2]ay —aj|=1,|b =0bi| =0
3Jar —al|=0, by = b =1
dlag —al| =1, by =t} =1
Case 1: (Ja; —a| =0, |by — by| = 0) Since Vk € {a,b,c,d},k1 € {a1,b1}, then
Vk € {a,b,c,d}, |k1 — k}| =0, so ki = k1 and recall Vk € {a,b,c,d}, k}) = ka.
Notice that J = B U B’ = box(a, b)U box(a',b") = ([a1, b1] X [az,b2] % [r,7]) U
([a, B, X [a, b) % [p,p]) = ([ax, bu] X [az, ba] x [r,7]) x (a1, bu]  [az, bo] X [p, p]) =
[alabl] X [a27b2] X [[Tap]]) = bOX[(a15a25T)a(b17b27p)] = box[a, (bllablzap)] =
box(a,b’). Thus, J is a box, so J is a jump system.

For the rest of the cases, let z and y be in J, and let z be an (z, y)-step not
in J. Assume that z and y are not both in B or both in B’ since the two-step
axiom will clearly hold. We seek a (z,y)-step in J.

Case 2: (la1—aj| =1, |by —bj| = 0) Clearly a} # a;. Without loss of generality,
let a] > a;. (If a] < a1, rename B’ as B and vice versa.) Thus a}f = a; + 1.
Clearly, b} = b1, and since by = ba, we have that b; = b; for i € [1,2].

We first show that ,y, and z are all in box(a, b’) by showing that J Cbox(a, b').
Notice J = BUB' = box(a, b)U box(a’,b") = ([a1,b1] x [az, ba] X [r, ])U([a], b]] X
[az, b3] x [p,p]) = ([a1,b1] x [a2,b2] x [r,7]) U ([a1 + 1,b1] X [a2, b2] x [p, p]).
But box(a,b') = [la1, b1]] X [[az, b5]] X [las, b3]] = [[as, ba]] x [[az,b2]] X [[r, p]] =
(la1, b1] % [az, bo] x [r, 7]) U ([a1, b1] X [a2, b2] % [p, p]). Clearly [a1 +1,b1] C [a1, b1]
so J Chox(a, b").

Since z and y are in J, z and y are in box(a, b'). Notice box(z,y) = [[z1,y1]] %
[[z2,y2]] * [[z3,ys]]. But Vi € [1,3], z; € [[a;,b]] and y; € [[a;, bi]], so [[z:,yi]] C
[[a;, b}]]- Thus box(z,y) C box(a,b'). Since z € box(z,y), z € box(a, b').

We now seek a specification of z. Since z € box(a,b') = [a1, b1] X [a2, b2] X
[[r,p]], either z3 = r or 23 = p. If 23 = r, then clearly z € box(a,b) C J
so it must be that z3 = p # r. Now, if 21 > a1 = a} — 1, then z; > a] so
ay < z1 < b = by, so recalling that k) = k2 Vk € {a,b,c,d}, z € [a],b]] x
[ah, 5] X [p,p] =box(a’,b') = B' C J contradicting the hypothesis that z ¢ J.
Thus z; % a; i.e. 21 = a1, so we have that z = (21, 22,23) = (a1, 22,p) where
29 € [a2,b2].

We now seek a (z,y)-step in J. We consider two possibilities for x: x € B

and ¢ € B'.
Subcase 1: (x € B) If x € B, then, by hypothesis, y € B' =box(a’,b’). We seek
a (z,y)-step w € J. Let w = (21 + 1,29,23). Clearly, d(z,w) = 1. Also w; =
z1+1=a;+1=a} and since y; € [a},b]], a} <y;. Thus z; <w; =a) <y1
so wy € [z1,¥1] and w € box(z,y). Hence w is a (z,y)-step.
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Notice w = (a1 + 1,22, p) where z3 € [a2,b2]. But B’ =box(a',b’) = [a1 +
1,b1] x [a2, b2] X [p,p]- Thus, w € B'. Hence, w is a (z,y)-step in J as desired.
Subcase 2: (x € B') By hypothesis, y € B =box(a,b). Particularly, y3 = r. Let
w = (21,22,r) where 29 € [ag,bs]. Since z = (21, 23,p)and |r — p| = 1, clearly
d(z,w) = 1. Also, since ws = r = y3, clearly, w €box(z,y). Thus w is a (z,y)-
step. Since w = (21, 22,7) = (a1, 22,7) and B = [a1,b1] X [az, b2] X [r,r],w € B.
Hence w is a (z,y)-step in J as desired.

Case 3: (laxp — a}| =0, |by — bj| = 1) By reflection and translation, this case is
identical to Case 2.

Case 4: (la1—a}| = 1, |by—b}| = 1) Clearly, a] # a1. Without loss of generality,
let a) > a;. (If a} < a1, rename B’ as B and vice versa.)Thus a} = a; + 1.
Then either b} = by + 1 or b} = b; — 1.

Subcase 1: by = by + 1 We first show that z,y, and z are all in box(a,b') by
showing that J C box(a,b’). Notice J = B U B' = box(a,b)U box(a',b') =
(la1, b1] x [az, bo] x [, r]) U ([af, b1] x [a3, b5] X [p, p]) = ([a1, b1] x a2, bo] x [, r]) U
(la1 +1,b1+ 1] x [az, bo] X [p, p]). But box(a, b') = [[ay, b} ]] x [[az, b5]] X [[as, b5]] =
[a1, b1 +1] x [az, bo] x [[r, p]] = ([a1, by +1] x [az, bo] X [r,r])U([a1, b1 +1] X [az, b2] x
[p,p])- Clearly [a1+1,b1+1] C [a1,b1+1] so J Cbox(a,b’). Since z and y arein J,
z and y are in box(a,b’). Note that box(z,y) = [[z1,y1]] X [[z2,y=2]] X [[z3, y3]]-
But Vi € [1,3],2; € [[a:, ] and y; € [[a;,bi]], so [[x:,v:]] C [[ai,b;]]. Thus
box(z,y) C box(a,b'). Since z € box(z,y), z € box(a,b').

We now seek a specification of z. Since z € box(a, ') = [a1, b1 +1] X [az, ba] X
[[r,p]], and |r — p| = 1, either 23 = r or 23 = p.

Assume z3 = r. Since z ¢ J, z is not in B = box(a,b) so z; ¢ [a1,b1]. But
z1 € [a1,b1 +1],80 21 = by + 1. Thus z = (b1 + 1, 23, 7) where 22 € [az, b2]. Now,
eitherz € Borz € B'. Ifx € B, let w = (21, 22,p). Since |z3—w3| = |r—p| =1,
clearly d(z,w)=1. By hypothesis y € B’, so y3 = p. Thus, w € box(z,y).
Notice, w = (21,22,p) = (b1 + 1,22,p) where 22 € [ag2,bs] and recall B' =
box(a',b'") = [a1 + 1,b1 + 1] X [az, ba] X [p,p], so w € B'. Thus, w is a (z,y)-step
in J as desired.

If x € B', let w= (21 — 1, 29,7). Clearly, d(z,w)=1. Also w; = 21 — 1 = b;.
By hypothesis y € B, soa; <y; <by =w;. Thusy; <by=w; =21 —1< 2,
ie. wy € [y1,21], and w € box(z,y). Therefore, w is a (z,y)-step. Recall
B = [a1,b1] X [az2,b2] x [r,r]. Clearly, w € B. Thus, w is a (z,y)-step in J as
desired.

Now suppose 3 z,y and z that violate the two-step axiom. If z3 # r, reflect

and translate until z3 = r. Then we have a contradiction, since, as just shown,
for z3 = r, the axiom holds. Thus A z,y and z that violate the two-step axiom.
In other words, J is a jump system.
Subcase 2: by = by — 1 We first show that z,y,and z lie in the box K = [ay, b1] X
[a2, b2] X [[r, p]]- Notice J = box(a,b)U box(a’,b") = ([a1,b1] x [az,b2] X [r,7]) U
([alla bll] X [aIQJ bIQ] x [p7p]) = ([ala bl] x [aza bz] x [T‘, T]) U ([al +1,b, — 1] x [a27 b2] x
[p,p]). Also notice K = ([a1,b1] x [a2,b2] x [r,7]) U ([a1, b1] X [az, b2] X [p, p]).
Clearly J C K since [a; + 1,b; — 1] C [a1,b1], so z and y are in K. Thus, by
previous arguments, box(x,y) C K. Since z € box(z,y),z € K.
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We seek a specification of z. Since z € K, z3 € [[r,p]] s0 23 =T or 23 = p.
If z3 = r, then, trivially, z3 € [r,r] and since z1 € [a1,b1], 22 € [a2,b2], 2z €
box(a, b) = B, contradicting the hypothesis that z ¢ J. Thus 23 = p # r. Since
z2¢J,z¢ B'soz ¢[a1+1,bp —1] but 21 € [a1,b1]. Thus, 21 = a; or z; = b;.
Assume z; = a;. Then z = (a1, 22,p) where 22 € [az,b2]. Now either x € B
or z € B'. If z € B, then let w = (21 + 1,292,p). Clearly d(z,w)=1. Also
wy; =21 +1 =a; +1. By hypothesis y € B, so y; € [a; + 1,b; — 1]. Thus
zn<w =z+1=a+1< y1, s0ow € [z,y1], so clearly, w € box(z,y).
Therefore, w is a (z,y)-step. Notice w = (21 + 1,22,p) = (a1 + 1, 22,p) where
2 € [ag, by], and recall B' = [a; + 1,b; — 1] x [a2, b2] x [p, p]. Clearly, w € B so
w is a (z,y)-step in J as desired.

If £ € B, then let w = (21, 22,7) = (a1,22,7). Since |[r — p| = 1, clearly
d(z,w)=1. By hypothesis y € B, so y3 = r. Thus w € box(z,y), so w is a
(z,y)-step. Since z € [ag,bs], it is clear that w € box(a,b) = B. Thus w is a
(z,y)-step in J as desired.

Now, suppose Jz,y,and z that violate the two-step axiom. If z; # a;, then
reflect and translate until z; = a;. Then we have z; = a; and points z,y and z
that violate the two-step axiom, which is a contradiction since, as has just been
shown, the axiom holds for z; = a;. Thus Az,y,and z that violate the two-step
axiom. In other words, J is a jump system.

O

3 Operations on Jump Systems

In the following sections we present results concerning two interesting opera-
tions on jump systems. The first, defined as “squashing” a jump system is an
operation that, like reflection and translation, is performed on just one jump
system. The second operation, however, that of forming the Cartesian product
of jump systems, involves two jump systems.

3.1 The “Squashing” Operation

Given a set of integer points in three-space,“squashing” is defined as taking
the projection of all two-dimensional cross sections of the set onto a chosen
horizontal plane. The xy-grid is preserved but the z coordinate is eliminated.
See Figure 3 for an illustration of the Squash Theorem.

Theorem 4 (The Squash Theorem). Let J be a jump system. If J* =
{(a,b,0) : (a,b,c) € J}, then J* is a jump system.

Proof. Let x,y € J* and let z be an (x, y)-step. Given a point p = (p1,p2,p3) €
73, define p' = (p1,p2,0). Then 3 points u = (uy,us,uz) and v = (vy,v2,v3) in
J such that z = «' and y = v'.

Case 1: Assume z = ' and y = v' are two distinct points in J* where u
and v lie in the same horizontal cross section, J,., of J - i.e. v3 = us. Since J is
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Figure 3: The Illustrated Squash Theorem
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a jump system, the jump system axioms hold for any three points a, b and c,
where ¢ is an (a, b)-step, that lie in J,. C J. Thus, J, is a jump system. But
since translation preserves the axioms, the axioms also hold for the translation
of J., J.* = {(a,b,¢) + (0,0, —c¢) : (a,b,c) € J.} C J*. Since for u and v in J,,
z =u = (u1,u2,0) € J.* and y = v' = (v1,v2,0) € J,.*, the axioms hold for
x, y, and any (z,y)-step, z, in J,.*.

Here is an alternate argument: Note that the horizontal cross section of J,
Jr, in which u and v lie is the intersection of J with the region (—o0, +00) X
(—00,4+00) X [u3, us] which is a box. Since, for any jump system .J, and box B,
J N B is a jump system, J,. is a jump system.

Case 2: Now, assume z = u' = (u1,u2,0) and y = v’ = (v1,v92,0) are two
distinct points in J*, where u and v lie in different horizontal cross sections of
J,i.e. v3 # ug. Given an (x,y)-step z, either z € J* and we’re done, or z ¢ J*.
So, assume z ¢ J*. We seek a (z,y)-step in J*.

Because z is an (z,y)-step, z € box(z,y), and d(z,z) = 1. Since z €
box(z,y), z; € [[zi,v:]],V ¢ € [1,3]. Particularly, 23 € [0,0] so 23 = 0.
Thus z = (21, 22,0) where 21 € [[z1,41]] = [[u1,v1]], 22 € [[z2,y2] = [[u2,v2]]-

Since z = (z1,22,0) ¢ J* and J* = {(a,b,0) : (a,b,c) € J}, then it
must be that ¥V s € Z,(#1,22,s) ¢ J. Otherwise , if (21,22,5) € J, then
z = (2z1,22,0) € J* contradicting the hypothesis that z ¢ .J.

Thus, the point w = (w1, ws,ws) = (21, 22,u3) ¢ J. Notice, w € box(u,v),
since: wy = z1 € [[u,v1]],w2 = 22 € [[u2,v2]], and ws = uz € [[us,vs]].
Also notice that u = (u1,ua,u3) = (u1,u2,0) + (0,0,u3) = = + (0,0, u3), and
w = (21, 292,u3) = (21,22,0) + (0,0,u3) = 2+ (0,0,u3). Thus, v and w are the
translation of z and z up w3 units in 3-space. Since d(z, z) = 1 and distances are
preserved under translation, we know that d(u,w) = 1. But notice: d(u,w) =1
and w € [[u,v]], so w is a (u,v)-step.

Since w is a (u,v)-step that is not in J, then, because J is a jump system,
3 a (w,v)-step t that is in J. Clearly, t cannot be (21, 22,us = 1) since then,
t would be of the form (z1,22,s) ¢ J. Since ¢t cannot be directly above or
below w, t must lie in the same plane as w i.e. t3 = uz. Thus, d(w,t) =1
and t = (tl,tz,t_g) = (tl,t27U3) € box('w,v) SO t1 € [[wl,vl]] = [[2171}1]],t2 S
[[w2, ve]] = [[22, v2]]-

Since t € J, then, by the definition of J*,t' = (t1,t2,0) € J*. But
notice that ¢ € box(z,y) since: t| = t1 € [[21,v1]] = [[21,41]],th = t2 €
[[22,v2]] = [[22,y2]] and, trivially, t; = 0 € [0,0] = [[23,ys]]. Also notice that
t = (tl,tg,O) = (tl,tz,u;g) + (0,0, —’LL3) =t+ (0,0, —’LL3) and z = (21,22,0) =
(21, 22,u3) + (0,0, —u3) = w+ (0,0, —u3). Thus z and ¢’ are the translation of
w and ¢ down ug units in space. Since d(w,t) = 1, and distances are preserved
under translation, d(z,t') = 1. But notice: d(z,¢') = 1 and ¢ € box(z,y). Thus,
t' is a (z,y)-step that is in J* as desired.

Therefore, J* is a jump system. O
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3.2 The Cartesian Product

Theorem 5. (The Cartesian Product Theorem) Let R and P be finite sets such
that RNP = 0. Let Jp C Z*® and Jp C Z* be jump systems. Then Jr x Jp is
a jump system < Jg and Jp are jump systems.

Proof. Note that Jg x Jp C ZBYP. For this proof, we define w € ZFYP as
w = (wg,wp) where wg € Z%, and wp € ZF.

(=) Assume Jg X Jp is a jump system. We will show that Jg is a jump
system. (The argument for Jp is similar.) Let g and yg be in Jg, and let zg
be an (zg,yr)-step ¢ Jr. We seek an (zg, zr)-step in Jg.

Let tp € Jp. Then x = (xg,tp) and (yg,tp) are in Jg X Jp, while z =
(2r,tp) ¢ J since zg ¢ Jgr. Notice that d(z,2) = > °,cpup [Ti—2i| = D ;cr|Ti—
Zi|+ > ;ep |®i—2i| = d(xRr, 2r)+ d(tp,tp) = 1. Also since z is an (xR, yr)-step,
zgr € box(zg,yr) so Vi € R, z; € [[z;,y;]]. Since Vi € P, z; = t; € [t;,t;] =
[z:,y:], Vi € P we also have that z; € [z;,y;]. Thus z € box(z,y). So z is an
(z,y)-step not in Jg x Jp.

Since Jgr x Jp is a jump system, 3 a (z,y)-step 2’ = (2k,2p) € Jr x Jp.
Thus 2’ € box(z,y). Particularly, Vi € P 2} € [[zi,y:]] = [tirti] = [%4,¥is
so z; = t; Vi € P. Thus zp = tp, so 2/ = (2, tp). Also d(z,2') = 1 so
1= 3, pop 5= 2 = i 15— 21+ Srep 21— 21| = d(zn, 2)+d(zp, 2p) =
d(zg, zg)+d(tp,tp) = d(zgr,2R), i.e. d(zr,2zR) = 1. Since 2’ € box(z,y),
Vi € R, z} € [[2i,y:]], i-e. 2 € box(zr,yr). Also, recall that zj, € Jg so 2R is a
(2R, yr)-step in Jg as desired.

(«) Assume Jg and Jp are jump systems. Let 2,y € Jg x Jp, and let z be
an (z,y)-step. If z € Jgp x Jp then we’re done. So assume z ¢ Jg x Jp. We
seek a (z,y)-step in Jg x Jp.

Since z is an (2, y)-step, d(x,2) = Y ;cpup |Ti — 2i| = 1. So, for some k €
RUP, |z, — 2| =1, while Vi € RU P where i # k, |z; — z;| =0 i.e. z; = z;.

We consider two possibilities for k: k € R and k € P.

Case 1: (k € R) Assume k € R. Then, Vi € P, clearly i # k so z; = x; i.e.
zp =zp € Jp. Since, z = (zgr, 2zp) ¢ Jr X Jp, it must be that zg ¢ Jr. Notice
that: d(zg,2Rr) = Y ;cp |Ti — 2| = |2k — 2| + EieR,#k |z; — 2] =1+0=1.
Also, since z is an (z,y)-step, ¥i € RU P and thus Vi € R,z € [[z;,¥:]]
so zr € [[zr,yr]]- Thus zg is an (zg,yr)-step. Since zg ¢ Jr and Jg is
a jump system, 3 a (zg,yr)-step, sg € Jr. Now, let 2/ € ZFYP such that
2! = (2R, 2p) = (sgr,zp)- Since sg € Jg and zp € Jp,2' € Jg x Jp. Note:

d(z,2") = Yierup 1% — 2il = Xier |2 — 2l + Liep |2 — 2i| = d(zr, 25) +
d(zp,2p) = d(2Rr,sr) + d(zp,zp) =1+0=1.

Also, since sg is (2r,yr)-step, Vi € R, z; = s; € [[2;,y;]] and trivially,
Vi € P, z, = z; € [[25,¥:]]- Thus Vi € RU P, 2} € [[2;,y;]], so 2’ € box(z,y).
Therefore, 2’ is (z,y)-step in Jg x Jp as desired.

Case 2: (k € P) The argument for Case 2 is similar.
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Therefore, Jg X Jp is a jump system. O

An interesting result arises when we apply the Cartesian Product Theorem to
the case where R is a two-element set and P is a one-element set. The following
theorem states that, given any two-dimensional jump system, any set of n copies
of that system in three-space is a jump system.

Theorem 6. (The Translation-Iteration Theorem) Given a jump system, J C
Z2, for k € Z, define J, = J x {k}. Then, for [q,7] CZ, J* = Ui_,Ji is a jump
system.

Proof. Define J' = [gq,r]. Clearly J' is a jump system. Thus, by the Cartesian
Product Theorem, J x J' is a jump system. Notice that J x J' = J x [¢,r] =
JxA{t:telgr]} =Ul_,Ji =J*. Hence J* is a jump system. O
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