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0 Introduction

Physics professors often joke about how they commit egregious crimes against math-
ematics in their derivations. Naturally, physics students who moonlight as math ma-
jors (or vice versa, depending on your persuasion), sometimes wonder about what
happens when mathematicians, in all of their rigor, consider the same questions as
a physicist does.

Reduction is exploiting the symmetry of a problem to reduce the size of what
we are considering. We can often remove variables from the physical system, letting
us solve the differential equations more easily. It is quite often taught in classical
mechanics, and I do not go beyond that content here. What will be new to a physics
student who reads this is the portrayal of the mathematical structure behind the
reductions. To such a reader I hope to introduce, with a minimum of pain, this
geometrical interpretation of the physicists theorems. There are several running
examples throughout. These are intended to provide a clear illustration of what the
theorems say in a concrete manner.

For the more mathematically minded reader, this is intended to serve as a casual
introduction to the terser content in actual texts in the area of mathematical physics.
Here and now I concede that I have occassionally taken liberties with rigor in the
name of clarity, but I hope that I have given sufficient warning about them that
they will not lead astray; rather I hope that these serve to illustrate the intentions
of the definitions that I cheated upon so that when you encounter the full definition,
in its mighty fierceness, you will be more capable of grasping its true meaning.
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1 The Examples

This section presents the various example systems we will be working with through-
out the text. One of them is an almost completely trivial example. The others are
chosen for the variety of symmetries that they offer.

1.1 Example 1: The Falling Rock

Example 1 consists of a rock falling solely due to gravity. We assume that the
distance fallen is much less than the radius of the Earth, and so the acceleration due
to gravity is effectively constant. We assume it falls straight down, with no veering
from a straight path. Thus, it is a one dimensional problem. Let x be the distance
from the ground of the rock. Then, if m is the mass of the rock, we have a potential
U(x) = mgx.

Figure 1.1: Dr. Holder finally tires of the cactus...

1.2 Example 2: Simple Harmonic Oscillator

Bar none (or bar h), one of the most common physical systems is the simple harmonic
oscillator. The first example is a spring, with a restoring force proportional to (and
opposite in direction) its stretch. This behavior is in fact what happens to most
systems when they are near a minimum of their potential. This potential takes the
form of U(x) = 1

2kx2 near the minimum.

1.3 Example 3: Elroy’s Beanie

Elroy’s beanie actually refers to both Elroy and his beanie. We assume that Elroy
is floating in the middle of space, free from gravitional effects (and friction, and
anything else that would complicate the problem). This problem is not interesting
because of its potential, but because of its configuration space–how the system’s
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motion is restricted. Elroy and his beanie move independently, each spinning around.
Because of this, it is really a system of two rigid bodies spinning around the same
axis.

Figure 1.2: Elroy practices his ballet in space, spinning independently of his propeller

1.4 Example 4: Spherical Pendulums

There are actually two problems we will consider involving spherical pendulums.
One is a pendulum by itself, being supported and under the influence of gravity.
The other example is one spherical pendulum, with another one attached to the
bottom of it (see picture). In either example, the pendulums are free to rotate in
any direction (like a socket joint).

Figure 1.3: A double-spherical pendulum
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2 Mathematical Details...

This chapter provides an introduction to many of the miscellaneous mathematical
terms used. We will also show how they correspond with the four aforementioned
examples.

2.1 Specific Sets

Most readers will readily recognize Rn as the set of n-tuples of real numbers. Less
widely recognized is the set S1, which is a circle (of any radius) and S2, which is a
sphere. The set SO(R, 3) is the set of 3×3 real matrices that have determinant +1,
all of the columns are orthogonal, and all of the the columns have length 1. The set
GL(R, n) is the set of n× n invertible real matrices.

2.2 Configuration and Phase Spaces

We are ultimately concerned with describing physical systems. We normally describe
the system in terms of its configuration space and phase space. The former is the set
of possible physical states that the system can be in; the latter is the configuration
space and its time derivatives. This is not a specific coordinate system, just the set
of points. See [2]

Example
Most everyday (unconstrained) physical objects can be described as having con-

figuration spaces of R3 and phase spaces of R3 × R3.

Example The Falling Rock
The falling rock has a configuration space of R and a phase space of R× R. Its

physical position is just its height, its complete description requires specifying both
its height and momentum.

Example Simple Harmonic Oscillator
The SHO has the same configuration space as the falling rock. The only differ-

ence is the potential.

Example Elroy’s Beanie
Since both the beanie and Elroy are free to move in a circle, and their movements

are independent, the configuration space is S1 ×S1. Because angular momentum is
not itself measured on a circle, the phase space is S1 × R× S1 × R.

Example Spherical Pendulum
The pendulum has a fixed radius, but is otherwise free to move by rotation.

Thus its configuration space is S2.
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2.3 Tangent Spaces

Introductory physics classes always teach that vectors require a magnitude and a
direction and a point of application. The point of application is then brushed under
the rug for the rest of a student’s career. However, it is still important. The set
of vectors at a point to a manifold is called the tangent space at that point. The
set of all tangent spaces to a space is called the tangent bundle to the space. (See
[2].) Tangent spaces can be defined on any manifold. For now think of manifolds as
Euclidean space; the definition will be broadened later. More formally,

Definition Let Q be a manifold. For any point x ∈ Q, the tangent space at x,
TxQ, is the collection of all vectors applied at x. The tangent bundle of Q, TQ, is⋃

x∈Q TxQ.

Example The tangent space of Rn at any point is Rn. The tangent bundle is
Rn × Rn.

Since at any point in Rn we can have a vector going in any direction of any length,
TxRn = Rn. Since we have one tangent space for every point of Rn, TRn = Rn×Rn.

Example The tangent space at any point of S1 is R. The tangent bundle is S1×R.
At any point on the circle, the tangent vector is a straight line of arbitrary

magnitude.

Notice that anytime we calculate the velocity of a point traveling on a path,
since the velocity is the temporal derivative of the path, we get a vector tangent
to the path (the derivative may in fact be defined in terms of the tangent vector).
Tangent spaces are important for this reason—the phase space is the tangent space
adjoined to the configuration space.

2.4 Dual Spaces

Definition The dual space of a vector space V , V ∗, is the set of linear transforma-
tions of the elements of V into R.

Example Rn∗ = R1×n

In Rn the dual space is obviously the set of 1× n matrices.

While the tangent space corresponds to temporal derivatives, the dual space
corresponds to the space of spatial derivatives. In other words, this is the set of
derivatives of curves defined on the space, while the tangent space is derivatives of
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curves 1 moving in time along the surface. One may think of this as the space of
possible gradients of functions on the manifold.

While often not introduced as such, duality is a common notion in mechanics.
When considering a scalar quantity that is the dot product of two vectors, for
example, we can often think of one of the two vectors as being in the dual space of
the other. For example, work is the dot product of force and position; we may think
of force as being contained within the dual space of the configuration space. Notice
that if the force is derivable from a potential, then the force is the derivative of a
function of the space.

2.5 Groups and Group Actions

Groups are one of the basic extensions of a set. They are not just a set but a set with
an operation defined on it. Examples are legion; the real numbers (and rationals)
under addition (and multiplication, if you remove 0), the integers (under addition),
matrix spaces, and most anything else we commonly perform operations with. For
the sake of completeness,

Definition A group is a set G and an operation + such that
1. (a + b) + c = a + (b + c)
2. There exists 0 ∈ G 3 a + 0 = 0 + a = a.
3. For every a ∈ G,∃ − a 3 −a + a = a +−a = 0.
There is a barely finite number of resources on groups and other algebraic topics

available, so we will not go into more detail here, except for a few definitions and
specific groups that relate directly to our topic. (Any modern algebra book will
include this definition.)

There are many modern algebra texts available, however the definition is also
present in [2].

Example The general linear group on Rn, written GL(R, n) is the set of invertible
n× n matrices.

Example The special orthogonal group on Rn, written SO(R, n) is the set of n×n
matrices with determinant 1 such that AT = A−1. This group consists of matrices
that simply rotate Rn and do not distort lengths or change from a right to a left
handed coordinate system.

One concept that we deal with is that of a group action. Technically, a group
action is a set of functions that respects the group operations, that is:

Definition A group action on a set X is a group of functions F : X → X and a
group (G, ·) such that

1curve here refers to the geometrical idea; more precisely an embedding of a real interval into
the manifold
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1. f g, h ∈ G and fg, fh ∈ F , then fg+h = fg ◦ fh, for each g, h ∈ G..
2. fe is the identity function

This definition, taken from [2], obfuscates its content more than some. Sev-
eral commonly encountered examples will both illuminate the definition and be of
interest in their own right later.

Example Consider the group (Rn,+). Then the left translation map La : Rn → Rn,
for each a ∈ Rn, defined by La(x) = a + x, is a group action.

Proof Let a, b ∈ Rn. Then

(
La ◦ Lb

)
(x) = La(b + x)

= a + (b + x)
= (a + b) + x

= La+b(x).

Consider, for example, the case where n = 1. Then we want the composition of
L3 and L5, which increment a real number by 3 and 5, to increase the number by 8
(which it does). We get an analagous case for all other values of n.

In this example, the distinction between the left and right translation maps (the
latter being define analogously) is unimportant, but if we have a non-abelian (an
abelian group as a commutative operation) group they are distinct. Also notice
that the domain and range of the function need not be the group that indexes the
function, as in the next example.

Example Consider the group
(
(SO(R, 3), ·

)
. Then the left translation map La :

Rn×n → Rn×n, defined by LA(x) = Ax is a group action.
Proof Almost identical to above.

The above group consists of all coordinate changes applied after a linear trans-
formation.

Example The conjugate map of GL(R, n) on Rn (or SO(R, n) on Rn), Fg : Rn →
Rn, defined by x 7→ gxg−1 is a group action.

Proof Let g, h ∈ GL(R, n) (or SO(R, n). Then
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(
Fg ◦ Fh

)
(x) = Fg(hxh−1)

= ghxh−1g−1

= (gh)x(gh)−1

= Fgh(x).

Notice that we can also define the conjugate map on a matrix space as well, as
long as the matrix multiplication makes sense.
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3 Manifolds and Lie Groups

A purpose of mathematics is often to bridge the gap between the intuitive real world
and a rigorous understanding based upon fundamental principles. For example,
calculus arose from the idea that many functions, when examined under a sufficiently
strong microscope, are linear. The formal concept of differentiation is a method of
quantifying exactly what this means. Likewise, the dreaded ε-δ proofs from analysis
define what “sufficiently close” means.

3.1 Manifolds

Manifolds are another case of this. Many surfaces, when examined “sufficiently
close”, resemble some Euclidean n-space. Casually, a manifold is a set of points
to which we may attach some local coordinate system at each point. The formal
definition is considerably more challenging than the previous näıve description, but
its complexity is derived from the requirements of smoothing rough details of a
vague statement (much like the complexity of taking the derivative using ε and δ
comes from a need to avoid pathologies).

Definition 3.1 A manifold is a set of points M such that there exists an open
cover U of M such that for every U ∈ U there is a homeomorphism φU : U → Rn with
the requirement that for any two non-disjoint subsets U and U ′ the maps φU ◦ φ−1

U ′

and φU ′ ◦ φ−1
U are infinitely differentiable.

A reader seeking a more formal and complete definition of manifolds is advised
to see one of the many texts available on manifold theory. See, for example, [4].For
our purposes this simplified definition is sufficient and conveys the essential nature of
manifolds: that they are locally isomorphic to Euclidean space and that components
near each other are compatible.

Example Rn

Proof
As one may expect, this is trivial. Just use the identity map on the entire set.

Example S1

Proof
This requires more subtlety. Fix two distinct points θ, θ′ in S1. Then {S1 −

{θ}, S1 − {θ′}} is an open cover of S1. Let φθ : S1 − {θ} → R be such that if
x ∈ S1−{θ}, then φθ(x) is the angular rotation (in radians) from θ to x. Define φθ′

similarly. These two functions are sufficient to show that S1 is a manifold. Notice
that we could not use one function; if we used just one function there would be
a point of non-differentiability in the inverse (actually, the inverse would not be
defined everywhere because of the fact that a circle wraps back around on itself).
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3.2 Lie Groups

Often a mathematical object is nothing more than an amalgamation of two or more
previous ones, like a ring is simply a double group. Thus, a ring can be used to
recognize the structures of both (R,+) and (R×,×) as one object. Also, Rn has
both a manifold and an additive group structure. In this context, we call Rn a Lie
group. (Once again, more explanation can be found in [2].)

Definition 3.2 A Lie group is a manifold that has a C∞ group operation.

Lie groups are numerous. As expected, Rn is a Lie group (under the normal
vector addition operation). The general linear group GL(R, n) is a Lie group under
matrix multiplication, as is any other vector space. We can also write S1 as a
Lie group, but it requires a minor slight of hand: if θ1, θ2 ∈ S1, we can define
an operation by writing the elements of the group at eiθ1 and eiθ2 and defining
the group operation as (eiθ1 , eiθ2) 7→ ei(θ1+θ2). This avoids the problem of circular
addition (which must effectively be addition modulo 2π).

Example
(
Rn,+

)
and S2 are Lie groups.

Addition is clearly C∞. For S2, consider a 2-dimensional sphere embedded in
R3.

The operation on S2 corresponds to matrix multiplication2, which is also C∞.
This same argument holds for S1.

3.3 Lie Algebras

Unlike manifolds and Lie groups, Lie algebras are not easily related to a familiar
structure. However, they are intimately related to Lie groups in addition to be
interesting structures in their own right. The salient feature is the Lie bracket,
which is an anticommutative bilinear operation on some vector space. (See [2].)

Definition 3.3 A Lie algebra is a vector space g with a bilinear antisymmetric
operation [·, ·] called a Lie bracket that satisfies the Jacobi identity, that is[

[ξ, η], ζ
]
+

[
[η, ζ], ξ

]
+

[
[ζ, ξ], η

]
= 0.

for every ξ, η, ζ ∈ g.

As a break from our pattern, Rn is not, in general, a Lie algebra (except under
the trivial bracket where every pair of elements maps to 0). However, R3 is, under
the cross product. Also n × n matrices are a Lie algebra, under the commutator
bracket, [A,B] = AB −BA.

2Any orthonormal 3× 3 matrix represents a rotation of a vector in R3
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There is, in fact, a way to derive a Lie algebra from a Lie group (as the similarity
of the names would hint at).

Let G be a Lie group. Let Γ = {γ(t) : γ(t) is a one parameter curve in G with
γ(0) = e} (where e here is the identity element of the group G) and define

g = {ξ : ξ =
d

dt
γ(t)|t=0, γ(t) ∈ Γ}.

Now let

[
ξ, η

]
=

d

dt

d

ds
g(t)h(s)g(t)−1

∣∣∣∣
s,t=0

where g(0) = h(0) = e, g′(0) = ξ, h′(0) = η. Then g is the Lie algebra of G with
Lie bracket [·, ·].

The above construction takes the derivatives of all curves at 0. As stated earlier,
derivatives and tangent vectors are much the same thing. In fact, we have that
g = TeG .

Example Let G = S1. Then g = R.
Proof We can represent any curve in S1 by eiθ(t), where θ(t) is some curve in R.
Then

g =
{

η : η =
d

dt
eiθ(t)

∣∣∣∣
t=0

}
=

{
η : η = iθ̇(t)eiθ(t)

∣∣∣
t=0

}
=

{
η : η = iθ̇(0)

}
= iR.

We may identify this set with R. Now, if g(t) = eiθ(t) generates the element ξ
and h(s) = eiφ(s) produces the element η,

[
ξ, η

]
=

d

dt

d

ds
g(t)h(s)g(t)−1

∣∣∣∣
s,t=0

=
d

dt

d

ds
eiθ(t)eiφ(s)e−iθ(t)

∣∣∣∣
s,t=0

= 0.

So the Lie bracket is just the trivial one.
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4 Lagrangian and Hamiltonian Mechanics

Introductory physics students are often led to believe that Newton’s Laws are the
end-all of mechanics. Eventually they are introduced to Lagrangian and Hamil-
tonian mechanics, which are subtler and in some sense more aesthetically pleasing.
They rely upon principles such as conservation of energy, a more comfortable (philo-
sophically, at least) axiom than the somewhat arbitrary creation of “force” found in
Newton’s Laws. For a more complete exposition than can be found here, we direct
the reader to [1].

4.1 Generalized Coordinates

Introductory physics courses give much attention to choosing coordinate systems.
This exclusively means choosing the origin and orientation of three axes representing
an object’s position in space, except on the rare occasions when the student must
make an (obvious) choice between spherical and Cartesian coordinates.

However, nature is not restricted to units of distance. Consider a simple situ-
ation: a rock being dropped off a cliff. Suppose it is dropped straight down so we
have a one-dimensional problem. We will consider the system fully described if a
set of coordinates can always tell us what the distance from the ground and velocity
of the rock are. What are some sets of coordinate we can use?

We can make the obvious choice, position and velocity. We can make a slight
variation and choose position and momentum. These would all be considered valid
generalized coordinates. Notice that for any choice we make, we ultimately need
some “positional” quantity and a change.

An advantage of Lagrangian or Hamiltonian mechanics is that they easily work
with generalized coordinates, while Newton’s laws are often awkward when dealing
with coordinates more complex than rectangular positions, velocities, and momenta.
We can literally just substitute any generalized positions, position derivatives, and
momenta in the Lagrangian and Hamiltonian equations.

We need to use care when we compare momentum and the derivative of a posi-
tion. They are not always proportional; but they are connected. We will elaborate
more when we discuss Hamiltonian mechanics.

4.2 Lagrangian Mechanics

Call the generalized positions qi, i = 1, 2, . . . n. If the kinetic energy of a system is
K and the potential energy is U (remembering that these are implicitly functions of
our coordinates, which are in turn implicitly functions of time), we can define the
Lagrangian as L = K − U . This is not the only possible Lagrangian; but for our
purposes we will not need a more sophisticated definition.

There is ultimately a variational principle at work here, which we will elaborate
on later. From it we can derive the Euler-Lagrange equations:
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d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, 2, . . . n.

These equations are a means of obtaining the equations of motion easily from
the Lagrangian. As the following examples show, this is because the kinetic energy
is related to the square of the velocity, thus giving us a differential equation in q̈i.

Example The Falling Rock
Let the generalized position be the height above sea level x. Then the kinetic

energy is K = 1
2mẋ2. The potential is U = mgx. Thus, the Lagrangian is L =

1
2mẋ2 −mgx. Then,

0 =
d

dt

∂L

∂ẋ
− ∂L

∂x

=
d

dt

∂

∂ẋ

(1
2
mẋ2 −mgx

)
− ∂

∂x

(1
2
mẋ2 −mgx

)
=

d

dt

(
mẋ

)
−mg

= mẍ−mg

⇒ ẍ = g.

This is exactly what we would get from Newton’s laws.

Example The Simple Harmonic Oscillator (Undamped)
Call the stretch of the spring x. Then K = 1

2mẋ2 and U = 1
2kx2, where k is the

spring constant. Then L = 1
2mẋ2 − 1

2kx2. So,

0 =
d

dt

∂L

∂ẋ
− ∂L

∂x

=
d

dt

∂

∂ẋ

(1
2
mẋ2 − 1

2
kx2

)
− ∂

∂x

(1
2
mẋ2 − 1

2
kx2)

=
d

dt

(
mẋ

)
+ kx

= mẍ + kx

⇒ ẍ = − k

m
x.

This is again what we would get from Newton’s Laws.

Example Elroy’s Beanie
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Choosing an arbitrary but fixed coordinate system, let θb be the angle of the
Beanie’s rotation and let θp be Elroy’s (the Person’s) angle. Call the corresponding
moments of intertia Ib and Ip. Then, absent a potential, the Lagrangian is just the
kinetic energy, so L = K = 1

2Ibθ̇
2
b + 1

2Ipθ̇
2
p. We perform the calculation solely for the

beanie, Elroy’s equations are similar:

0 =
d

dt

∂L

∂θ̇b

− ∂L

∂θb

=
d

dt

∂

∂θ̇b

(1
2
Ibθ̇

2
b +

1
2
Ipθ̇

2
p)−

∂

∂θb

(1
2
Ibθ̇

2
b +

1
2
Ipθ̇

2
p)

= Ibθ̈b ⇒ θ̈b = 0

We get constant angular velocity, as we expect from the absence of any forces. Notice
that ∂L

∂θb
= 0. This is the source of the constant velocity. Because that term was 0,

the other term must also have a derivative of 0.

Example Single Spherical Pendulum
We treat the single pendulum in terms of spherical coordinates. Specifically, θ is

the angle from the positive xz-half plane, and φ is the angle with the vertical. This
leaves r as the (fixed) radius. Kinetic energy is K = 1

2mr2
(
θ̇2 + φ̇2

)
. The potential

is U = −mgr cos φ. The Lagrangian is 1
2mr2

(
θ̇2 + φ̇2

)
+ mgr cos φ.

Now, invoking the Euler-Lagrange equations,

0 =
d

dt

∂L

∂θ̇
− ∂L

∂θ

=
d

dt

∂

∂θ̇

(1
2
mr2

(
θ̇2 + φ̇2

)
+ mgr cos φ

)
− ∂

∂θ

(
mr2

(
θ̇2 + φ̇2

)
+ mgr cos φ

)
= mr2θ̈

⇒ θ̈ = 0

and

0 =
d

dt

∂L

∂φ̇
− ∂L

∂φ

=
d

dt

∂

∂φ̇

(1
2
mr2

(
θ̇2 + φ̇2

)
+ mgr cos φ

)
− ∂

∂φ

(
mr2

(
θ̇2 + φ̇2

)
+ mgr cos φ

)
= mr2φ̈−mgrφ̇ sinφ

⇒ rφ̈− gφ̇ sinφ = 0.

Again notice that because the potential is independent of one coordinate, we
simply get that the velocity is constant in that coordinate. This observation is crucial
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to Routhian reduction. However, φ is still a complicated differential equation–we
cannot simplify it by symmetry.

4.3 Derivation of the Euler-Lagrange Equations from Hamilton’s
Principle

Hamilton’s Principle states that, if we write the action as I =
∫ t2
t1

Ldt then the
motion of the system is such that I is an extreme value. This is normally written
in terms of a variation,

δ

∫ t2

t1

L(qi, q̇i, t)dt = 0.

The above equation looks like a derivative. Since we are discussing extrema,
the “suspected derivative” is equal to 0, it smells like a derivative. But we are not
taking a derivative with respect to anything in particular (unless we want to get
into function spaces), so it cannot be a true derivative. Then what is it?

We have a variation, which is analagous to a derivative. But with a derivative,
we know what we are varying and we are examining how a function changes with
respect to some known parameter. We are looking at a known function and we do
not know how the parameters behave, except that they are all functions of time.
We are looking at how changes of those parameters affect our Lagrangian.

This looks like the chain rule from calculus. We have a function L, which is
expressed in terms of two sets of functions, qi, q̇i, which are both parameterized by
time (t). We are effectively looking for the functions qi, q̇i that produce an extreme
value of I.

Theorem 4.1 Hamilton’s Principle implies the Euler-Lagrange equations
Proof

Assume Hamilton’s Principle. Then let qi, q̇i be the correct motion of the system.
Let η(t) be a C2 function such that η(t1) = η(t2) = 0, for every i. Then define the
curve qi(t, α) = qi(t)+αη(t). (Notice that we assume that α is constant with respect
to time.)

δI =
∂I

∂α
dα

=
∫ t2

t1

∂L(qi(t, α), q̇i(t, α), t)
∂α

dαdt

=
∫ t2

t1

∑
i

(
∂L

∂qi

∂qi

∂α
dα +

∂L

∂q̇i

∂q̇i

∂α
dα

)
dt.

By integration by parts, using ∂
∂α q̇i = d

dt
∂qi

∂α ,
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∫ t2

t1

∂L

∂q̇i

d

dt

∂qi

∂α
dαdt =

∂L

∂q̇i

∂qi

∂α
dα

∣∣∣∣t=t2

t=t1

−
∫ t2

t1

∂qi

∂α

d

dt

(
∂L

∂q̇i

)
dαdt.

Notice that the first term vanishes because the curves pass through the end-
points.

Then, using the above fact and continuing where we left off,

δI =
∫ t2

t1

∑
i

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt.

Now, since each qi is independent, the variations are as well. There is a result
from the calculus of variations (which follows from the fact that the second derivative
of η is continuous; the details of the result are ignored in mechanics texts and we
continue the tradition here) that says that the integral can vanish only if each term
of the sum does (because the variations are independent). This gives us the Euler-
Lagrange equations,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, 2, . . . n.

4.4 Hamiltonian Mechanics

Earlier we stated that, while connected, the time-derivatives of position (q̇i) and the
momenta conjugate to the positions (pi) are distinct. Specifically,

pi =
∂L

∂q̇i
.

This may serve to define momentum.
Changing the variables of Lagrangian mechanics to position-momentum gives us

Hamiltonian mechanics. We will almost always be able to say that,

H = K + U.

Formally, though, we must derive the Hamiltonian from the Lagrangian by the
Legendre transformation,

H(q, p, t) =
∑

i

q̇ipi − L(q, q̇, t).

Using the relationship between pi and q̇i we may eliminate q̇i from the Hamiltonian,
leaving us with just a function of q, p, and t.

If we take a differential and perform the appropriate substitutions (see [1] for
more details). From this, analagous to the Euler-Lagrange equations, we get Hamil-
ton’s Equations:
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q̇i =
∂H

∂pi

ṗi = −∂H

∂qi

∂L

∂t
= −∂H

∂t
.

Hamiltonian mechanics is similar to Lagrangian mechanics; they are in fact,
equivalent systems. Some problems are easier to approach from one perspective
or another. In particular, constant momentum systems are easier to work with in
Hamiltonian mechanics. It is actually possible to blend the two systems in one
problem; this is known as Routhian reduction and will be discussed later.

Example The Falling Rock
First, using our prior work,

p =
∂L

∂ẋ

=
∂

∂ẋ

(1
2
mẋ2 −mgx

)
= mẋ.

This just the classical momentum. The Hamiltonian is then H = p2

2m + mgx.
Thus,

ẋ =
∂H

∂p

=
p

m

ṗ = −∂H

∂x
= −mg.

These are again what we would get using Newton’s equations.

Example Simple Harmonic Oscillator

p =
∂L

∂ẋ

=
∂

∂ẋ

(1
2
mẋ2 +

1
2
kx2

)
= mẋ
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This is again the classical momentum. The Hamiltonian is H = 1
2mp2 + 1

2kx2.
Then

ẋ =
∂H

∂p

=
p

m

ṗ = −∂H

∂x
= −kx.

This is exactly what we get from Newtonian mechanics.

Example Elroy’s Beanie
Starting with the Lagrangian we had previously, (and again only explicitly cal-

culating the beanie’s motion):

pb =
∂L

∂θ̇b

=
∂

∂θ̇b

(1
2
Ibθ̇

2
b +

1
2
Ipθ̇

2
p

)
= Ibθ̇b.

and

pp = Ipθ̇p.

Thus

H = pbθ̇b + ppθ̇p − L

= pbθ̇b + ppθ̇p −
1
2
Ibθ̇

2
b −

1
2
Ipθ̇

2
p

=
p2

b

Ib
+

p2
p

Ip
−

p2
b

2Ib
−

p2
p

2Ip

=
p2

b

2Ib
+

p2
p

2Ip
.
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θ̇b =
∂H

∂pb

=
pb

Ib

ṗb = −∂H

∂θb

= 0.

and θ̇p = pp

Ip
and ṗp = 0.

Example Single Spherical Pendulum
Recall that L = 1

2mr2
(
θ̇2 + φ̇2

)
+ mgr cos φ. Then

pθ =
∂L

∂θ̇

= mr2θ̇

pφ =
∂L

∂φ̇

= mr2φ̇

So,

H = pθθ̇ + pφφ̇− L

=
p2

θ

2mr2
+

p2
φ

2mr2
−mgr cos φ.

By Hamilton’s equations,
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θ̇ =
∂H

∂pθ

=
pθ

mr2

ṗθ = −∂H

∂θ
= 0

φ̇ =
∂H

∂pφ

=
pφ

mr2

ṗφ = −∂H

∂φ

= −mgr sinφ.
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5 A Few Last Spaces...

Physics is an attempt to describe one large, complicated, and (supposedly) logical
system. We see the results and attempt to derive the axioms that produce them.
Mathematics is an attempt to describe any conceivable logical system. It begins with
axioms and finds their implications. This reversal of roles appears when we shift from
the physics “dialect” of mathematics to the more formal mathematical “dialect.” In
the texts on mathematical physics we usually ignore the origin of the Lagrangian
and Hamiltonian. They become another class of functions. They are in a sense
more defined by the laws they obey and how they map between spaces than by the
motion they represent. In this chapter we attempt to recast Lagrangian mechanics
in a more abstract setting, and provide additional mathematical framework.

5.1 Lagrangian Redux

Recall that the tangent bundle, TQ to a manifold Q, is the space of tangent vectors
at each point of Q. The tangent vectors are essentially the first derivatives of
curves in Q. That is, we may consider q̇ to be an element of TqQ. In other words,
a Lagrangian, which is defined in terms of coordinates and their derivatives, is a
map from TQ into R. Up until this point, we have not paid much attention to
the space on which we define the Lagrangian. Now we will pay more attention
to the geometry of those spaces. But first we must proceed through a few more
mathematical definitions.

5.2 Aside: Quotient Spaces

The integers Z and the set 3Z = {3z : z ∈ Z} are both groups under addition. Now,
consider the function φ : Z → {0, 1, 2} such that φ maps an integer to its remainder
when divided by 3.

In abstract math classes we can define a quotient group. Without going into the
technical details, the computation would produce Z

3Z =
{
{. . . ,−6,−3, 0, 3, 6, . . . },

{. . . ,−5,−2, 1, 4, 7, . . . }, {. . . ,−4,−1, 2, 5, 8, . . . }
}
.

Obviously, we have a map induced from φ on Z
3Z , say φ̂, because the sets of

Z
3Z partition Z into sets that all map to the same point. This is an example of
reduction. We have contracted our domain into a smaller set which still contains all
of the information needed for our function by removing the cyclicity. This is exactly
what we are going to do when we reduce Lagrangians.

5.3 Hamiltonian Vector Fields

We recall from a class in differential equations or vector calculus that a vector field
is a mapping from a set of vectors to another set of vectors. These were mostly used
for visualizing the dynamics of a given set of differential equations. This connection
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to rates of change appears again in the form of the Hamiltonian Vector Field.
Given a Hamiltonian H, the Hamiltonian vector field, XH , is defined by

XH(qi, pi) =
(

∂H

∂pi
,−∂H

∂qi

)
=

(
q̇i,−ṗi

)
.

5.4 Infinitesimal Generators

Let g be a Lie algebra on a manifold M . Then the infinitesimal generator of g is
the vector field ξM is given by

ξM (z) =
d

dt

(
exp(tξ) · z

)∣∣∣∣
t=0

.

Notice that these two vector fields both map into g∗. The Hamiltonian vector
field maps into a row vector of elements of T0G, which is g∗. (These last two
definitions can be found in [2].)

5.5 Momentum Maps

We have one final definition to make before we may proceed to a meatier area.
Suppose that we have a set of Hamiltonian functions on TG, f(ξ), parameterized
by the elements of g such that

Xf(ξ) = ξG,∀ξ ∈ g.

Then the map J : TG → g∗ implicitly defined by〈
J(z), ξ

〉
= f(ξ)(z),∀ξ ∈ g, z ∈ TG

is called the momentum map.
This is defined, and further explained in [5] and [2].

5.6 What Pray Tell is g∗?

Now that we have dealt with several consecutive entities, we are left with the ques-
tion of what g∗ is. We may, if desired, view it as a formal construction, but when
possible we should try and discover a physical quantity, which even if g∗ is not quite
isomorphic to, it is at least metaphoric to.

As a first suggestion we feel obliged to comment that we just defined momentum
maps, which map into g∗. This suggests that g∗ is somehow connected to momentum,
or a generalization thereof.

More subtly, recall that by definition g∗ is a set of linear maps from g into R.
That is, whenever we multiply an element of g∗ and an element of g we get a scalar.
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Now, there is only one type of scalar quantity that is associated with the dynamics
of a system, the energy terms. Given that we have already associated g (via T0G)
with velocity, and that the product of momentum and velocity has units of energy,
the association with momentum seems quite justified.
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6 Reductions by Symmetry

6.1 The Reduced Euler-Lagrange Equations

Now that we have many complicated mathematical constructions, we have the ques-
tion of how to perform a reduction of a symmetry. The first method we will describe
is effectively a direct computation on a projected space that is equivalent to our orig-
inal space, at least as far as the dynamics of the system are concerned. It is taken
from a paper by Marsden and Scheurle [2]:

Euler-Poincaré: Let G be a Lie group and let L : TG → R be a left invariant
Lagrangian (that is the left translation action of the Lie group does not change the
Lagrangian). Let l : g → R be its restriction to the identity. For a curve g(t) ∈ G,
let ξ(t) = g(t)−1 · ġ(t). Then the following are equivalent:

1. g(t) satisfies the Euler-Lagrange equations for L on G
2. The variational principle

δ

∫ b

a
L

(
g(t), ġ(t)

)
dt = 0

holds, for variations with fixed endpoints
3. The Euler-Poincaré equations hold:

d

dt

δl

δξ
= ad∗ξ

δl

δξ

4. The variational principle

δ

∫
l
(
ξ(t)

)
dt = 0

holds on g, using variations of the form

δξ = η̇ + [ξ, η]

where η vanishes at the endpoints.

In some sense, this theorem tells us exactly what we would expect. It says
that we can effectively disregard the redundant variables. However, it has a certain
weakness, in that it requires that the Lagrangian be invariant under the entire group
(which must also be the configuration space).

6.2 Sketch of a Proof of the Euler-Poincaré Theorem

That (1) and (2) are equivalent is one of the most fundamental results of Lagrangian
mechanics.

The two variational principles are the same because by construction l takes on
the values of L when ξ takes on values corresponding with the g it is derived from.
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The variation restriction in (4) effectively constrains us to variations that could be
derived from variations on g and that make sense in TG

G . This calculation is shown in
[2]. (It is recommended that one also reads the proof of the special case; the general
proof often does not receive full elucidation because of already existing exposition
in the proof of the special case.)

The equivalence of (3) and (4) is really little more than the previous calculation
regarding the equivalence of Hamilton’s principle and the Euler-Lagrange equations
performed in a different space.

Example Elroy’s Beanie
In this version of the example, the two angles, θb , the angle of the beanie,

and θp, the angle of Elroy, are completely disjoint. This non-coupling simplifies the
problem. Thus the Lagrangian is simply L = 1

2Ibθ̇
2
b + 1

2Ieθ̇
2
p. Clearly the equations

of motion are simply that θ̇b and θ̇p are constant, which we will confirm.

This means that G = S1×S1 and that g(t) =
(

eiθb(t) 0
0 eiθp(t)

)
. Define I =

[
Ib 0
0 Ip

]
.

(Using this representation, we get that L = tr1
2

(
˙g(t)−1I ˙g(t)

)
.) Then we get that

ξ(g) = g−1(t)ġ(t)

=
(

e−iθb(t) 0
0 e−iθp(t)

)(
iθ̇b(t)e

iθb(t) 0

0 iθ̇p(t)eiθp(t)

)
=

(
iθ̇b(t) 0

0 iθ̇p(t)

)
.

We are used to representing states as vectors, but in this case the matrix for-
mat allows us to easily do the multiplication (if you change a column vector to a
diagonal matrix, componentwise multiplication is easily represented). We are using
preexisting notation to best allow us to work in the S1×S1 space, in which addition
is best represented using complex multiplication.

Let l =
〈
Iξ(t), ξ(t)

〉
. Notice that this is essentially the same kinetic energy except

that we have stripped it of all positional information (notice that no θ’s appear in
the formula for ξ).

Since we have that g satisfies the equations of motion, we must have that l also
does. Taken as a variational principle, this says that

δ

∫
l
(
ξ(t)

)
dt = 0.

So,

28



0 = δl

= δ
(1
2
Ibθ̇

2
b +

1
2
Ipθ̇

2
p

)
= Ibθ̇bδθb + Ipθ̇pδθp.

Now, since δθb and δθp could be anything, and since they are independent, they
can never sum to 0. The only way that δl = 0, then, is if ˙thetab = θ̇e = 0.

Example Elroy’s Beanie (modified)
Now consider what happens when we put a spring on Elroy’s beanie so that there

is a restoring force whenever Elroy and his beanie are out of alignment. This means
that we get a potential (assuming it is an ideal spring) which is U = 1

2k(θb − θp)2.
If we define φ1 = 1√

2

(
θb + θp

)
and φ2 = 1√

2

(
θb − θp

)
, we can rewrite the Lagrangian

as 1
2I ′1φ̇

2
1 + 1

2I ′2φ̇
2
2 − 1

2k′φ2.
We are stuck (at least as far as this theorem is concerned). The theorem fails

because it requires that the group act invariantly on the entire manifold. Even
though we change coordinates so that one of the two angles is cyclic, the theorem
still fails. What we want is an analogue to the Routhian procedure, where we can
at least eliminate φ1.

Aside: In the interests of full disclosure, I concede that the above potential is
technically best described as being a function on R×R, instead of S1 × S1 because
this better describes the distinction between a difference of say 78◦ and 438◦. These
two difference angles are the same on an S1 space, but are (correctly) distinguished
on R. Assume that we never rotate Elroy too far with respect to his beanie if this
bothers you.

6.3 Routhian Reduction

There is also an analogue of the Routhian procedure.
Routhian Reduction Theorem [3]: Let Q be a manifold and let a Lie group

G act freely (it has no fixed points) on it. Let J be its momentum map on TQ.
Assume that µ ∈ g∗ is a regular value (a point where the derivative is surjective
[2]) of J . Consider a simple mechanical system given by a Lagrangian L : TQ → R
which is G-invariant. Define the Routhian Rµ : TQ → R to be

Rµ(q, q̇) =
〈
A(q, q̇), µ

〉
− L(q, q̇)

where A is the mechanical connection. (This Routhian is the negative of the one in
the cited paper; this is done to make the Routhian match the Hamiltonian).

Suppse that q(t) satisfies the Euler-Lagrange equations for L and lies on the
level set J

(
q(t), q̇(t)

)
= µ. Then the induced curve on Q/Gµ satisfies the reduced

Lagrangian variational principle dropped to T (Q/Gµ).

29



We have not yet discussed the mechanical connection, or in fact any type of
connection. Recognize that the quotient group is a type of projection. Then we can
reconstruct the original group as TQ = TQ

G ⊕ g. (Imagine that the quotient group
removes a copy of G, which is restored by g). Thus the mechanical connection
effectively adds in a copy of what was projected out by the quotient.

The quotient removes an entire coordinate from TQ. This is the same situation
as in the classical Routhian, where we take the difference of the Lagrangian and a
momentum multiplied by the removed coordinate’s velocity.

Example Elroy’s Beanie (Modified)
Using the alternate coordinate system described earlier, we have one cyclic vari-

able. This corresponds with the fact that we have an S1 × S1 configuration space
and a S1 symmetry, corresponding with the fact that the overall orientation of Elroy
and his beanie does not matter.

6.4 Pendulum Madness

We leave you with a question to consider. Foucault’s pendulum is a staple of science
museums everywhere. It consists of a single spherical pendulum, like the one we have
been considering throughout. However, now we include the rotation of the Earth in
our calculations. This causes the pendulum to precess. There is clearly a symmetry
here. But what form does it take, since S1 does not break apart S2 in an obvious
manner?
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