
Bounding the derived length of Lie
Algebras of a special kind
By: Dustin Ragan and Geoff Tims

Under the supervision of Dr. Thomas Keller

Funding Provided by Southwest Texas State University and the National Science
Foundation

1



1 Introduction to Lie Algebras

Definition 1.1 Let F be a field. Then a Lie algebra is an F -vector space V endowed
with a bilinear operation [·, ·], called a Lie bracket, such that

[u, u] = 0 ∀u ∈ V

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0 ∀u, v, w ∈ V

For convenience, we will write [[u, v] , w] = [u, v, w]. Also note that the first
property is equivalent to [u, v] = − [v, u], so it is called anti-symmetry. As proof,

0 = [u + v, u + v]

= [u + v, u] + [u + v, v]

= [u, u] + [v, u] + [u, v] + [v, v]

= [v, u] + [u, v]

In linear algebra we learned that it is sufficient to know the action of a linear
transformation on the basis of the space in order to know the action on the entire
space. The same principle applies to Lie algebras. We need only know how each pair
of basis vectors acts under the Lie bracket to know how any two arbitrary vectors
act. For example, consider u = u1e1+u2e2+· · ·+unen and v = v1e1+v2e2+· · ·+vnen

located in some n-dimensional Lie algebra with basis {e1, e2, · · · , en} (and the ui’s
and vi’s are coefficients in F ). Then

[u, v] = [u1e1 + u2e2 + · · ·+ unen, v1e1 + v2e2 + · · · vnen]

=
n∑

i=1

ui[ei, v1e1 + v2e2 + · · · vnen]

=
n∑

i=1

n∑
j=1

uivj[ei, ej]

We define the structural constants to be the coefficients of the Lie bracket of
two basis vectors; that is, they are the coefficients of

[ei, ej] = C1
i,je1 + C2

i,je2 + C3
i,je3 + · · ·+ Cn

i,jen
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It is possible to write the two axioms in terms of the structural constants.

Ck
i,i = 0

n∑
m=1

(
Cm

i,jC
`
m,k + Cm

j,kC
`
m,i + Cm

k,iC
`
m,j

)
= 0

The first is obvious, but the second requires some justification:

[ei, ej, ek] = [
n∑

m=1

Cm
i,jem, ek]

=
n∑

m=1

Cm
i,j[em, ek]

=
n∑

`=1

n∑
m=1

Cm
i,jC

`
m,ke`

Since the e`, ` = 1, 2, . . . n are linearly independent, the result follows immedi-
ately. Just as we can look at the Lie bracket on a finer, more detailed level with the
structural constants, we may also look on it as an operation on sets. If U, V ≤ L
for some Lie algebra L, then we define a Lie product of the two sets as

Notice that [U, V ] = [V, U ]. More interestingly, [U,U ] is not necessarily 0. This
is called the derived set of U and is written U ′. As in calculus, we extend this to
further derivations, so that U ′′ makes sense as well. For higher order derivations, we
use the notation U (3), U (4), . . . etc.

We call a subalgebra U of a Lie algebra L normal if [L, U ] ⊆ U . Normal
subalgebras act like ideals, in that they are closed under an operation with respect
to the entire set.

2 Lie Algebras Satisfying a Special Hypothesis

We now restrict ourselves to a special class of Lie algebras, defined by the following
condition (and henceforth referred to as condition (*)):

(*): Let L be a Lie algebra on Zp, such that L = 〈e1, e2, . . . , en〉 , n ≤ p. Define

Li = 〈ei, ei+1, . . . , en〉 (so that L = L1). Then we say that L satisfies condition
* if
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[L, Li] = [e1, Li] = Li+1, i ≥ 2

where [e1, Li] = {[e1, v]|v ∈ Li}.
There are a few properties which follow immediately from this definition, which

we list here:

Lemma 2.1 Let L satisfy (*). Then [Li, Lj, Lk] ⊆ [Lj, Lk, Li] + [Lk, Li, Lj].

Proof:

[Li, Lj, Lk] = 〈[u, v, w]|u ∈ Li, v ∈ Lj, w ∈ Lk〉
= 〈−[v, w, u]− [w, u, v]|u ∈ Li, v ∈ Lj, w ∈ Lk〉
⊆ 〈[v, w, u]|u ∈ Li, v ∈ Lj, w ∈ Lk〉+ 〈[w, u, v]|u ∈ Li, v ∈ Lj, w ∈ Lk〉
= [Lj, Lk, Li] + [Lk, Li, Lj] �

Lemma 2.2 Let L satisfy (*). Then Li is normal in L.

Proof:

This is clear because
[L, Li] = Li+1 ⊆ Li

Lemma 2.3 Let L satisfy (*). Then [Li, Lj] ⊆ Li+j.

Proof:

Let u ∈ Li, v ∈ Lj. By the normality of Li and Lj, [e1, u] ∈ Li and [e1, v] ∈ Lj.
Then,

[e1, [u, v]] = −[u, v, e1]

= −[v, e1, u]− [e1, u, v]

= [e1, v, u]− [e1, u, v]

Thus [e1, [u, v]] ∈ [Li, Lj]. Since Lie multiplication by e1 projects a vector
across exactly one dimension, we must have a consecutive spanning set of vectors.

We proceed by induction on i. By definition, the assertion holds for i = 1.
Now let i ≥ 1 and suppose that [Li, Lj] ⊆ Li+j,∀j. Then, by Lemma 2.1

[Li+1, Lj] = [L1, Li, Lj]

⊆ [Li, Lj, L1] + [Lj, L1, Li]

= [Li, Lj, L1] + [Lj+1, Li]

⊆ Li+j+1
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as desired.

Lemma 2.4 Let L satisfy (*). Then [Li, Lj] = Lk, for some integer k.

Proof:

Let u ∈ Li, v ∈ Lj. By the normalcy of Li and Lj, [e1, u] ∈ Li and [e1, v] ∈ Lj.
Then,

[e1, [u, v]] = −[u, v, e1]

= −[v, e1, u]− [e1, u, v]

= [e1, v, u]− [e1, u, v]

Thus [e1, [u, v]] ∈ [Li, Lj]. Since Lie multiplication by e1 projects a vector
across exactly one dimension, we must have a consecutive spanning set of vectors,
which generates some Lk.

Lemma 2.5 Let L satisfy (*). Then L′
i = [Li, Li+1].

Proof:

Clearly [Li, Li] ⊇ [Li, Li+1]. Now let [u, v] ∈ [Li, Li]. Then

[u, v] = [uiei + ui+1ei+1 + · · ·+ unen, viei + vi+1ei+1 + · · ·+ vnen]

= [uiei + ui+1ei+1 + · · ·+ unen, viei]

+ [uiei + ui+1ei+1 + · · ·+ unen, vi+1ei+1 + · · ·+ vnen]

= [uiei, viei] + [ui+1ei+1 + · · ·+ unen, viei]

+ [uiei + ui+1ei+1 + · · ·+ unen, vi+1ei+1 + · · ·+ vnen]

= [−viei, ui+1ei+1 + · · ·+ unen] + [uiei + ui+1ei+1 + · · ·+ unen, vi+1ei+1 + · · ·+ vnen]

We have written [u, v] as the sum of two elements of [Li, Li+1]. Thus [u, v] in [Li, Li+1],
and so L′

i ⊆ [Li, Li+1], and the proof is complete.

3 The Standard Example

For Lie Algebras over the field F = Zp, there is an example known as the standard
example which was discovered by B.A. Panferov in 1980.
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Definition 3.1 Let L =< e1, e2, . . . , ep > and define [ei, ej] as (i−j)ei+j if i+j/leqp
and 0 if i + j . This example is called the standard example.

The standard example is of interest because it satisfies (*) and gives an upper
bound on a function which will be described in the next section.

4 Statement of Problem

Definition 4.1 Suppose L is a Lie Algebra with n generators satisfying (*). We de-
fine a new function n(L)={L′

1,L
′
2, . . . ,L′

n}. That is, n(L) is the number of different
derived Lie subalgebras of L.

Trivially, if L′
i=0 for all i, there is one derived Lie Algebra for L. Also trivially,

since there are at most n different L′
is, there can be at most n different derived Lie

Algebras of L. Hence

1 ≤ n(L) ≤ n

Problem: Among all those L satisfying (*) where dl(L)=k, what is the small-
est possible value n(L) that occurs? That is, we are interested in the values of the
following function f(k).

The function f(k) can easily be bounded below and above. If L satisfies (*)
and has a derived length of k, then there must be at least k different derived Lie
Algebras. Further, since f(k) is just the minimum of all values of n(L) for a given
derived length, then the standard example with n=2k-1 gives an upper bound on
f(k) of 2k−1.

k ≤ f(k) ≤ 2k−1

Conjecture: It is conjectured that the function f(k) more closely fits the
upper bound 2k−1. That is, k ≤ Alog(f(k)) + B for some A,B ∈ R.

However, before attempting to prove a general conjecture, f(k) should be eval-
uated for small k. The bounds given on f(k) give f(1) and f(2) because the left and
right hand sides are equal.
f(1)=1
f(2)=2

For f(3), it is not so easy. We have 3 ≤ f(3) ≤ 4. This leaves two possibilities.
To increase the lower bound, one must prove that it is not possible for any L satis-
fying (*) with dl(L)=3 to have n(L)=3. Instead, to decrease the upper bound, one
must find an example of L satisfying (*) such that dl(L)=3 and n(L)=3. Since f(k)
is the minimum of all possible values of n(L), this would show that 3 ≤ f(3) ≤ 3.
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It turns out that it is very easy to find an example(see the first example of section
7 ) of a Lie Algebra satisfying (*) with dl(L)=3 and n(L)=3. Thus
f(3)=3

Next comes f(4) where we know 4 ≤ f(4) ≤ 8 from our bound on any f(k).
Again there are two ways to improve these bounds. The first is to prove that it is
not possible to have a Lie Algebra satisfying (*) where dl(L)=4 and n(L)=4. The
second possibility is to find an example where dl(L)=4 and n(L) ≤ 7.

5 Solving This Problem

At this point, for the ease of notation, we introduce a new operator on the elements
of the Lie algebra. We define the operator d of a vector in the algebra as:

d(v) = [e1, v]

We consider a negative power of d to be 0.

The linearity of d follows from the linearity of the Lie bracket. This definition
greatly simplifies the notation of many of our results.

A second simplification we can make is to choose a particular basis that is
convenient for our use. It is often particularly convenient for us to choose a basis
such that [e1, ei] = ei+1, and fortunately for us this is always possible. However,
for a particular Lie algebra this may not be the easiest representation; but in the
abstract we can represent ignore those difficulties and subsume the coefficients into
a single symbol.

Lemma 5.1 Let L be a Lie algebra satisfying ∗. Then it has some basis {e1, e2, . . . , en}
such that

[e1, ei] = ei+1, 2 ≤ i ≤ n

Proof:

Let 〈d1, d2, . . . , dn〉 be a basis of L. Take e1 = d1 and e2 = d2. Then we may
define

ei = [e1, ei−1]

which satisfies our conclusion by construction.
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Also, because of the Jacobi identity, there is a great deal of inter-relations
between the Lie products of various basis vectors. Because of this, we were motivated
to find a convenient basis for the Lie bracket itself, and to find a particular choice
of brackets that suffice to define others. To that end,

Lemma 5.2 Let L be a Lie algebra satisfying condition ∗. Then the [ei, ei+1] bracket
terms fully define the Lie algebra, for a specified dimension. Also,

[ei, ei+j+1] = d [ei, ei+j]− [ei+1, ei+j]

and

[ei, ei+j+1] =
n−i∑
k=0

(−1)k

(
j − k

k

)
dj−2k [ei+k, ei+k+1]

Proof:

The equation follows immediately from the Jacobi identity [e1, ei, ej]+[ei, ej, e1]+
[ej, e1, ei] = 0, and along with the anticommutivity serves to define every [ei, ej]. For
the second, we proceed by induction. The equation is clearly satisfied if j = 0. Now,
assume the formula holds for some j. Then,
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[ei, ei+j+2] = d[ei, ei+j+1]− [ei+1, ei+j+1]

= d

(
n−i∑
k=0

d (−1)k

(
j − k

k

)
dj−2k [ei+k, ei+k+1]

)

−
n−i−1∑
k=0

(−1)k

(
j − 1− k

k

)
dj−2k−1 [ei+1+k, ei+k+2]

=
n−i∑
k=0

(−1)k

(
j − k

k

)
dj−2k+1 [ei+k, ei+k+1]

−
n−i∑
k=1

(−1)k−1

(
j − k

k − 1

)
dj−2k+1 [ei+k, ei+k+1]

= dj+1[ei, ei+1]

+
n−i∑
k=1

(−1)k

(
j − k

k

)
dj−2k+1 [ei+k, ei+k+1]

+
n−i∑
k=1

(−1)k

(
j − k

k − 1

)
dj−2k+1 [ei+k, ei+k+1]

= dj+1[ei, ei+1]
n−i∑
k=1

(−1)k

((
j − k

k

)
+

(
j − k

k − 1

))
dj−2k+1 [ei+k, ei+k+1]

=
n−i∑
k=0

(−1)k

(
j + 1− k

k

)
dj−2k+1 [ei+k, ei+k+1]

Another technique which will be useful is a means of deriving a simpler Lie
algebra from a more complex one. There are two methods which we employ. First,
we may remove the final generator from a Lie algebra. Second, we may remove
the second generator. The Jacobi identity and anti-commutativity are clearly still
satisfied, and we have closure because no Lie produce can ever produce a vector
containing e2. Since they are both just restrictions of a function, the Lie bracket
must retain all of its properties.

The next theorem is entirely non-obvious. It required looking at many exam-
ples and seeing how and where they failed or succeeded in order to see. However,
the result is quite useful.

Lemma 5.3 Let L satisfy (*). If L′
2 = L′

3 = Lm, and if L has dimension less than
or equal to 2m− 5, then L′

4 ≥ L2m−5.
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Proof:

Suppose that there exists some L such that L′
2 = L′

3 = Lm, L has dimension
less than or equal to 2m−5, and L′

4 < L2m−5. Since there are only 2m−5 dimensions,
L′

4 = 0.

We observe that m must be at least 7, since [L3, L4] ⊆ L7.

Then, since L only has 2m− 5, L′
4 = 0.

First, consider [e2, e3, e4]. Clearly [e2, e3] ∈ Lm ⊆ L5, so [e2, e3, e4] ∈ [L5, L4] =
0, and so [e2, e3, e4] = 0.

Second, consider

[e3, e4, e2] = [
n∑

k=m

Cm
3,4em, e2]

= −
n∑

k=m

Cm
3,4[e2, em]

= −
n∑

k=m

Cm
3,4

(
n−2∑
j=0

(
k − 3− 2j

j

)
dk−3−2j[e2+j, e3+j]

)
= −Cm

3,4(d
m−3[e2, e3] + (m− 4)dm−5[e3, e4]

= −(m− 4)
(
Cm

3,4

)2
e2m−5

The last equality follows from the fact that since [e2, e3] ∈ Lm, dm−3[e2, e3] ∈
L2m−3 = 0. A similar argument leaves only one term left of (m− 4)dm−5[e3, e4].

Thirdly, consider

[e4, e2, e3] = −[e3, [e2, e4]]

= −[e3, d[e2, e3]]

= −
n∑

k=m

[e3, ek+1]

= −
n∑

k=m

(
n−3∑
j=0

(−1)j

(
m− 4− j

j

)
dm−4[e3, e4]

)
= 0

The last equality holds from an argument like the above. By the Jacobi iden-
tity,
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0 = [e2, e3, e4] + [e3, e4, e2] + [e4, e2, e3]

= −(m− 4)
(
Cm

3,4

)2
e2m−5

Since m ≥ 7, (m− 4) 6= 0, and this implies that Cm
3,4 = 0.

Now,

Lm = L′
3

= 〈[ei, ej]|i, j ≥ 3〉
= 〈[e3, ej]|j ≥ 4〉
= 〈[e3, e4], [e3, e5], [e3, e6], . . . , [e3, e2m−5]〉
=
〈
[e3, e4], d[e3, e4], d

2[e3, e4], . . . , d
m−5[e3, e4]

〉
This forces Cm

3,4 6= 0, a contradiction.

Theorem 5.4 Let L satisfy (∗). If

L′
2+i = L′

3+1 = Lm

then

L′
4+i ⊇ L2m−5+i

Proof:

If L has dimension less than or equal to 2m− 5 + i, then the proof is trivial.

Otherwise, suppose that there existed L such that L′
2+i = L′

3+1 = Lm and
L′

4+i 6⊇ L2m−5+i. Then let

M = 〈e1, e2+i, e3+i, . . . , e2m−5+i〉

Then M is a Lie algebra satisfying the hypothesis of the previous lemma, but
violating the conclusion. Thus M , and so L, do not exist.

This result allows us to actually generally increase the lower bound on our
function, f(k).
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Theorem 5.5 Let L by a Lie algebra satisfying (∗) such that dl(L) = 4. Then
n(L) 6= 4.

Proof: Suppose that there exists a Lie algebra L satisfying (∗) such that
dl(L) = 4 and n(L) = 4. Then we may reduce it (by repeatedly removing e2) to M
such that

M ′
1 = M3

M ′
2 = M ′

3 = Mm

M ′
4 = M ′

5 = · · · = M ′
m = Mn

M ′
m+1 = 0

where n is the dimension of M . Clearly n ≥ 2m+1, but by the above theorem
n ≤ 2m− 5. This is a contradiction.

Theorem 5.6 Let L by a Lie algebra satisfying (∗) such that dl(L) = k. Then
n(L) ≥ 3

2
k − 1.

Proof:

Let L by a Lie algebra satisfying (∗) such that dl(L) = k. Then

L′
1 = Lm1

L′
m1

= Lm2

L′
m2

= Lm3

L′
m3

= Lm4

...

L′
mk

= 0

Consider Lmi−1. Suppose that Lmi−1 = Lmi
, i 6= k. Then, by Theorem , there

must exist some j such that L′
mi+1 = Lj 6= Lmi+1

. Thus for at most half of the Lmi
’s

can we have L′
mi−1 = L′

mi
, excluding the final one. Thus n(L) ≥ 3

2
k − 1.

12



6 Future of the Problem

6.1 Raising the Lower Bound

Given the above theorem, the simple part of raising the lower bound has been
accomplished. But to show that f(4) 6= 5 requires a more difficult sort of proof.
There are two possibly ways in which a Lie algebra of derived length 4 and n(L) = 5
could exist:

L′
1 = L3

L′
2 = L′

3 = Lm1

L′
4 = · · · = L′

j = Lm2

L′
j+1 = · · · = L′

m2
= Ln

or

L′
1 = L3

L′
2 = Lj

L′
3 = Lm

L′
4 = · · · = L′

m = Ln

Our experimentations have so for led to neither a successful example or insight
as to why one cannot exist, so clearly more work is required.

6.2 Lowering the Upper Bound

Note: In this section, at times it will be said that a Lie Algebra is not consistent.
These are, in reality, not even Lie Algebras if they are not consistent, but here an
inconsistent Lie Algebra will be a tried but failed example.

Lowering the upper bound for our problem in general means finding examples
of Lie Algebras satisfying our Hypothesis such that f(k) < 2k−1. Currently we are
hoping to find an example where dl(L)=4 and n(L) < 8. One problem in doing this
is that there are a great deal of calculations to be done in checking the consistency
of Lie Algebras as n, the number of generators, grows large. Even at n=10, the task
can be time consuming by hand, but to get a derived length of 4, we must have at
least 15 generators and possibly more.

So far, no example of a Lie Algebra satisfying (*) with dl(L) ≥ 4 is known
other than the standard example. Although examples of dl(L)=3 are very easily
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found, examples with dl(L)=4 are extremely hard to find. The reason for this is
that the higher the number of generators grows, the more Jacobis must then be
satisfied for the Lie Algebra to be consistent. Still, if an example does exist, it can
be found even if it does take a long time. On the other hand, if an example does
not exist, it must be proven that there are no examples other than the standard
example.

To help combat this, we have a computer program written in Mathematica.
The program takes as input n, [e1,ei] for all i, and [ej,ej+1] for all j. The program
then calculates all other Brackets from these original ones and uses those to calculate
all Jacobis. If all of the Jacobis are 0, the program calculates the derived length
and n(L) over the integers and gives them as output. Otherwise, if not all Jacobis
are 0, the program informs the user that the Lie Algebra is not consistent over the
integers. Further, it does several calculations to check if the given Lie Algebra is
instead consistent for some p, prime. If so, like the case of consistency over the
integers, the program calculates the derived length and n(L) of the new Lie Algebra
over Zp.

This program is very useful because it can do the calculations many times
faster than any human and, at the same time, eliminates possible human errors in
calculation. The program, however, is not perfect and is still under development.
Apparently, the program does not always(or ever?) check the Lie Algebra mod
primes when general coefficients, C[i][j][k] for Ck

ij, are used. Hopefully the program
will soon be enhanced to take care of this problem and allow a more thorough
investigation of the Lie Algebras input.

The program is useful in checking consistency, but thus far it seems as if
finding a Lie Algebra satisfying our hypothesis with derived length 4 is extremely
rare. The program can not find an example of derived length 4. All it can do
is check consistency of the input given by the user and then checking the derived
length. In the future it is hoped that either the mathematical theory or the program
will be improved so that examples are easily found. However, as far as improving
the program to do this, almost nothing is known. So this program is a great help,
but not unless the user knows the mathematical theory behind it and has a bit of
luck.
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7 Examples of Lie Algebras Satisfying the Hy-

pothesis

7.1 Example 1

This Lie Algebra is interesting more so than any other example given. However, the
extra interest comes from an almost trivial point. What I mean is this example is
consistent mod two different primes, both 37 and 223, and this is very interesting.
But, almost all of the structural constants are divisible by 37 so being divisible by
37 isn’t of great interest. Still, it shows that different primes may lead to different
values for n(L).

n=13

[e2,e3]=37e7

[e3,e4]=-74e9

[e4,e5]=-111e11

[e5,e6]=-37e11

[e6,e7]=e13

Over the integers, this Lie Algebra is not consistent.
This Lie Algebra is consistent mod 37.
dl(L)=3
n(L)=3
This Lie Algebra is consistent mod 223
dl(L)=3
n(L)=6

7.2 Example 2

Example 1 and this example are of interest for the same reason. In Example 1, none
of the structural constants are divisible by 223, yet the Lie Algebra is consistent
mod 223 and not the integers. This example is not consistent over the integers, but
is mod 103 and none of the structural constants are divisible by 103.

n=16

[e2,e3]=e7

15



[e3,e4]=2e9

[e4,e5]=28e11

[e5,e6]=107e13

[e6,e7]=-7e15

[e7,e8]=2e15

Over the integers, this Lie Algebra is not consistent.
This Lie Algebra is consistent mod 103.
dl(L)=3
n(L)=7

7.3 Example 3

Example 3 is interesting because it shows an advantage of our method of defining
the Brackets. Our method, as described in the paper, takes as input [e1,ei] for all
i and [ej,ej+1] for all j and then defines all other Brackets based on these. What
this really does is guarantee that all Jacobis, which have one term e1 as one of the
terms, are 0. Not until n=9 does any other Jacobi enter into our system and thus
any system we define will be consistent if n¡9.

n=8

[e2,e3]=C5
23e5+C6

23e6+C7
23e7+C8

23e8

[e3,e4]=C7
34e7+C8

34e8

This example is consistent over the integers.
dl(L)=3
n(L)=4

7.4 Example 4

Example 4 is very general in that most of the coefficients are just Ck
ij for some i,

j, and k, but not a specific number. It also has 11 generators and is not trivially
consistent as Example 3. Notice that instead of C11

56 , there is 6C9
45 as the coefficient

of e11 for [e5,e6]. Only with C11
56=6C9

45 is this example consistent.

n=11

[e2,e3]=C8
23e8+C9

23e9+C10
23e10+C11

23e11
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[e3,e4]=C9
34e9+C10

34e10+C11
34e11

[e4,e5]=C9
45e9+C10

45e10+C11
45e11

[e5,e6]=6C9
45e11

This example is consistent over the integers.
dl(L)=3
n(L)=5
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