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Definition 1. Given topological spaces X and Y and a map f : X → Y ,
f is a local homeomorphism at x ∈ X if f is continuous at x and f−1 is
continuous at f(x) (in particular, f−1 exists in a neighborhood of f(x)).

Lemma 1. Given a continuous map f : R → R with a periodic point x0 =
f 2(x0), such that f is a local homeomorphism at x0, then x0 is an attracting
(repelling) fixed point of f 2 ⇐⇒ {x0, f(x0)} is an attracting (repelling)
period 2 orbit of f

Proof. ⇐ is obvious. To prove ⇒, first consider the case where f 2 is attract-
ing. Let U be an interval neighborhood of x0 on which

∀(x ∈ U) lim
n→∞

f 2n(x) = x0.

Set V = f(U). Since f is homeomorphic at x0, we may choose U such
that V is an open set. Then ∀(y ∈ V ) ∃(x ∈ U) f(x) = y. So

∀(y ∈ V ) lim
n→∞

f 2n(y) = lim
n→∞

f 2n+1(x) = f
(

lim
n→∞

f 2n(x)
)

= f(x0)

by continuity of f. It follows that {x0, f(x0)} is a stable orbit of f .
We now consider the repelling case. Let U be an interval neighborhood of
x0 on which f 2 is repelling. Set V = f(U) ∩ f−1(U). Again, we may choose
U such that V is an open set. Thus for any y ∈ V there exists x ∈ U with
f(x) ∈ V and f 2(x) ∈ U . It is easy to show that f 2 is order preserving on
U , meaning

y1 < y2 < x0 < y3 < y4 ⇒ f(y1) < f(y2) < f(x0) < f(y3) < f(y4)

It follows immediately that if f 2 is repelling on U , it is also repelling on V ,
and thus {x, f(x)} is a repelling periodic orbit.

We state the following well-known results without proof. Given a suf-
ficiently smooth function f such that x0 is a fixed point and the following
criteria hold:

f ′(x0) = 1, f (2)(x0) = f (3)(x0) = . . . = f (k)(x0) = 0 and f (k+1)(x0) 6= 0

we have the following:
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1. When k + 1 is even,there exists a neighborhood (a, b) of x0 such that:

(a) If f (k+1)(x0) > 0 then x0 is attracting in (a, x0] and repelling in
(x0, b)

(b) If f (k+1)(x0) < 0 then x0 is repelling in (a, x0) and attracting in
[x0, b)

2. When k + 1 is odd, there exists a neighborhood U of x0 such that:

(a) If f (k+1)(x0) > 0 then x0 is a repelling fixed point

(b) If f (k+1)(x0) < 0 then x0 is an attracting fixed point

We now consider the more difficult case of f(x0) = x0, f ′(x0) = −1.
Thus, by Taylor’s Theorem,

f(x0 + x) = x0 − x + axk+1 + r(x)

where a 6= 0 and r(x) is o(|xk+1|) as x → 0.
Then

f 2(x0 + x) = x0 − (−x + axk+1 + r(x)) + a(−x + axk+1 + r(x))k+1 + r ◦ f(x)
= x0 + x− axk+1 + a(−x)k+1 + q(x)

for some error term q.

Lemma 2. In the above computation, the error term q(x) is o(|xk+1|) as
x → 0.

Proof. This is a matter of checking that all terms in the expansion of f 2

included in q are o(|xk+1|) as x → 0. Specifically, it suffices to show that
1) ∀(n ≥ 0) xn · r(x) is o(|xk+1|) as x → 0

2) ∀(n > 0) (r(x))n is o(|xk+1|) as x → 0
3) r ◦ f(x) is o(|xk+1|) as x → 0

Cases 1 and 2 are straightforward. For case 3, we know that for any ε > 0
there is a neighborhood U of x0 on which |f(x)| ≤ (1 + ε)|x|. Defining
y = f(x), it is clear that |y| < |x| and so y → 0 as x → 0. Moreover, by the
Inverse Function Theorem, we may choose U such that f is invertible on U.
So

lim
x→0

|r ◦ f(x)|
|xk+1|

= lim
y→0

|r(y)|
|(f−1(y))k+1|

≤ lim
y→0

|r(y)|
|yk+1|

= 0

and we have proven case 3.
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We can now say something about the local behavior of g = f 2. If k + 1
is odd, then we have

g(x) = x− 2axk+1 + q(x)

and we know that g is asymptotically stable (unstable) if a > 0 (a < 0). By
Lemma 1, this implies that f has a corresponding stable (unstable) period-2
orbit.
In the case where k + 1 is even,

g(x) = x + q(x)

and the situation is undetermined without further knowledge of the behavior
of the error term r of f . For example, if we take r(x) = bxk+2 with b 6= 0,
then we have (notice that k + 2 is odd)

g(x) = x− 2bxk+2 − a2x2k+1 + q(x)

where q is o(|xk+2|) as x → 0. In the case k = 1, we have

g(x) = x +
1

3
(S(f))(x) + q(x)

where

S(f) =
f ′′′

f ′
− 3

2

(f ′′)2

(f ′)2

is called the Schwartzian derivative of f . As we will see, the Schwarzian
derivative is a useful tool in the analysis of periodic behavior.

Now consider a continuous map f from a compact interval I ⊂ R to itself.
Suppose f has finitely many periodic orbits, and the period of these orbits
is no larger than K = 2N for some N . Then by Sarkovsky’s Theorem, f
has periodic orbits of all periods 2i for i ∈ {1, 2, .., N}, and no other periods.
Define F = fK . Then F has finitely many fixed points, and no periodic
orbits of period greater than 1.

Definition 2. f is said to be turbulent if there exist compact subintervals
J , K of I with at most one point in common such that

J ∪K ⊂ f(J) ∩ f(K)
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Definition 3. For a point x ∈ I, the orbit of x under f is alternating if for
all k even and j odd, fk(x) < f j(x) or if the same holds for all k odd and j
even. If the orbit of x is alternating, we make the following definitions:

U = {fn(x) : fn+1(x) > fn(x)}
D = {fn(x) : fn+1(x) < fn(x)}

Clearly, U contains exactly the odd or exactly the even iterates of the
orbit, and D contains the complement.

The following two results are proven in [1].

Lemma 3. If f is turbulent, then f has periodic points of all periods.

Thus F is not turbulent, nor are any of its higher iterates.

Theorem 1. If f 2 is not turbulent and for some n > 1, fn(x) ≤ x < f(x)
or f(x) < x ≤ fn(x), then the orbit of x is alternating.

We also have the following.

Lemma 4. Consider a continuous map g : I → I with no periodic orbits
except for fixed points, and any x ∈ I. If there is no n such that

gn(x) ≤ x < g(x) or g(x) < x ≤ gn(x)

then the orbit of x under g converges in I.

Proof. For brevity, define xm = gm(x). If {xm} is eventually monotonic,
then it converges. Otherwise there is a least ’turning index’ k1 such that for
m < k1, xm < xm+1 and xk1+1 < xk1 or such that the same holds with the
inequalities reversed (depending on whether the trajectory of x is initially
increasing or decreasing). Similarly, for {xm}, m > k1 there must be another
least turning index k2, and so on, giving an infinite sequence {xkn}, n > 0,
of the “turning points” of the orbit of x. By our hypothesis, we must have

xk2 < xk4 < . . . < xk2i
< . . . < xk2i+1

< . . . < xk3 < xk1

or the same arrangement with the inequalities reversed. We will assume the
above ordering without loss of generality. Let y = lim

i→∞
xk2i

and z = lim
i→∞

xk2i+1
.

If y 6= z then we must have {y,z} a periodic orbit, by the following. First of
all, there can be no xn ∈ (y, z) since otherwise for all i ≥ 0,

xk2i
< xn < xn+1 or xn+1 < xn < xk2i+1
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and for k2i > n+1, our hypothesis is violated. If f(y) < z, then for suffiicently
large i, xk2i+1 < z, contradicting what we’ve just shown. If f(y) > z, let U
and V be disjoint interval neighborhoods of z and f(y), respectively. Choose
xk2i+1 ∈ U . Then there exists an xk2j+1 with j > i such that xk2j+2 ∈ V . But
then

xk2i+2 < xk2i+1 < xk2j+2

contradicting our hypothesis. So we must have f(y) = z and by the same
argument f(z) = y. But of course this contradicts our assumption that F has
no periodic orbits besides fixed points, and so we must have xn → y = z.

Lemma 5. Given an alternating orbit of f with associated sets U and D,
there is a fixed point y “between” U and D, meaning

∀(x ∈ U) ∀(z ∈ D) x < y < z

Proof. Let a = sup(U) and b = inf(D). Then by continuity of f , f(a) ≥ b
and f(b) ≤ a. So [a, b] ⊂ f([a, b]), and the result follows from the intermedi-
ate value theorem.

We can now prove

Theorem 2. Given a continuous map f : I → I with only finitely many
periodic points, all orbits of f converge to periodic orbits.

Proof. It is sufficient to prove that trajectories of F converge to fixed points.
The idea is to show that if this is not the case, then F must have infinitely
many fixed points, contradicting our hypotheses. Consider any x1 ∈ I. If the
orbit of x1 converges, we are done. Otherwise, by Lemma 4, there is some
x′ in the orbit of x1 satisfying the hypotheses of Theorem 1, and we may
partition the orbit of x′ into sets U1 and D1. Using Lemma 5, let y1 be a fixed
point between U1 and D1. Choose some x2 ∈ U1 and set F1 = F 2. Repeat
this procedure on x2 with F1 to subdivide U1 (with the possible exception
of finitely many points) into U2 and D2, find a fixed point y2 between these
subsets, and so on, with Fn = F 2

n−1 = F 2n
. Since none of the Fn have perioic

orbits, the sets Un and Dn have an infinite number of points, and this process
will only terminate if xn ∈ Un−1 has an oribt under Fn which converges to a
fixed point. But this means fk2n

(x) converges as k → ∞, so the orbit of x
converges to a periodic orbit. Moreover, the yn are distinct, by the following.
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Given yi, yj, with i < j, any point dj ∈ Dj satisfies yj < dj < yi. So the
algorithm must eventually terminate, or we would have an infinite set {yi},
i = 1, 2, . . . of periodic points of F .

This gives us information about how individual orbits behave, but does
not tell us whether nearby points converge to the same periodic orbit. If we
could show that a point x is eventually mapped into a stable neighborhood
(or half-neighborhood) U of a periodic orbit O, then we would know that all
points in some neighborhood of x converge to the same orbit, as the open set⋃

n≥0

f−n(U)

would converge to O. So to complete our characterization of the orbits of a
map f with the above hypotheses, we must also examine the local behavior
at the fixed points. To be precise, we state the following.

Definition 4. 1) A fixed point x is stable if there exists a neighborhood U
of x such that for all y ∈ U , f(y) ∈ U and fk(y) → x as k →∞.
2) x is left (right) stable if there exists a left (right) neighborhood U = (a, x)
(U = (x, a)) of x such that for all y ∈ U , f(y) ∈ U and fk(y) → x as
k →∞.
3) x is repelling if there exists a neighborhood U of x such that for all y ∈ U ,
if f(y) ∈ U then |f(y)− x| > |y − x|.
4) x is left (right) repelling if there exists a left (right) neighborhood U =
(a, x) (U = (x, a)) of x such that for all y ∈ U , if f(y) ∈ U then |f(y)−x| >
|y − x|.
5) x is semi-stable if x is left stable and right repelling or left repelling and
right stable.
6) A periodic orbit O with period n is stable, repelling, or semi stable if x ∈ O
is stable, repelling, or semi-stable under fn.

Remarks:
1) Not all local behavior is characterized by one of the above definitions. For
example, consider f(x) = x or f(x) = |x|sin(x−1).
2) The definition of repelling makes use of the metric properties of R.
3) In item (6), x ∈ O is stable, repelling, or semi-stable under fp whenever
n divides p.

We make the further assumption that f has a unique turning point.
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Definition 5. A map f : I → I is unimodal if there exists a unique c ∈ I
such that f(x) is strictly monotonically increasing for x < c and strictly
monotonically decreasing for x > c.

Lemma 6. For a unimodal map f : I → I with only finitely many periodic
points, and a periodic point x of f , exactly one of the following holds for the
orbit O of x:
1) O is stable
2) O is repelling
3) O is semi-stable

Proof. We will again work with F = fK , where K is the maximal periodicity
of orbits of f . Since F has finitely many fixed points, we may consider a
neighborhood (a, b) of x in which F has no fixed points besides x. Thus
F > id or F < id on (a,x) and on (x,b). Furthermore, it is clear from the
unimodality of f that the set C = {c}∪f−1(c)∪. . .∪f−K(c) is finite, so either
x ∈ C, in which case x is a turning point of F , or F is strictly monotonically
increasing or decreasing in a neighborhood of x. In either case, we may
choose (a, b) such that F > x or F < x on (a,x) and on (x,b). Then in (a, b)
we may list the various possibilities as to the position of F .

1. On (a, x):

(a) F > x

(b) F < x and F > id

(c) F < id

2. On (x, b)

(a) F < x

(b) F > x and F < id

(c) F > id

One can easily verify the following:
(1a,2b) or (1b,2b) or (1b,2a) ⇒ Case 1
(1a,2c) or (1c,2c) or (1c,2a) ⇒ Case 2
(1b,2c) or (1c,2b) ⇒ Case 3

For the alternating orbits (1a,2a), we consider F 2, which satisfies all of
the same conditions in as F in a suitably restricted neighborhood (a′, b′) of
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x. Moreover, F 2 > x on (a′, x) and F 2 < x on (x, b′), so either (1b,2b) or
(1c,2c) for F 2, so F 2 is stable or repelling at x, and combined with the proof
of Lemma 1 we know that the same holds for F . But then the orbits of F in
V are converging or repelling alternating orbits, so Case 3 holds. By Remark
3 above, the result holds for any periodic point with period dividing K. And
by Sarkovsky’s Theorem, these are all the periodic orbits of f .

Lemma 7. Unimodal maps defined on compact intervals with finitely many
periodic points must have at least one periodic orbit which is stable or semi-
stable.

Proof. This follows immediately from Theorem 2 and Lemma 6.

We now turn to a specific one parameter family of unimodal maps, the
so-called Ricker maps

Rp(x) = xe(p−x)

For p ≤ 1, the dynamics are trival: 0 is a globally attracting fixed point. For
p > 1, we will restrict our attention to the invariant interval I = [0, Rp(1)].
Notice that xc = 1 is the unique critical point of Rp for any p ∈ R+. Also, a
direct calculation will show that S(Rp) < 0 on I. The starting point for our
discussion will be Singer’s theorem, as formulated in [3].

Theorem 3. (Singer) Consider a piecewise monotone C3 map f from a
closed interval I to itself with local extrema c0 < . . . < cl (where c0 and cl

are the endpoints of I). Furthermore, assume S(f) < 0 on I. Then f has
at most l + 1 periodic orbits O which are stable or nearly stable in the sense
that

−1 ≤ (fp)′(x) ≤ 1

where x ∈ O and p is the period of O. Any such orbit can be obtained as the
limit of the successive images fk(ci) as k →∞, where 0 ≤ i ≤ l.

Certainly the Rp satisfy these hypotheses. In this setting, l = 2. Since
c0 = 0 is an unstable fixed point under Rp for p > 1, and c2 = f(c1), we
conclude that the Rickers maps have at most one stable or nearly stable orbit.
And in the case of differentiable maps, semi-stable implies nearly stable, so
Rp has at most one stable or semi-stable orbit. Define

P = {p : Rp has finitely many periodic orbits}

The following result is taken from [2].
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Lemma 8. Suppose f has finitely many critical points and S(f)¡0. Then f
has only finitely many periodic points of period m for any m ∈ N.

It follows immediately that

P = {p : the maximum periodicity of any orbit of Rp is 2i, for some i ∈ N}

By Lemma 7, for p ∈ P , Rp has at least one stable or semi-stable periodic
orbit, so for such p, Rp has exactly one such orbit. We would like to know
what the period of this stable orbit is for a given p, and how transitions to
different stable periodicities occur. The idea is to follow a stable periodic
point in (p, x) phase space until stablility is lost. This can occur in a variety
of ways. The following result is essential in limiting the types of bifurcations
which may occur ([1], [4]).

Theorem 4. (Block and Hart) Let f ∈ C1[I, I] and x0 ∈ I. If there exists
a sequence {fn} ⊂ C1[I, I] such that |fn − f |C1 → 0 as n → ∞ and if each
fn has a periodic point xn of period k with xn → x0 as n →∞, then x0 is a
periodic point of f with period k or k/2.
Moreover, if x0 has period k/2, then (fk/2)′(x0) = −1.

Definition 6. Given topological spaces X and Y , a function f : X → P(Y )
(where P(Y ) is the power set of Y ) is limit point continuous if, for each
x0 ∈ X, and any sequence {xn} ⊂ X such that xn → x as n →∞,⋂

n

⋃
i>n

f(xi) = f(x0).

We define the functions γk : P → P(R+), k ∈ N by

γk(p) = {x ∈ I : x is a stable or semi-stable fixed point of R2k

p }

which is equivalent to

γk(p) = ∪{O : O is a (semi-) stable periodic orbit of Rp with period dividing 2k}.

¿From our earlier considerations, if such an O exists for a given k, then it is
unique.

Next define
Sk = {p ∈ P : γk(p) 6= ∅}
T0 = S0

for k > 0, Tk = Sk − Sk−1
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Lemma 9. For all k ∈ N, γk is limit point continuous in Sk.

Proof. Given a sequence {pn} ⊂ Sk with pn → p ∈ P , let On = γk(pn) be the
(semi-) stable orbit of Rpn . That ∩

n
∪

i>n
On 6= ∅ is immediate from the limit

point compactness of I. Choose any z ∈ ∩
n
∪

i>n
On. Then there is a subsequence

{pnj
} ⊂ {pn}, j ∈ N, and a sequence {zj} with zj ∈ Onj

such that zj → z as
j →∞. By C1 continuity in p and x, we have

R2k

p (z) = limj→∞R2k

pj
(zj) = limj→∞ zj = z

and (R2k

p )′(z) = limj→∞(R2k

pj
)′(zj) ∈ [−1, 1]

since for all j, (R2k

pj
)′(zj) ∈ [−1, 1].

So z ∈ O0 = γk(p), and we have ∩
n
∪

i>n
On ⊂ O0. Reverse containment follows

from uniqueness of O0.

In this proof, we saw that p ∈ Sk did not need to be assumed. Hence we
have

Lemma 10. The Sk are closed (in P).

Lemma 11. For all k ∈ N, Sk ⊂ int(Sk+1).

Proof. This follows immediately from Theorem 4.

Lemma 12. For p ∈ ∂(Sk), the stable orbit γk(p) undergoes a right (left)
period doubling bifurcation if Tk+1 is a right (left) neighborhood of p. Both
types may occur for a given p.

Proof. We will take xq,n to be some element of γk(q) with period 2n (so

n ≤ k). By theorem 4, (R2k

p )′(xp,k) = −1. For q ∈ Tk+1, xq,k must be

unstable, and by C1 continuity, (R2k

q )′(xq,k) < −1, and so (R2k+1

q )′(xq,k) > 1.
By the Implicit Function Theorem, the xq,k must vary continuously with q in
Tk+1. It is an easy consequence of limit point continuity that the xq,k+1 can
be chosen such that they vary continuously with q in Tk+1 as well. Choose a
particular branch x(q) ∈ γk+1(q). By uniqueness of (semi-) stable orbits, we
must have limq→p x(q) = z for some z ∈ γk(p). Consequently,

limq→p x(q) = z

limq→p R2k

q (x(q)) = R2k

p (z) = z
and so for 1 ≤ r < 2k,

limq→p Rr
q(x(q)) = limq→p Rr+2k

q (x(q)) = Rr
p(z)
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Since (R2k

p )′(xq,k) < −1 for q ∈ Tk+1, Rr
q(x(q)) < xq,k < Rr+2k

q (x(q)) for
appropriately chosen r. This completes the proof.

We are almost finished, but we need to rule out the possibility that un-
related bifurcations do not result in unstable periodic orbits (the period of
which might “reach ∞” before the period-doubling process we have demon-
strated).

Lemma 13. Given p ∈ P , the maximum periodicity of a periodic point of
Rp is equal to the cardinality of γk(p).

Proof. The creation of an isolated period-n point x at some p requires (Rn
p )′(x) =

1 (we have already shown in Lemma 6 that periodic points in P are isolated).
This requires n = 2i for some i and x ∈ γi(p). So any unstable periodic or-
bit must (1) be present over all of P , or (2) emerge from one of the period
doubling bifucations discussed above.
(1) There are no such orbits; for example, R1/2 has one stable fixed point
and no other periodic points.
(2) By Theorem 4, for a period doubling from k to 2k, any such orbit must
have periodicity equal to k or 2k.
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