ASYMPTOTIC ELASTICITY AND THE FULL ELASTICITY
PROPERTY IN ATOMIC MONOIDS

MATTHEW T. HOLDEN! AND TERRI A. MOORE?

ABSTRACT. Let M be a commutative atomic monoid (i.e. every nonzero
nonunit of M can be factored as a product of irreducible elements). Let
p(z) denote the elasticity of z € M, R(M) = {p(z) | z € M} the set
of elasticities of elements in M, and p(M) = sup R(M) the elasticity of
M. We say M is fully elastic if R(M) = QnN[1, p(M)]. We examine the
full elasticity property in the context of numerical semigroups and block
monoids over finitely generated abelian groups. In particular, we show
several large classes of block monoids are fully elastic. We also define
p(z) = limp—o p(x™) to be the asymptotic elasticity of x. We determine
some basic properties of p and discuss the set of values attained by g in
both the numerical semigroup and block monoid cases.

1. INTRODUCTION

Let M be a finitely generated commutative cancellative monoid with M*
the set of nonunits of M and A(M) the set of irreducibles (or atoms). We
suppose M is atomic (i.e. every element of M* is a sum of atoms). Such
monoids have applications in combinatorics, algebraic geometry, commuta-
tive algebra, number theory, and computational algebra (see [10, pp. iii-iv]).
Much recent literature has been devoted to the study of monoids in which
elements fail to factor uniquely. In particular, a central topic of focus has
been the elasticity of elements of M, which measures their failure to factor
uniquely. While much is known about the supremum of the set of elasticities,
we study here the complete set of elasticities in several important classes of
monoids. We begin with some definitions and notations.

For x € M*, define

L(z)={n|z=o0aq,...,q, with each o; € A(M)}
to be the set of lengths of factorizations of x into irreducibles. Define
L(z) =sup L(z) and [(x) = inf L(x),
and define
L(z)

p(z) = W
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to be their quotient. p(x) is called the elasticity of x.
We also define

R(M) ={p(x) |z € M"}
to be the set of elasticities of nonunits in M, and
p(M) = sup{p() | = € M*}

to be the supremum of this set. p(M) is called the elasticity of M. The
notion of elasticity was introduced by Valenza in [11] in the context of rings
of integers of algebraic number fields.

We now state several basic facts about elasticity which we will use freely
throughout the paper.

(i) 1<p(z)<p(M)<ooforall xe M

(ii)) p(z) is rational for all z € M*

(iii) p(M) = = € Q and a1...ap = B1...0, for some irreducibles
«;, ,3]' c .A(M )
(i) and (ii) are obvious, and (iii) is Theorem 7 in [1].

Following Zaks in [12], we say the atomic monoid M is a half-factorial
monoid (HFM) if for all nonunits = € M, every irreducible factorization of
x has the same length. Thus, p(M) is a measure of how far M deviates from
being a HFM. In particular, p(M) = 1 if and only if M is a HFM. For more
information on elasticity, we refer the reader to [2] and [5].

In section 2, we define the asymptotic elasticity of a monoid and give some
basic properties and results. Section 3 introduces the notion of a fully elastic
monoid, and explores it in the context of block monoids. We also character-
ize in this section the set of asymptotic elasticities for a block monoid. In
section 4, we study the full elasticity property in terms of numerical monoids,
and give some results concerning asymptotic elasticities.

2. ASYMPTOTIC ELASTICITY
For all z € M*, define
_ L(z™
L(z) = lim (z ),

n—oo n

o~

[(z) = lim (")

n—oo N

From [4], we know both these limits exists, although L(x) may be infinite.
For x € M*, we define
_ L(z) _ . n
) = 72 = i p(a")
(z)

[ n—oo

to be the asymptotic elasticity of x, which exists since L(z) and I(z) do.
Moreover, it is shown in [1, Theorem 12| and [9, Theorem 2] that L(z) and
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[(x) are rational for all elements z € M*, so that p(x) is rational as well.
We also define
R(M) = {p(z) | € M"}
to be the set of asymptotic elasticities, and
p(M) = supR(M)
to be the asymptotic elasticity of M. We begin with several basic properties
of p.
Lemma 1. Let x be a nonunit of M. Then
(i) plx) > p(z") > p(z) for alln e N
(i) p(M) = p(M).
Proof. (i) 1t is easy to verify that L(xixe) > L(x1) + L(x2) and [(x122)
I(x1) + U(w2) for all 1,29 € M*. It follows that L(z*) > kL(x) and I(z*)
El(x) for all k£ € N, from which
L(z*) _ kL(z)

<
<

Thus for all z € M*, p(z) = limy_. p(z¥) > p(z). For all n € N, 2" € M*
SO

plz) = lim p(a*) = lim p(a"") = p(z") > p(z") = plz),
which completes the proof of (i).
For (ii), it follows from (i) that
p(M) = sup{p(z) | = € M7} > sup{p() | = € M*} = p(M).

Suppose p(M) > p(M). Then there exists x € M* such that p(xz) > p(M).
Let € = p(x) — p(M) > 0. Since lim,,_,», p(z™) = p(x), there exists N € N
such that n > N = |p(z) — p(z")| < e = p(z") > p(M), which
contradicts the maximality of p(M). Hence, p(M) < p(M), and the result
follows. O

Theorem 2. Let x € M*. Then the following are equivalent:

(i) pz) = p(z)
(ii) p(z") = p(z) for alln € N
(iii) There is an integer m > 2 such that p(x™") = p(z) for all n € N.

Proof. From Lemma 1 (i),
p(x) > p(x"™) > p(x) for alln € N.

It follows that if p(x) = p(x) then p(z™) = p(z) for all n € N, so (i) implies
(ii). That (ii) implies (iii) is obvious. Finally, if (iii) holds then

ple) = lim p(a*) = lim p(a™) = p(x),

so (iii) implies (i). O
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The following lemma will allow us to relate the set of elasticities of a
monoid to its set of asymptotic elasticities.

Lemma 3. Let x € M*. There is an integer o € N depending on x such
that p(z) = p(z®).

Proof. By [1, Theorem 12], there are integers m,n > 1 such that [(z*™) =
kmi(x) and L(z*") = knL(z) for all k € N. Taking a = mn, we have

L(z™)  mnL(z)

- I(xzmm) - mnl(x) = pla).

mn)

p(z®) = p(z
O

We conclude this section by relating R(M) to R(M) and its set of limit
points. If S C R then = € R is called a limit point of S if U —{z} intersects
S for any neighborhood U of z in R.

Theorem 4. Let R(M)' denote the set of limit points of R(M). Then

R(M) € R(M) U{p(z) | p(z) = p(2)}.
Also, R(M) C R(M).

Proof. Let » = p(z) € R(M) and suppose 7 is not a limit point of R(M).
Then there is an open interval I of radius € > 0 around r such that I —{r} is
disjoint from R(M). Thus the sequence {p(z*)}ren is disjoint from I — {r}.
Since this sequence has limit 7, there exists N € N such that p(z*) € I for
all k > N. Since p(2*) ¢ I — {r}, it follows that p(z*) = p(z*) = r for all
k > N. Thus, r € {p(z) | p(z) = p(z)}, which proves the first statement.
The second statement follows immediately from Lemma 3. U

3. THE FULL ELASTICITY PROPERTY AND B(G)

As a basis for studying the entire set of elasticities R(M) of a monoid M,
we propose the following

Definition. For all z € M*, p(z) € Q and 1 < p(z) < p(M). Thus,
for every monoid M, p defines a function p: M* — QN [1,p(M)]. If for

a given monoid M the function p is surjective, we say M is fully elastic.
Equivalently, a monoid M is fully elastic if R(M) = Qn [1, p(M)].

We note that this definition is valid when p(M) = oo if we understand
[1,p(M)] to mean [1,00). We also remark that if the monoid M is a HFM
then p(M) = 1 and M is trivially fully elastic. We first study the full
elasticity property in the context of block monoids. In section 4, we explore
it in terms of numerical monoids.

Throughout this section G will denote a nontrivial finitely generated
abelian group. By the fundamental theorem of finitely generated abelian
groups, we can write G £ Z" @ Zy, @ ... D Zn,,, for some integers r > 0 and
1 < ny|...|ng. We will use this result freely throughout this section. We
also note that if G is finite (i.e. » = 0) then k is known as the rank of G.
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A zero-sequence of G is a nonempty sequence {gi,...,g:} of (not nec-
essarily distinct) elements of G such that >>_ g; = 0. A zero-sequence is
called minimal if it contains no proper zero-subsequence. Zero-sequences
are also called blocks. The length of the zero-sequence B = {g1,...,qt},
denoted by |B|, is defined to be t.

Let Z(G) denote the set of zero-sequences of G. If By = {¢1,... ,g,} and
By = {hq,... ,hy} are zero-sequences in Z(G), we define By ~ By if n =m
and there’s a permutation o € S, such that g; = hg(;) for all 1 <i <n. We
note that ~ is an equivalence relation on Z(G). Define B(G) to be the set
Z(G)/ ~ under the operation

{gl,... ,gn}-{hl,... ;hm}:{gla--- ,gn,hl,... ,hm}

B(G) is a commutative atomic monoid called the block monoid of G. Let
U(G) denote the subset of B(G) consisting of minimal zero-sequences of G.
Then the elements of U(G) are precisely the irreducibles of B(G). We also
note that the empty block acts as the identity in B(G). In what follows, we
will often write blocks in the form g¢i* ... g;*, where the x; are nonnegative
integers and g1, ... , g; are distinct group elements.

If S is a nonempty subset of G, then define

B(G,S)={{g1,-.- .9t} € B(G) | gi € Sforall 1 <i<t}.
Then B(G, S) is a submonoid of B(G) with atoms A(B(G, S)) = B(G,S) N
U(G). For more information about block monoids, see [8].

Assume that G is a finite abelian group. For B = {¢1,... ,¢:} € B(G),
the cross number of B is defined as

t
1
iz1 19

where |g;| denotes the order of g; in G. The Davenport constant of G,
denoted by D(G), is defined to be the maximum length of an irreducible in
B(G). 1t is easy to argue that D(G) < |G| and if G = Z,, then D(G) = n.
UG=Zn &...8 7Ly, with 1 <nq]...|ng, we define

k
M(G) =1+ (n;—1).

In general, we have D(G) > M(G), and D(G) = M(G) if G is a p-group or
a group of rank less than 3, or if |G| < 96. It is also known that

For a survey of known results concerning the Davenport constant and the
cross number, and their relation to factorization theory, consult [5].

Let S be a nonempty subset of G — {0}. Following [3], we define Dg(G)
to be the maximum length of an irreducible in B(G, S). It is easy to verify
that Dg(G) < D(G) and Dg(G) = D(G).
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Finally, we will use the following useful result in subsequent sections. We
omit the simple proof.

Lemma 5. Let G be an abelian group, H a subgroup of G, and S a nonempty
subset of H. Then R(B(H,S)) C R(B(G)).

3.1. Finite abelian groups. We first consider block monoids B(G) where
G is a finite abelian group. The results in this section will allow us to
characterize a large class of these block monoids as fully elastic.

Lemma 6. Let n > 2 be a positive integer and S a nonempty subset of Z,.
If there is an element g € S of order n such that g~ € S then B(Zy,S) is
fully elastic. In particular, B(Zy,) is fully elastic.

Proof. First, if n = 2 then B(Z,,S) is a HFM since B(Z,,) is, hence it’s
fully elastic. Now suppose n > 2. By [3, Proposition 3] and the remarks
preceding it, p(B(Zy, S)) = DST(G) = 4. Let 2 € QN [1,3]. Then it suffices
to show that p(B) = z for some B € B(Z,,S). Suppose u < v and consider
the block B = (g")“((g~%)™)?. The only possible irreducible divisors of B
are ¢", (g~H)", and g - (g7 '), which have lengths n or 2. Since the given
factorization of B contains only maximal length irreducibles, it has minimal
length and [(B) = u + v. Since the only irreducible of length 2 contains the
element g, of which there are nu total in B, it follows that the factorization
B={(g-(g7h)™((g71)™)""* has maximal length and L(B) = (n — 1)u +v.
Now let % =z for p,q € N. Take u = p—q and v = (n — 1)¢g — p. That
u < v follows from % < % With these choices of u and v we have
o(B) = (n-—Vutv (-UHp-g+((n-Yg—p) _p__
u+wv (P—q)+((n—=1)g—p) q
so B(Zy, S) is fully elastic.
To see that B(Z,,) is fully elastic, take S = {1,n—1}. By the above result,
B(Z,, S) is fully elastic, and by Lemma 5, B(Z,,) is also. O

Lemma 7. Let G be a finite abelian group and S a nonempty subset of G.
Let a = gi' ... gt be an irreducible in B(G,S) of length Dg(G), where the
gi are all distinct. Suppose gfl,... g7t € S and x1 = |g1| — 1. Then
R(B(G,S))=Qn[1, DST(G)] so B(G,S) is fully elastic.

Proof. First note that if Dg(G) = |g1| and g'lgllflgg is an irreducible of
length Dg(G) then we must have go = (gllgll_l)_1 = g1 80 g1 and go are not
distinct. Thus, the hypotheses imply that that Dg(G) > |g1]-

Let @ = (g7 )™ ... (g )™, 8 = gf""!, and 3 = (971)1". Then a,a,p,
and 3 are irreducible in B(G,S). Let u,v be nonnegative integers not both
zero and consider the block

B = auo—éuﬂvlgv‘
We claim the given factorization of B has minimal length. Suppose F' is a
factorization of B of length at most 2u + 2v. For all v € B(G, 5), let vg, (7)
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denote the total number of the elements g; and g; 1in . Note that if 7 is
irreducible then vg, (7) < [g1|. Let 6 be the number of irreducible factors
v in F' with vg (y) < |g1|, and let o be the number of such factors with

v, (7) = lg1|. Then
(lg1l = 1) +algi] > v (B) = 2u(lg1| = 1) + 2v]g1].

Since the length of the factorization F'is § + o < 2u + 2v, it follows that
o > 2v. Now note that all factors counted by ¢ have length |g;|, and those
counted by 4 have length at most Dg(G). Thus,

6Ds(G) + alg1| = |B| = 2uDs(G) + 2v|g1|.

Since 6 + o < 2u + 2w, it follows that 6(Dgs(G) — |g1]) > 2u(Ds(G) — |g1]),
whence § > 2u. Hence, § + 0 > 2u + 2v, and the given factorization of B is
minimal as claimed (i.e. [(B) = 2u + 2v).

The factorization B = (g1g7 ")* 01911 (gogs 1) %*2 .. . (grg; 1)"** has max-
imal length since all factors have minimal length 2. Thus, L(B) = u(z; +
.ot a) +olgi] = uDs(G) +vlg1.

Now let % € Qﬂ[@, DST(G)], and take u = 2p—|g1|q and v = Dg(G)q—2p.
Note that the restrictions on £ ensure that u, v are nonnegative and not both
zero. With this choice of v and v, we have
_ uDs(G) +vlg1| _ (2p —191l9) Ds(G) + (Ds(G)q — 2p)|g1]

2u + 2v 2(2p — |g1lq) +2(Ds(G)q — 2p)
_2(Ds(G) —lg1l)p _ p

- 2Ds(G) —lg)a a
Thus, R(B(G, S)) 2 Qn [14l, Ps(@),
Now let n = |g1|. Then (g1) = Z, is a subgroup of G. Using Lemmas
5 and 6, R(B(G,5)) 2 QN [1,2] = QN [1,12]] and so R(B(G,S)) D
QnNIi, DST(G)] By [3, Proposition 3], p(B(G,S)) = DST(G) so R(B(G,S)) =
QN1 p(B(G,S))] and B(G, S) is fully elastic. O

p(B)

[\v]

Theorem 8. Let G be a finite abelian group. Then

M (G)]
2

Proof. Let G =Zp, ® ... ® Ly, where 1 < nql...|ny. Let

g1=(1,0,...,0),... , g = (0,0,... 1)

be the standard basis elements of G, and let g, = (1,1,...,1). Let S =
{gla s 7gk:g*7g]__17 s agk_lag*_l}' We next show DS(G) = M(G)

First note that if G is a finite cyclic group then Dg(G) = D(G) = M(G),
so suppose G has rank k£ > 2. Since the block g?l_l e gzk_lg* has length
M(G), we know Dg(G) > M(G). We show Dg(G) < M(G). Suppose B is
an irreducible of length Dg(G). Then B cannot contain both g and g~! for
any g € 5. Without loss of generality, we can assume B contains g, but not

R(B(G)) 2Qn1,
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g, 1. So suppose B = ¢! ... G g7+, where g; € {gi,g; '} for all 1 <i <k,
and x1,... ,Tg, T« € Np.

Now let j be the smallest index such that n; = n;. If g; = g; for any
1 > j then we can assume by some isomorphism that g = gr. It follows
that xp = ng — x4, and so

IBl] = x1+...4+xp+axe=x1+ ...+ Tk 1+ (ng — Ts) + T
S (n1—1)+...+(nk—l)—|—1:M(G).

Now assume §; = gi_1 for all ¢ > j. Then x; = z, for all ¢ > j. If
j =1 then we must have z1 = ... = x;, = x, = 1 since B is irreducible, so
|B| = k+1< M(G). So suppose j > 1.

Since zp = x4,

|IBl=z1+ ...+ 21+ 2z« < (n1 — 1)+ ...+ (ng—1 — 1) + 2z,.

Suppose |B| > M(G). It follows from the last equation that z, > =& > n;_;.
By the minimality of B, we must have B = (g]-_l)"j*1 e (gk_l)”ﬂ‘*lg*”ffl
since this is a zero-subsequence of B. Thus |B| = (k —j+2)n;_1, and hence

M(G) = (n1—1)—l—...—l—(nj_l—l)—l—(k—j—l—l)(nk—1)—|—1
> nj+(k—j+1)(2n-1 1)
= (k‘ *j +2)7’Lj_1 + (k’ *j + 1)(nj_1 - 1) Z (k *j + 2)’1’Lj_1 = ‘B|

This is a contradiction, so in all cases Dg(G) = |B| < M(G).

Now let o = g™t g 'g.. Then a is an irreducible in B(G,S) of
length Dg(G). By Lemma 7, R(B(G)) 2 R(B(G,S)) = Qn [1, 25 —
Qn 1 4. 0

Theorem 9. Let G be a finite abelian group. If
(i) D(G) = M(G), or
(ii) there exists a mazimal length irreducible in B(G) which contains
g91=1 for some g € G,

then B(G) is fully elastic.

Proof. For (i), if D(G) = M(G) then it follows immediately from Theorem
8 that B(G) is fully elastic.

For (ii), suppose G = Z,, & ... ® Zy,, where 1 < ng|...|ng. Suppose
a € A(B(G)) has length D(G) and contains gl9/=1. If a contains g9 then

D(G) = |g| < ny, and so M(G) =1+ 3% (n; —1) < D(GQ) < ny. Thus,
Zf 11( —1) <0 so G is cyclic, and hence fully elastic by Lemma 6.

Now suppose a contains ¢l9=1 and no higher power of g. Write a =
gl9l=1g¥2 g7, Letting S = G and applying Lemma 7, we have R(B(G)) =
QnI1, DG(G ] QnNIL, D(G)} so B(G) is fully elastic.

O
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3.2. Infinite abelian groups. We now turn our attention to block monoids
B(G) where G is an infinite (but finitely generated) abelian group. In par-
ticular, we show all such block monoids are fully elastic.

Lemma 10. B(Z) is fully elastic.

Proof. Let x = % € [1,00), where p,q € N. It suffices to show p(B) = x

for some B € B(Z). First, if z = 1 then p(a) = 1 = z for any irreducible
a € A(B(Z)). Now suppose x > 1. Let m,s,t € N such that ¢ > s and
m > 1, and consider the block

B= (1" (-m))((-1)" - m)".

The only possible irreducible divisors of B are (1™ - (—m)), ((—=1)" - m),
(1-(—1)), and (m- (—m)), which have lengths m + 1 and 2. Since the given
factorization of B contains only maximal length irreducible factors, it has
minimal length so I(B) = s + ¢. Also,

B = (1-(=1))™((=m) -m)*((=1)™m)"*.

Since this factorization of B contains the greatest possible number of ir-
reducible factors of length 2, it has maximal length and L(B) = ms + t.
Hence,

ms+1
B) = .
PB) ="
Take s=1,t=29g—1>s,and m =2p —2¢g+ 1> 1. Then
(2p—2¢+1)+(2¢—1) 2p
p(B) = =— =,
1+(2¢—1) 2q
which completes the proof. ]

Corollary 11. If G is a finitely generated infinite abelian group then B(QG)
is fully elastic.

Proof. Since G is finitely generated, we can write G = Z"©Zy, ®. . .S Ly, for
some 1,n1,... ,n; € N. Since G is infinite, we know r > 0 so G contains a
subgroup isomorphic to Z. It follows from Lemmas 5 and 10 that R(B(G)) 2
R(B(Z)) = Qn[l,00), so B(G) is fully elastic. O

3.3. Asymptotic elasticity in B(G). In this section we first present sev-
eral results that relate asymptotic elasticity in B(G) to the cross number
k, and then use results of the preceding sections to characterize the set of
asymptotic elasticities of B(G).

Theorem 12. Let G be an abelian group. Let x € B(GQ) and y € A(B(Q)).
Then

() ply) > maxfk(y), g1,
(ii) p(x) = 1 if and only if every irreducible divisor o of the collective
powers of x has k(a) = 1.
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Proof. (i) Let n € N. Since y" is a product of n irreducibles, we know
I(y") < n < L(y"). Dividing through by n and taking limits yields I(y) <
1 < L(y). From [6, Proposition 7], we also know I(y) < k(y) < L(y). Taking
the appropriate quotients yields the desired result.

The proof of (ii) is adapted from [6, Lemma 3].

(=) Suppose p(z) = 1 so that L(z) = I(x). By [6, Lemma 1(5)], every
factorization of ™ into irreducibles has the same length, for all n € N. Let
a be an irreducible divisor of x! for some ¢ € N. Then for every s € N,
af|zt, and since z'® has unique irreducible factorization length, it follows
that o® does as well.

Now write « = g7 ... g, where g1, ... ,g, € G. Let k = lem{|g1|,. .. , |90}
and for each 1 <i¢ < wlet k; = \g_li\' Then

of = (9" (gl
|gil

and setting v; = g,”*', we have

k __ kl kw
Q=91 Vs

where 7; € A(B(G)) and k(v;) = 1 for each i. By the properties of cross
numbers, k(o) = kk(a) = k; + ... + k,. Since o has unique irreducible
factorization length, it follows that k = k1 + ... + ky,, whence k(a) = 1.

(<) Suppose z € B(G) and 2" = (1 ...0s = 71 ...Y, where each (3; and
7; is in A(B(G)). By the properties of cross numbers,

k(z") = nk(z) = k(1) + ... + k(Bs) = k(1) + ... + k().
Since all irreducible divisors of " have cross number 1, we have n = s = t.
Thus, I(z™) = L(z") for all n € N, from which L(z) = (z) and p(z) =1. O
Theorem 13. Let G be a finite abelian group. Then
M (G)]

If M(G) = D(G), or if there exists a maximal length irreducible in B(G)

which contains gl91=1 for some g € G then
D(G)

R(B(G)) =QnL, T]-

Proof. Let B = aaff3 be as in the proof of Lemma 7, and let C' = (1")%((n—
1)™)? be the block considered in the proof of Theorem 6. Then for all £ € N,

_ kuDs(G) + kvjgi| _ uDs(G) +v|g1]

R(B(G)) 2 QNI1,

k _
P(B%) 2ku + 2kv 2u +2v = r(B)
and
n —1)ku + kv n—1u+v
oty = o Dkt ke _[no it )
By Theorem 2, p(B) = p(B) and p(C) = p(C). By the proof of Theorem

8, for any z € QN [1, MgG)} we can choose u and v such that either p(B) =
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p(B) =z or p(C) = p(C) = x. This proves the first statement. In a similar
way, the second statement follows easily from Theorem 9. O

Theorem 14. If G is a finitely generated infinite abelian group then
R(B(G)) =QN[L,00).

Proof. By the proof of Corollary 11, it suffices to show R(B(Z)) = QN[1, o).
Let B = (1™ - (—m))*((—1)™ - m)! be as in the proof of Lemma 10. Then
for all n € N,

mns + nt _ms—i—t
ns+nt s+t

p(B") = = p(B),
so by Lemma 2, p(B) = p(B). By Lemma 10 for any z € QN [1, 0c0), we can
choose B such that p(B) = p(B) = z, and the result follows. O

While Theorems 13 and 14 show that all possible asymptotic elastici-
ties are attained in block monoids over many finite groups and all finitely
generated infinite groups, the values attained by the functions L and [ are
generally much more restricted. We illustrate this in the following

Example. Let L(B(G)) and [(B(G)) denote the images of B(G) under the
functions L and I, espectlvely Consider the block monoid B(Z3). By
Theorem 13, R(B ( 3)) = QnNL,3]. In contrast, we show

I(B(Z3)) = {g IneN,n> 1},
and
L(B(Z3)) = N.

Proof. Suppose B = 1%2Y € B(Z3). Since B is a block, x =y (mod 3). By
the division algorithm, let x = 3s + r and y = 3t 4+ r, where 0 < r < 3, and
consider the block B3". The factorization B3 = (13)"(23)" has minimal
length since all factors are of maximal length. Thus I(B?") = n(z + y) and

- . (B Tty 2r
l(B)—nan;o 3n 3 +t+?€{—|n€Nn>1}

Now let n € N,n > 1 and write n = 3¢ +a for 0 < a < 3. If a € {0,2} take
r =g and s+t—q If a=1take r =2 and s+t = q — 1. For these values
of z and y, I(B) = %, and thus [(B(Z3)) = {% | n € N,n > 1}.

Now assume m = mln{x y} and write m = 3g+r. Then the factorization
B3 = (1 - 2)3nm(13)ne—m) (23)n(y=m) has maximal length since it contains
the greatest possible number of factors of length 2. Thus L(B3") = nz+ny+

nm, and so L(B) = x+%+m = s+t+q+r. It follows that L(B(Z3)) = N. O
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4. FULL ELASTICITY IN NUMERICAL MONOIDS

Given that several large classes of block monoids are fully elastic, it be-
comes relevant to ask if all monoids and integral domains are fully elastic
as well. To provide an answer, we focus now on the context of numeri-
cal monoids. Let aq,...,a; be positive integers. We define the numerical
monoid generated by ay,... ,a; to be

S={(al,...,at) ={z1a1 + ... + zear | x1,... ;2 € No},

which is a submonoid of Ny. Note that 0 € Ny acts as the identity in S, and
if 1 € {a1,...,a:} then S = Nj. It’s a fact that every numerical monoid S
has a minimal set of generators, which are precisely the atoms of S. S is
also clearly commutative, cancellative, and atomic. For more information
on numerical monoids, see [7]. Our first result gives the elasticity of an
arbitrary numerical monoid.

Theorem 15. Let S = (a1, ... ,at) be a numerical monoid, where ay, ... ,a

N is a minimal set of generators for S. Then p(S) = 2-.

Proof. We may assume a1 < ... < a;. Let n € S and suppose n = x1a1 +
...+ xsa;. Then
n ai ag al a n
—=—n+4+..+—x<z+...+ < —x214+...+ —x = —.
at a; ay a aj a
Thus L(n) < 2 and l(n) > & for all n € S, from which p(S) < 2. Also,
al at al
p(S) = p(arar) = ¢, so we have equality. O

Note that if S = (a) is generated by a single element, then S is a half-
factorial monoid so S is trivially fully elastic. In the results that follow, we
will assume the minimal number of generators of S is ¢t > 2.

Theorem 16. Let S = (ay,... ,a;) be a numerical monoid, where aq, ... ,a;
N minimally generate S and t > 2. Then S is not fully elastic.

Proof. Suppose without loss of generality that 1 < a; <...<a;. Let n € S
with maximal length factorization n = z1a1 + ... + xas. If z; > a;1 for
any ¢ € {2,... ,t} then

n=aa1+ ...+ (@i—1 +a)ai—1 + (s —ai—1)a; + ... + xa¢

is a factorization with longer length. Thus zo < ai1,...,7: < a;—1 and
Toag + ...+ xa; < ajag + ...+ ap_1a;. Let s = ajas + ... 4+ as_1as. Then

n — (xrgas + ...+ 210 n—s
Ln)=xzi+...42>x1 = (w203 tt)> .
a1 ai
Now suppose n = y1a1 + ... + yias is a factorization of minimal length.
Then by a parallel argument we have y; < as,... ,4:—1 < a¢, and so yia; +

oo+ yp—104—1 < s. Thus,
at—1 Y101 + ..+ Yp—1a4—1 < S

aj
n+...+tp1 < —yit.o A+ —yY—1 = .
ai ai ai ai
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Also,

n—(yia1+...+y-10¢-1 n
yt = ( ) S )
at a

and combining this with the previous result we have
S n naj + sa
In)=p1+... 4y < Z =t
ar ag aiag
Hence,

L(n) = na; — say

naj + sa;’

Let N be an integer greater than a%% and define m = W Note by
. Jat—ay a1+sat
the choice of N that m > 1. Now if n > N then

na; — Sa; Na; — say
p(n) > =
nat—Ssat

since {m] Tsa tnen is an increasing sequence. Thus there are at most N
elements of S which have elasticity m or less. Since there are infinitely
many rationals in [1,m], this implies S is not fully elastic. U

nay + sa; ~ Naj + sa;

Theorem 17. Let ay,... ,a; € N be a minimal set of generators for the
numerical monoid S = {a1,... ,as), where t > 2. Then the only limit point

of R(S) is 2.

Proof. Suppose 1 < a1 < ... < ay. First, if n = k(aja¢) + aq for k € Ny

then p(n) = % = Iggiiﬁ It follows that p(n) < &t for all k € N and

limg 00 p(n) = ot. Thus, 2t is a limit point of the set R(S).
We now show Z—: is the only limit point of this set. Let r € [1, Z—:), let

s = aja + ...+ a;_1as, and take N to be an integer greater than %

(which is positive by the restrictions on r). By the proof of Theorem 16, for
alln > N,

Na; — sa;
> .
p(n) Nay + say

The reader can verify that

1 Na; —
(r+ 1)sa; _ Na—sa

N >
a; —raq Naq + sa;

so that p(n) > r. Thus there are at most N elements of S which have
elasticity r or less. Since there are a finite number of elasticities less than r
there can be no limit points less than 7. Since this is true of any r € [1, g—i),
there are no limit points other than Z—: O
Theorem 18. Let ay,...,a; € N be a minimal set of generators for the
numerical monoid S = (a1, ... ,a;), where t > 2. Then R(S) = {at}
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Proof. Suppose 1 < a1 < ... < a; and let n € S. Then n®%* = (a1n)a; =

(atn)ay are the minimal and maximal length factorizations of n®% respec-
tively, so p(n®®) = 44t = 4. By Lemma 1,

L= p(n) < p(n) = p(n) < B(S) = p(S) =

ay ai
so p(n) = ¢ and the result follows. O

From the proof of Theorem 17, there are elasticities in R(S) less than g*
so in particular the last theorem tells us that R(S) S R(S).
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