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Abstract

In this paper we extend a theorem on stability of the optimal partition
of a dynamic linear program to multiple objective linear programs. To do
this we briefly review the area of linear programming and the concept
of the optimal partition. We discuss optimality in a multiple objective
linear program in the sense of pareto optimality and generalize the optimal
partition to this sense of optimality. Furthermore we derive conditions
on the parameters of a dynamic multiple objective linear program under
which the optimal partition stabilizes and apply this result to an economic
model where the multiple objective structure is readily apparent. Finally
we discuss a different approach that yields further interesting insights into
the asymptotic structure of multiple objective linear programs.
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1 An Introduction to Linear Programming

Linear programming is one of the most prominent areas in optimization because
of its applicability to numerous problems in economics, management, and the
physical sciences. A linear program (LP) in standard form is formulated as
a linear objective function that is to be minimized subject to a set of linear
constraints,

LP: mwin{cTrc : Az = b,z > 0}, (1)

where A € R™*", z € R", b € R™, and ¢ € R". Any vector z that satisfies
the above constraints is called feasible, and the feasible region is denoted by P.
The optimal set is denoted by P*, and z* denotes a vector in P*.

Each LP has an associated dual,

LD: max{b'y: ATy +s=c,s> 0}, (2)
Y

where y € R™ and s € R™. The dual feasible region is denoted by D, the
optimal dual set by D*, and (y*,s*) denotes an element of D*. The Strong
Duality Theorem of Linear Programming states that if x and y are feasible, x
and y are optimal if, and only if, ¢z = bTy. This means that the following
three equations are necessary and sufficient for optimality —i.e. P* x D* is the
collection of solutions to

Az = b, >0, 3)
ATy+s = ¢ s>0,and, (4)
e—bvTy = sTz=0. (5)

From (5) we see that x; > 0 implies that s; = 0 and that s; > 0 implies that
z; = 0. Note that if, for some ¢, 27 > 0, then s} = 0 for all s*. So, we actually
have a slightly stronger condition; namely, if z} > 0 for some optimal solution,
s; = 0in every optimal solution. Similarly, if s} > 0 for some optimal solution,
z; = 0 in every optimal solution. These relationships define the unique optimal
partition of a linear program, denoted (B|N), as follows,

B = {i:z;>0,somez* € P*}, and
N = {i:sj >0, somes" €D}
= {1,...,n}\B.

For a matrix A, we define Ap to be the matrix composed only of the columns
A,; where ¢ € B. Alternatively, Ap is the sub-matrix of A with the columns
listed in NV removed. Similarly, for a vector x, zp is the vector consisting only
of components z; where i € B. As an example, if

11 Q12 a3 G14 Q15 a11 413
A= as1 Q22 Q23 Q24 Q25 , and B = {1,3}, then AB = |Q21 Q23
aszlr as2 asz ass ass asl  ass



If the optimal partition is known, the necessary and sufficient conditions
for optimality may be rewritten as a linear system. For (3), we have that
Ax = Aprp + Ayzn = Apxp, SO we rewrite these constraints as

Apzp =b, zp > 0. (6)

The dual constraints in (4) separate into ALy+sg = ALy = cg and AL y+sy =
cn. So we have that

ATy = ¢, sp =0, and (7
A%y%—sN = ¢nN, SN 2 0. (8)

Note that we get (5) for free, since z7s = 25sp+ 2% sy = 25(0)+0Tsy =0, so

the transformed system is entirely linear, whereas the previous system contained
the bilinear equation s7z = 0.

Throughout this paper, we are concerned with asymptotic linear programs.
Asymptotic linear programming is the study of the long-term behavior of linear
programs whose objective function and constraints vary with time. This type
of analysis parallels the long-term solution analysis of differential equations,
but instead of population dynamics, asymptotic linear programs are typically
of interest because of their economic interpretations [5, 6, 7].

LP(t): rr;in{cT(t)m : A(t)z = b(t),z > 0}, and
LD(%) : m;lx{bT(t)y tAt)y + s = c(t),s > 0},

where A(t) : IR — R™*" b(t) : R — R™, and c¢(t) : R — R".

In asymptotic linear programs, the primal and dual optimal sets are functions
of time. As a result, the optimal partition also varies with time. However, in
[4] it is shown that under mild restrictions the optimal parition stabilizes —i.e.,
there exists a time T, such that for all ¢ > T, (B(t)|N(t)) = (B(T)|N(T)).
(B(T)|N(T)) is defined as the asymptotic optimal partition. The primary goal
of this paper is to extend the notion of an asymptotic optimal partition to the
case when there are multiple objective functions.

A multiple objective linear program (MOLP) is a linear program where there
are g objective functions to minimize. This paper deals with asymptotic MOLPs
of the form

MOLP(t): mwin{C(t)a: : A(t)z = b(t),z > 0},

where C(t) : R — R?*"

For ¢ > 2, RY does not have a complete ordering, so “minimization” is
not uniquely defined. In this paper, we are concerned with pareto optimality.
A feasible solution x is pareto optimal if there does not exist a y € P such
that C'y < C'z, with strict inequality holding for at least one component. The
efficient frontier, denoted by &£, is the set of all pareto optimal solutions. As



shown in [2], z € £ if, and only if, there exists a strictly positive weight w such
that  minimizes {w?'C(t)z : z € P}. We denote this as

LP(w,t) : mzin{wTC(t)m cx € P(t)}.

For multiple objective linear programs the definition of the optimal partition

molp mol

is slightly different from the single objective case [5]. For a MOLP, (B | N') is
defined by

molp

N {i:z; =0for all z € £} and

molp molp

B (1,2,...,n}\ N .

molp

In other words, N corresponds to the indices of components of x that are zero
over the entire efficient frontier.

This paper is organized as follows. In section 2, we show that the multiple
objective optimal partition stabilizes. In section 3, we present some economic
implications of the stabilization result. The last section contains some properties
of the optimal partition and it’s relation to the choice of w.

2 The Main Result

In this section we show that the multiple objective optimal partition remains
constant after some time 7. First, we let {(B'|N'), (B%|N?),...,(B*"|N?")}
be the collection of all possible two-set partitions of {1,...,n}. Recall that for
a MOLP, z is pareto optimal at time ¢ if, and only if, there exists a w such that
2 minimizes LP(w,t). This linear program, LP(w,t), has an optimal partition
mol
(Bi(t)|N(t)), for some i = 1,2,...,2", and thus B¢(t) is a sub-partition of B(;)
mol mol

Let £(t) = {i : B' is a sub-partition of B(f)}. Note that B(f) = Usez ) B (1),
so we can restate the goal of this section as showing that L(t) stabilizes. To do
this, we show that any sub-partition of the multiple objective optimal partition
remains a sub-partition after a certain time.

Since we are dealing with sub-partitions, we can make use of the necessary
and sufficient conditions for a linear program. This follows since Goldman and
Tucker [3] showed that every linear program has a strictly complementary so-
lution, meaning that =% > 0 and s3 > 0. The consequence of this result is
that (B!|N?) is the optimal partition for LP(w,t) if, and only if, the following
system is consistent,

Api(t)zps = b(t), Tp: >0 9)
ALy +sy: = Chi(t)w, syi >0, and (10)
Apity = Chi(tw (11)



where w > 0. We rewrite these conditions in matrix form to simplify the
notation. For B*(t), let

Api(t) 0 0 0 b(t) B
Ht)=| 0 AL, —c%@) 0 |,ht)=| 0 |,andv= jj}

o

SN

Then (9), (10), and (11) may be written as H;(t)v = h(t), where v must be
sufficiently positive, meaning that the zp, w, and sy components of v must be
strictly positive.

. molp
Lemma 2.1. B® is a sub-partition of B(t) if, and only if, H;(t)v = h(t) has a
sufficiently positive solution.

Proof. If H;(t)v = h(t) has a sufficiently positive solution, then (9), (10), and
(11) are all satisfied. Since these three equations provide sufficient conditions
for optimality, (B%(t)|N¢(t)) must be the optimal partition for LP(w,t), which

. molp
means that B*(t) is a sub-partition of B(t).

molp

Now assume Bi(t) is a sub-partition of B(t). Then, there exists a w such
that (B(t)|Ni(t)) is the optimal partition for LP(w,t). Thus, equations (9),
(10), and (11) must hold, but these equations are the same as H;(t)v = h(t),
with v sufficiently positive. O

In order to get the result, we need to ensure that the ranks of H;(t) and
h(t) stabilize at some point. The following assumption provides this property
as Lemma 2.2 will establish.

Assumption 1. There exists a time T such that for allt > T the determinants
of all square sub-matrices of

At) 0 b)) 0

0 AT@®) 0 C@) (12)

have no zeros or become constant. Additionally, we require that all submatrices
of (12) are continuous after T'.

Note that a large class of functions satisfy Assumption 1. In particular, ra-
tional and exponential functions are in this class. As a result of this assumption,
we get the following lemma.

Lemma 2.2 (Hasfura-Buenaga, Holder, and Stuart [4]). Given Assump-
tion 1, for all t > T, rank(M (t)) = rank(M (T)), where M (t) is any submatriz
of (12). In particular, the ranks of H;(t) and [H;(t)|h(t)] stabilize.

In addition to the continuity of submatrices of (12), we need the continuity
of the Moore-Penrose pseudo-inverses of the sub-matrices. The following lemma
shows that Assumption 1 provides this property.



Lemma 2.3 (Campbell and Meyer [1]). Let M(t) be a matriz function.
Then, M*(t), the Moore-Penrose pseudo-inverse of M(t), is continuous at to
if, and only if, M(t) is continuous at to and rank(M (to)) = rank(M (t)) for t
sufficiently close to tg.

Coupled with Assumption 1, this lemma implies that the Moore-Penrose
psuedo-inverse of H; is continuous after some time 7. We now proceed to
show that the multiple objective optimal partition stabilizes. The proof is split
between Lemma, 2.4, where we show that L(t) becomes constant over local open
intervals, and Theorem 2.5, which demonstrates the asymptotic stability of L ().

Lemma 2.4. Let tg be large enough to satisfy Assumption 1. Then, the multiple
objective optimal partition is constant over some neighborhood of to. Equiva-
lently, L(to) = L(t) for all t in a sufficiently small neighborhood of tq.

Proof. At any time ¢, H;(t)v = h(t) has solution if, and only if,
rank([H;(t)|h(t)]) = rank(H;(t)).

But, Lemma 2.2 gives us that both H;(t) and [H;(t)|h(t)] have stable ranks as
long as t > T'. So, if H;(to)v = h(te) has a solution for some to > T, we know
it that remains consistent for all t > T'. 1 1

Let i € L(ty), so that (Bi(tg)|Ni(t)) is a sub-partition of (B(to)|N(to))-
Then we have that
H;(to)v(to) = h(to),

where v(to) is sufficiently positive. Then wv(to) = H; (to)h(to) + qo, for some
go € Null(H;(tp)). Similarly, at time ¢, we have that v(t) = H; (t)h(t) + g,
where ¢ € Null(H;). Because any ¢ in the nullspace of H; satisfies the previous
equation, we take ¢ = (I — H;" (t)H;(t))go- So we have that

v(t) = HF (Oh(t) + (I - H () Hi(®))q0-

Lemma 2.3 guarantees that H; () is continuous, and Assumption 1 guarantees
the continuity of H;(t) and h(t). Thus, as t — to,
o(t) = HF®h(t) + (T - Hf (t)Hi(t))q0

(2

= H} (to)h(to) + g0 = v(to),

which is sufficiently positive. So, for ¢ in some open nieghborhood N.:(to), v(t)
is a sufficiently positive solution to H;(t)v = h(t).

Let € = Iglél ){ei}. Then we have that for all t € NV, L(t) = L(to). Thus,
(S 0

for t € N,

molp molp molp  molp

(BN (1)) = (B(to)|N(to))
O

Fortunately, the local stability of the multiple objective optimal partition
implies the asymptotic stability. The following theorem proves this result.



Theorem 2.5. Under Assumption 1, there exists a T such that for all t > T,

molp molp molp molp
(B(t)|N(t)) = (B(T)|N(T)).
mol mol
Proof. Lemma, 2.4 guarantees the stability of (B(t;)|N (tz)) for all t € N (to)-
Now, we define another neighborhood, N2, which contains all points to the
right of T where the partition remains the same:

mo molp molp  molp

N2 = {T+3: (B(t+8)|N(t 4 8)) = (B(T)N(T)),5 € [0,8]}.

R molp  molp molp molp
Now, let ¢ = inf{t > T : (B(T)|N(T)) # (B(t)|N(¢))}. Suppose towards
a contradiction that ¢ < oco. Then, from Lemma 2.4, we have that there ex-

olp molp

ists an open neighborhood, N® about  such that for t € N3, (E(t) N(t)) =
molp molp

(B(t)|N(t)). But, N2 N N3 # ), so for any t € N2 N N3, we obtain the contra-
diction that

molp molp molp molp mol}) molp
(B(D)IN(T)) = (B()IN (1)) = (B)|IN (D).
mol mol
Hence, the multiple objective optimal partition for all ¢ > T is (B(72)|N (7?‘))
O

We have shown that the multiple objective optimal partition stabilizes given
Assumption 1. The next section discusses some economic applications of this
result.

3 Economic Interpretations

In this section we demonstrate the usefulness of Theorem 2.5 by showing how it
illuminates an otherwise puzzling economic model. Suppose that at any given
time, the economy can transform certain amounts of n input commodities and
some amount of labor into different amounts of the same n commodities as
outputs. Suppose that this production takes place by means of m processes, each
of which yields constant returns to scale. Suppose also that the rate of profit
through production is bounded. Given this information we want to determine
the price of each commodity on the market, the wage of labor, and the rate at
which to use each process.

In elementary economic models, the prevailing rate of interest on loaned
money is derived from the particular climate of risk in the economy, and in
turn, this interest rate induces a maximum rate of profit. Intuitively speaking,
if some industry yields a higher rate of profit than the interest rate, then new
firms will enter that industry, which increases the supply, lowers the market
price, and finally lowers the rate of profit. Thus we are justified in assuming
that there is some maximum rate of profit that any choice of prices, wages, and
use of capital may yield. In the language of economics, the maximum rate of
profit is exogenous to the model.



We assume that the technology available to the economy allows it constant
returns to scale, meaning that changing the inputs to a process by some factor
changes the outputs by the same factor. This hypothesis is the subject of
constant debate in economics, but it is not unreasonable. After all, if you have
one factory that produces some amount, should you not be able to produce
twice that amount if you buy another identical factory?

We assume that each commodity is produced by at least one process. Equiv-
alently, labor can be considered the only nonproducible commodity. We assume
also that no process operates free of labor. We also assume that for every
commodity there is a process that can produce only that commodity and that
every process that produces more than one commodity does not yield any sav-
ings of commodity inputs over the most efficient processes that produce those
commodities individually. This assumption is a weakening of another standard
economic assumption, that of single production, which requires that no process
produce more than one commodity. Although we do not go as far as to allow
joint production to make more efficient use of commodity inputs, we do allow it
do make better use of labor. We will call this the asuumption of joint production
without commodity savings.

Given a choice of prices, a wage, and process utilization, each process incurs
a cost equal to the sum of the quantity of each input commodity times its price
plus the quantity of labor employed times its wage. If we increase the utilization
of that process, we increase its cost. In fact, the cost increases linearly since
prices and wages do not vary with process utilization. Thus the marginal cost,
the derivative with respect to process utilization of the cost of any particular
process is constant. Similarly, given a choice of prices and a wage, for each
process we can calculate the marginal revenue and marginal profit associated
with running that process, where revenue is the price of the output times the
quantity produced, and the profit is the difference between revenue and cost.
The maximum rate of profit that we assume induces a maximum profit and
thus a maximum marginal profit. If the marginal profit is strictly less than
the maximum marginal profit, then we say that that process incurs extra costs.
If the opposite strict inequality is true, then that process yields extra profits.
Consider what happens if a process yields extra profits. By the assumption of
constant returns to scale, the revenue from that process may exceed the sum
of its profit and cost by any amount if the process is run at sufficiently high
intensity. That is, any level of wealth can be achieved by the economy. In order
to avoid this absurd outcome, we assume that no process yields extra profits.

So far we have not mentioned any specific units. In particular, without a
monetary unit, any choice of prices can only indicate relative prices, the price
of each commodity in terms of some amount of the others. It is convenient to
specify a standard of value, called a numeraire in the language of economics.
Specifically, at any time, let the numeraire consist of a particular bundle of
commodities, and let us suppose that the prices are to be scaled in such a
way that the total value of the numeraire is one monetary unit. To make this
definition more concrete, note that the total value of the numeraire is the sum of
the values of all the commodities in numeraire and that the value of a quantity



of any one commodity is the product of its price and that quantity.

In a model such as this one, a choice of prices, a wage, and capital use that
achieves exactly the maximum rate of profit is called an equilibrium point of the
economy. The goal of economic equilibrium models is to show that there is such
a stable point, that in the economy, prices, wages and industrial production
are not random but are subject to governing forces, guided, in Adam Smith’s
phrase, by an invisible hand [9]. In our model the particular equilibrium concept
we use is that of the long-period solution. This means that for each time, we
require positive wages, nonnegative prices, and nonnegative utilization of the
processes such that the output of each commodity is positive, no process yields
extra profits, and any process that incurs extra costs is not used.

Kurz and Salvadori [8] show that, for each value of time, this model, under
the assumption of no joint production, has a long period solution if, and only if,
a certain dual pair of linear programs is consistent. Hasfura-Buenaga, Holder,
and Stuart [4] extend this result to the model under joint production without
commodity savings. We keep the assumption of joint production without com-
modity savings but examine the more realistic situation where labor is allowed
to be heterogeneous—i.e. where there are g types, or sources, of labor, and we
are to find a positive wage for each type.

We show that for each value of time and for each choice of wages, the exisi-
tence of a long period solution is once again equivalent to the consistency of a
dual pair of linear programs. In particular, the model does not determine unique
prices, wages, and process intensities but rather shows the existence of prices
and process intensities for all positive wages. It should be noted that even the
case of a single homogenous labor source does not yield a unique equilibrium.
But with many types of labor, we find that the relative wages of the various
types are completely undetermined, and this is exactly the problem of multi-
ple objective mathematical programming. So we see that introducing multiple
labor sources makes the model difficult to interepret economically. However,
Theorem 2.5 shows that after some time, the collection of processes that can be
run in a long period solution for some choice of wages stabilizes.

The assumption of constant returns to scale means that for every time t,
every process i, and every commodity j, there is a real number aj- (t) equal to
the number of units of commodity j required to run process ¢ at unit intensity.
Similarly let bj. (t) be the number of units of commodity j yielded by a unit
of process 4, and I} (t) be the number of units of labor type k required to use
process ¢ at unit intensity. With multiple labor sources, the assumption that
no process operates free of labor is taken to mean that no process can be run
without some labor of some type. Then for each process i there exists some
labor type k such that [} (t) is positive. For each time ¢, let 7(t) be the rate
of maximum profit associated with the economy at time ¢ and d(t) be a vector
of commodities representing the numeraire chosen for time ¢. For every time
t, we construct the matrices A(t), B(t), and L(t) with entries a(t), b%(t), I} (t)
respectively, the rows being indexed by i and the columns by j or k. In general
we represent a choice of prices, wages, and utilization of processes by vectors p,



w, T, respectively.

Suppose we choose particular values for prices, wages, and utilization of
processes. Then for any process 4, z;(Bp); is equal to the revenue from the sale
of the commodity produced by that process, so the marginal revenue of process
i is (B(t)p);. Likewise z;(A(t)p + wL(t)); is the cost of the commodities and
labor required by process i, so the marginal cost of process i is (A(t)p+wL(t));.
Lastly z;(r(t)A(t)p); is the profit yielded by process i, so the marginal profit of
process i is (r(t)A(t)p);- Then since no process yields extra profits we have that
(Bt)p)s < (1 +7(t))A(t)p + wL(t));- Thus

[B(t) = (1 +7(#)A(t)]p < wL(?).

Furthermore, if z, p and w are long period solutions at time ¢, then since
no process with extra costs is used, the actual profit must equal the maximum
possible profit, so

2T [B(t) — 1+ r®)A®)p = 2" L(t)w.
Since each commodity is to be produced,
zTB(t) > 0.

Also, in order that prices and wages reflect the appropriate numeraire, we require
that
dit)'p=1.

Thus the economic model is to find x, p and w for each ¢ > 0 such that

[B(t) —(1+r®)AM)p < Lt)w
2T[B{t) — (1+r@)A@)]p = 2TLt)w
zTB(t) > 0
av’p = 1 1)
z,p 2 0
w > 0.

For each ¢t and positive w, (13) is equivalent to that described by Hasfura-
Buenaga, Holder, and Stuart [4]. They prove that for each ¢ and positive w the
model is equivalent to the primal/dual pair of linear programs

min{w? L(#t)Ta : 27 [B(t) — (1 +r(H)A®)] > d()T,z > 0}, (14)
max{d(t)"y : [B(t) — (1 +r(t))A()]y < L(t)w,y > 0}. (15)
If z* and y* are optimal for (14) and (15), then z = z* and p = (1/d¥y*)y*

are long-period solutions to the model.! Thus for each w we have essentially
a separate model with a separate solution set. This multiplicity of solutions,

IThis characterization suggests a particularly satisfying interpretation of the model. If we
view d as a vector of final demands for the commodities, then (14) seeks to minimize the total
labor cost while satisfying the demand for each good.

10



combined with the fact that w is not determined even up to a scalar multiple,
makes the model economically unsatisfactory.

However, we can analyze this model by noting that its equivalence to the
primal/dual pair of linear programs (14) and (15) allows us to apply Theorem
2.5. Carefully making Assumption 1, we find that the collection of processes
that can be run in a long-period solution for some choice of wages stabilizes.
Specifically, the following theorem is immediate.

Theorem 3.1. Under Assumption 1, where matriz 12 has the form

BT(t)- (1 +r@t)AT(®#) -I 0 —d(t) 0
0 0 B@)—(1+r(t)At) o -LTw|,
0 0 -1 0 0

after some time the collection of processes that can be run in a long period
solution for some choice of wages stabilizes.

To evaluate this assumption economically requires further research.

We have shown that this economic model is difficult to interepret, because of
the nature of multiple objective mathematical programs. Asymptotic analysis,
however, gives some insights that would otherwise be missed.

4 Convexity Results

In this section, we consider a fixed set of weights that yield a particular single
objective optimal partition. We are concerned with the stabilization time of
the optimal partition as a function of the individual weights. Originally, we
attempted to prove Theorem 2.5 by showing that for each set of weights, the
time required for the single objective optimal paritition to stabilize was bounded.
Though we were unable to prove Theorem 2.5 using this technique, we were able
to show that the sets of weights are convex, and that the stabilization time is
quasi-convex function of the weights.

Recall that a vector x is pareto optimal at ¢ if there exists a positive weight
w such that £ minimizes LP(w,t). We denote the set of all positive weights by
W. For w € W, let (B, (t)|Ny(t)) be the optimal parition of LP(w,t). Then,
we define

T(w) = inf{T : Vt > T, (Bu(t)|Nuw(t)) = (Bw(T)|Nuw(T))}-

This function maps a particular weight w to the time when the optimal paritition
for LP(w,t) stabilizes. In [5], it is shown that for any fixed w, the optimal
partition of LP(w,t) stabilizes, so T (w) is guaranteed to exist for all w.

For every two-set partition (B|N%) of the set {1,...,n}, let

Vi={w e W : (BN?) is the asymptotic optimal partition of LP(w,t)}.

These sets partition W into regions that yield the same asymptotic optimal
partition. With these definitions in place, we proceed to show the convexity of
each V* and the quasi-convexity of T'(w).

11



Theorem 4.1. Let (B!|N?%) be a two-set partition of {1,...,n}. Then Vi is
convez and T is a quasi-convex function on V*.

Proof. Let {w",w?,--- ,wP} C V*. Let t > max{T(w) : j = 1,...,p}. Then,
for j =1,...,p, there exist z,y’, and s’ such that:

Api(t)zpi = b(t), zpi >0 (16)
ALy + 85 = Chi(t)w?, s, >0, and (17)
ALty = CL.(t)w. (18)

Let w = 3  ajw’, where 3 a5 = 1. Let y = }° a4/ and s = Y-, a8,
We now show that w, y, and s satisfy the above constraints, which implies that
(Bi|N?) is the optimal partiton for LP(w,t). Since (16) doesn’t depend on w,
it is satisfied for any w. For (17),

ARy +sni = Yo ARy + sk
J
= ZajC?\;i(t)wj
J

Furthermore, syi = 3_; ajsgv,- > 0, so constraint (17) is satisfied.
For, (18), we have that

ALty = ) e ALY
j

Z a;Cg: (t)w?
J

Thus, constraint (18) is satisfied.

Since it satisfies the three necessary and sufficient conditions for optimality,
(B%|N?) is the optimal partition for LP(w,t). Because w is an arbitrary convex
combination of elements from V?, we have shown that V? is convex.

Additionally, the three sufficient and necessary conditions hold for any ¢ >
max{T(w?) :j=1,...,p}, so T(w) = max{T(w’) : § = 1,...,p}, which implies
that T is a quasi-convex function. O

The function T is quasi-convex on each set V¢, so if T is unbounded, this
unboundedness can only occur at a boundary of one of the V* sets. In the proof

molp molp

of Theorem 2.5, where we show that any subpartition of (B(t)|N(t)) remains a
sub-partition for all sufficiently large ¢, we chose a possibly different w for each
t.

If we could establish conditions under which T is bounded, then we would

molp molp

have a slightly stronger result; namely, each sub-partition of (B(t)| N (t)) remains

12



a sub-partition for ¢ > T and the set, V¢, that yields a particular sub-partition
would remain constant after for ¢ > T. However, this method of proof would
require stronger assumption than the one we give in Section 2, since there are
dynamic multiple objective linear programs that satisfy the premises of Theorem
2.5 but for which T is not bounded.

An interesting avenue of further research would be to characterize dim(V?)
in terms of the parameters of the multiple objective linear program. Note that
since every w € V' is required to be strictly positive, V? is not a vector space.
However, each V? is contained in an affine space. Thus, in particular, there
is an affine space of least dimension containing V?, so the dimension of V? is
well-defined.

5 Conclusion

We have shown that under relatively weak conditions, the multiple objective
optimal partition stabilizes. We then demonstrated the usefulness of this re-
sult by using it to analyze an economic equilibrium model with multiple labor
sources. Finally, we proved the convexity of the set of weights that yield the
same optimal paritition

All research for this paper was conducted at Trinity University in the Re-
search Experience for Undergraduates program. We wish to acknowledge the
help of Allen Holder, who provided both broad inspiration and mathematical
assistance.
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