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Every child is an amalgamation of its parents’ physical characteristics. In-
heritance of sequences of deoxyribonucleic acid (DNA) from both parents gives
rise to the child’s physical traits (phenotype). Due to the huge amount of DNA
found in the human genome (about 30,000 genes with thousands of DNA bases
per gene), every individual (with the exception of identical twins) carries a
unique set of physical characteristics. However, what happens if we reduce the
genome size? Suddenly, it is possible for multiple parents to have the same ge-
netic child; hence, placing restrictions on genome size can significantly affect the
number of parents able to produce a group of children. We seek to mathemat-
ically describe the minimum genetic diversity needed in a parental population
to yield the amount of diversity found in a set of children. First, we introduce
the biological basis for the mathematical theory that we subsequently develop.

Genes are linear sequences of DNA that code the phenotype of every living
organism. Each individual has a maternal and paternal form of every gene;
these alternate forms are called alleles, and when paired, make three possible
combinations: homozygous dominant, homozygous recessive, or heterozygous.
For pedagogical simplicity, assume that the expression of one pair of alleles yields
a single physical trait, such as eye color. Since both parents donate an allele
for each particular gene, and since multiple genes are often under consideration
when examining an individual’s physical features, it is helpful to examine the
linear collection of alleles that each parent contributes to a child. This linear
sequence of alleles is called a haplotype. A genotype, on the other hand, is
a linear collection of paired alleles in a child consisting of the two haplotypes
donated by the parents. A locus is the position of an allele or pair of alleles on
a haplotype or genotype, respectively.

Each allele is expressed as a binary pattern; that is, the allele is either
dominant, denoted A, or recessive, denoted B. Paired alleles at the same locus
have three possible combinations: homozygous dominant (AA), homozygous
recessive (BB), or heterozygous (AB or BA). When describing haplotypes, alleles
from a single parent are described; hence, the alphabet for haplotypes is {A,
B}. The alphabet for genotypes is {A,B,X}, where A represents the pair AA,
B signifies the pair BB, and X denotes pairs AB and BA. We call any genotype
locus occupied by an X ambiguous.

Two parental haplotypes determine the genotype of an offspring. This means
that at every locus, the alleles on two parental haplotypes define the form of the
gene at the corresponding locus in the offspring’s genotype. Mathematically, let
H denote a set of haplotypes and G denote a set of genotypes. Let ! be the
allele in locus i on haplotype i/ and g/ be the allele in locus i on genotype g/.
(Note that if only one haplotype or genotype is under consideration, the index
j is disregarded.) For parent haplotypes h', h? € H and offspring genotype
g € GG, we have the following at each locus:

e 5= Aif, and only if, Bt = 2 = A.
e g; = Bif, and only if, h} = h? = B.
e g; = X if, and only if, either A} = A and h? = B, or h} = B and h? = A.



We say that h' ® h? = g provided that h', h?, and g adhere to these three rules.
For example, let h' = AABAAB and h? = ABBABB. Then, h! @ h? = g =
AXBAXB.

Parental haplotypes that contribute genetic information to the same off-
spring’s genotype are called mates. That is, if h' @ h? = g, then h! mates with
h? to form g. Furthermore, we say that h! reconciles g if h' ® h? = g, for some
h2.

Notice that h' and h? uniquely define a child. To see this, let h',h2 € H,
and assume that g',¢g?> € G 3 h' ® h? = ¢g' and h' @ h? = ¢g2. Then, at each
locus we have the following possible cases:

Case 1: If h} = A and h? = A, then g} = A and g7 = A.
Case 2: If h} = B and h? = B, then g; = B and g7 = B.
Case 3: If b} = A and h? = B, then g; = X and g7 = X.
Case 4: If h} = B and h? = A, then g} = X and g7 = X.

So, g; = g7,Vi, and we have that h' ®h? = g' and h' @ h? = g° implies g* = g°.
The implication of this fact is that any two haplotypes mate together to yield
exactly one genotype.

Fact 1 @ is a binary operation.

From this fact we see that the graph in Figure 1 cannot occur in our problem.

Figure 1: Fact 1 eliminates this graph from consideration.

To express pedigree structure between two populations, we introduce a graph

that contains edges between genotypes and the haplotypes that are capable of
reconciling them.

Definition 2 A bipartite graph D = (H,G, E) is a diversity graph
if
o (G is nonempty.

e E C H x G with the property that if (h',g) € E, then there
exists an h> € H such that (h?,g9) € E and h* ® h? = g.

For a diversity graph D = (H, G, E), we say H resolves G if for all g € G, there
exists h', h? € H such that h! ® h? = g.



Let N(g) = {h: (h,g9) € E}; that is, N(g) is the neighborhood of g € G. We
define the degree of g, denoted deg(g), as the number of edges emanating from g.
The next fact establishes an upper bound on the cardinality of H in a diversity
graph D = (H,G, E) by examining deg(g) for each g € G. We denote the set
of all possible haplotypes of length n by H. Since D = (H,G, E) is a diversity
graph, we know H resolves G. Let locus g; = X, and let h! @ h? = g for h!,
h? € H. Then, if A is in locus h}, B must be in locus h?. So, for every X on
every g; there are two choices for alleles in the corresponding haplotype locus.
Hence, for r4 ambiguous loci on genotype g, there are 279 potential combinations
of alleles, with each combination pertaining to different possible haplotype.

Fact 3 Let D = (H,G,E) be a diversity graph. Then, deg(g) < 2"¢ for all
g € G, where ry is the number of ambiguous positions on genotype g.

It is possible to construct both diversity graphs that satisfy the proper inequality
and graphs that satisfy the equality. For example, let » = 2. Notice that
H = {AAA, ABB} resolves G = AXX; here, deg(AXX) = 2 < 4 = 22 5o
deg(g) < 27s. Conversely, if |G| = 1, then for r > 1, it is always possible to
satisfy the equality.

Note that this fact gives a loose upper bound that regulates the maximum
size of H. We can use this to discuss an ordering of H that establishes haplo-
type pairs that mate to yield a wholly ambiguous genotype. First, extend the
definition of & to mate loci in addition to mating haplotypes. That is, let 7 be
a given locus. Then, h! @ h? = g; for h',h? € H and g € G if the following are
true:

o gi = A if, and only if, h! = h? = A.
e g; = Bif, and only if, h} = h? = B.
e g; = X if, and only if, either h} = A and h? = B, or h} = B and h? = A.

Theorem 4 Let H be the set of all haplotypes of length n. Order the elements
of H lezicographically. Then hi @& K —3+t1) = XX... X, where 1 < j < 2".

~ Proof: Let H be the set of all haplotypes of length n. Then, |H| = 2". Let
h? be the right-most locus in each haplotype. Without loss of generality, let A
> B, and let the haplotypes be ordered lexicographically such that h/ > hi*1.
(So k' = AA...A.) Now, exchange every A for B and B for A. Notice that it is
now true that A/ <z, ATV j. That is, this new list is the reverse of the previous
list.
Let a be any position such that hg = A. That is, we start at an A at hl and
travel down the list 3 haplotypes to get an A at h3. Recall that reading the
list in reverse yields the same results as flipping A’s and B’s. Hence, if we start

at a B at h?; and move up the list 8 haplotypes, we get to a B at hﬁf"*ﬂ“).

So, due to the symmetry of the ordering, if k2 = A, then h&?" —A+Y) B, and if
h2 = B, then hE AT — A, Hence, h2 @ hZ" A1) = X. Since this is true for



any locus o and f, we have in general that A/ @ (2" —7+1) = XX..X. [

As an example, let n = 3, and let A > B. This gives us the list on the left
below. Exchanging A’s and B’s then produces the list on the right.

AAA BBB
AAB BBA
ABA BAB
ABB = BAA
BAA ABB
BAB ABA
BBA AAB
BBB AAA

Notice that the right list is simply the left list in reverse order. In addition,
each entry on the left mates with the entry directly across from it on the right
to form XXX.

To express a lower bound on the number of haplotypes needed to yield a
given set of genotypes, we introduce the term H*.

Definition 5 H* is any H C H such that |H*| = min{|H| : H resolves G}.

So, H* is a set of haplotypes with the smallest cardinality that resolves G. H*
biologically represents the smallest grouping of parental haplotypes that yields
the set of children’s genotypes. The primary focus of this work is to investigate
properties of an H* formed from the haplotypes in H. First, notice that we
may consider an H* for every diversity graph.

Fact 6 Given any diversity graph D = (H,G, E), there exists an H*.

A few notes on H* should be mentioned. First, H* need not be unique. This
is the primary motivation for examining |H*| instead of H* itself. In addition,
we know that D = (H,G, E) is a diversity graph. Let D* = (H*,G, E*) be a
subgraph of D, where E* is the edge set induced by H*. Since H* resolves G by
definition, it must be true that if (h!,g) € E*, then there exists an (h%,g) € E
such that h' @ h2 = g.

Fact 7 D* = (H*,G, E*) is a diversity graph.

Diversity graphs are bipartite graphs with a specific edge structure. Note
that if a genotype has at least one ambiguous locus, the degree of the genotype,
denoted deg(g), corresponds to the number of parental haplotypes that reconcile
g. Since we know from Fact 1 that haplotypes must come in unique pairs, we
would suspect that the degree of g should be even for any g. The following
theorem shows that this is indeed the case.



Theorem 8 If D = (H,G, E) is a diversity graph, then deg(g) is even for all
g €q.

Proof: Let D = (H,G, E) be a diversity graph. Let g € G be such that
deg(g) = n. Suppose n is odd. Then, n > 3. So, Ih!, h?, h® € H 5 h? # h3,
h*®h? = g, and h*®h® = g. For each locus h! and g; we have four possible cases:

Case 1: If b} = A and g; = A, then h? = 4 and h} = A.
Case 2: If h} = B and g; = B, then h? = B and h} = B.
Case 3: If h} = A and ¢g; = X, then h? = B and h} = B.
Case 4: If b} = B and g; = X, then h? = A and h} = A.

Hence h? = hiVi. So h* = h3, which contradicts that h' can mate with two
distinct h € H to yield g. Since this means h' reconciles g with a unique
haplotype, there must be an even number of haplotypes that reconcile every g.
However, this contradicts that n is odd. So, deg(g) is even for all g € G. [ ]

Unfortunately, the converse is not true, as is shown in the counterexample
in Figure 2.
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Figure 2: Counterexample. Though the graph is bipartite with deg(g) even for
all g e G, D = (H,G, E) cannot be a diversity graph.

The graph in Figure 2 is bipartite and has even degree for every g € G. Since
the genotypes in G must be distinct, we let one locus differ. Without loss of
generality, we let the genotypes be assigned the values BXXX and XXXX. In
the graph on the left, we call the top genotype BXXX and the bottom genotype
XXXX. Since the top genotype is connected to every h € H, the first locus of
every h must contain a B. However, to satisfy the diversity graph condition,
at least two h’s connected to the bottom genotype must have an A in the first
locus. This gives us a contradiction.



If we reverse the values for the genotype nodes, as done in the graph on
the right, we come to a similar contradiction. The lower four haplotypes must
contain a B in the first locus to reconcile the bottom genotype. However, in
order to allocate a mate to each haplotype, we must then assign an A to the first
locus of four other haplotypes. Since H has less than eight nodes, this is not
possible; that is, we cannot construct four unique pairs of haplotypes that mate
to form the top genotype. Thus, it is not possible to assign values to the nodes
in G so that if (h!,g) € E, then there exists an h € H such that h'! ® h = g.
Therefore, every bipartite graph with an even degree for every g € G is not a
diversity graph.

Fortunately, we can extend any bipartite graph (H, G, E) to a diversity graph
by including additional haplotypes and edges. Recall that N(g) = {h : (h,g) €
E}. Let

T, = | J[N(9) N N(g")]
979’
and by = |Ty|. So, by is the number of haplotypes in the neighborhood of g that
are in at least one other genotype’s neighborhood. Let C' € R, and define

.- [ 0 if C<0
TTl C if ¢>o0.

Then, let lfIg be a set of cardinality (2by — |N(9)|)+. We extend each neighbor-
hood with H, such that the new neighborhood of each g is N(g) = N(g) U H,.

Now, let H = U N(g)| U |H\ U N(g)|. So, H contains all the original
9€G geG

haplotypes (including those with no edges to G) plus the extensions of each

neighborhood. Finally, for all h € N(g), let (h,g) € E. (See Figure 3 for a

geometric depiction of these definitions.)

Figure 3: Geometric representation of T, fIg, N (g), and H.



Theorem 9 Any bipartite graph (H,G, E) with deg(g) even for all g € G can
be extended to a diversity graph D = (H,G, E), where

[H| = [H| <Y (2by = IN(9)])+-
geG

Proof: Let (H,G, E) be a bipartite graph such that |G| = 1. Let G = {g},
and assume deg(g) = 2p for some p € N. Obviously, every haplotype is in the
neighborhood of at most one genotype. So, T, = ) and b, = 0. Then, H, = 0,
which means N(g) = N(g) U f[g = N(g). Therefore, H = H and E = E. Note
that no additional haplotypes needed to be added in this case.

Let » € N be such that 2p < 2". Set g to be a sequence of r X’s; that
is, g = XX..X. Let the haplotypes be ordered from h' to h*’. Set h} =
A for all locus i. For j odd, let h'*? be the next greatest allele permutation
lexicographically after h/, where A > B. For instance, if r = 5, then we have
the following;:

Rl = AAAAA
h3 = AAAAB
K5 = AAABA
hT = AAABB

Notice that since 2p < 2" and since we have assigned only A/ with odd j, we
have labeled at most half the haplotypes. For j even, set each locus h] such
that /=1 ® by = g, as demonstrated in Theorem 4. In the example above we
have the following:

Weoh?=g = h®=DBBBBB
Woht=g = h'*=BBBBA
Woht=g = h®=DBBBAB

= h® = BBBAA

Keh=g

Since deg(g) is even, we establish p pairs of mates with this ordering. In addition,
E has the property that if (h/,g) € E and j is odd, then h? ® hiT! = g and
(hitl,g) € E. Likewise, if (h?,g) € E and j is even, then b/ ® h/~! = g and
(hW~1,9) € E. Thus, D = (H,G, E) is a diversity graph.

To show the bounding argument for this base case, notice that (26—|N(g)|)
(0 — 2p) < 0, which means that (2b — |N(g)|)+ = 0. Hence, |H| — |H| = 0
(2b— [N (g)])+-

Assume that if |G| < k, the result holds.

Let (H,G, E) be a bipartite graph such that |G| = k + 1. Assume deg(g) =
2p, for each g € G. Let G}, be a subset of G of cardinality £ such that G =
Gr U {v}. Then, let Hy be the set of all haplotypes in H that reconcile some
g € Gy, and let Ej, be such that if (h,g) € E and g € Gy, then (h,g) € Ej.
Note that Dy, = (Hg, Gy, Ey) is a subgraph of (H,G, E) with v and its edges



removed. We know by our assumption that Dy can be extended to a diversity
graph Dy = (Hg, Gy, Eg).
Assume |N(v)| = 2p,, and set T, = U [N(y) " N(g)] and by, = |T,|. Let
97#
H,, be a set of cardinality (2b, — |[N(y)|)+, and extend the neighborhood of ~

by setting N(y) = N(y) U H,. For all h € N(y), we let E = {(h,7) : h €
N()}UEy. Let H = H, UN(v). We claim that (H, G, E) is a diversity graph.

The following inequalities establish that this extension is bounded appropri-
ately:

H|-|H| = |HUNQ@)| - |H]

< |+ IN()| - |H]

= |Hp| +|N(v)| = (H\N()[+ [N(7)])

= (Hi| = (H\NO))) + (N[ = [N()])

< D (26— N+ + (N = IN(M)])
gFY

= > (2 — IN(9))+ + (IN(y) U H,y| = [N(7)])
9#Y

< D (2b = IN@)+ + (N + |Hy | = [N()])
g#Y

= ) (26, — IN(9))+ + |H,|
gFY

< D (2by = IN()+ + 25y — [N+
9#

= > (20— IN(9))+-

g

Now, add p, € R loci to the right end of every genotype in Gy, and let each
of these last p, loci contain an A. Then, add p, loci to the right end of every
haplotype in Hj, such that each locus contains an A. Note that if i ® h2 = g
for h', h? € Hy and g € G}, then even with these additional loci, it is still true
that h! @ h% = g. This means that Dy = (Hy, Gy, Ey,) is still a diversity graph.

Let v be the same length as each g € Gy, and let v; = X for all loci 1.
Notice that v is unique from every other g € G. Also, note that each h € T,
is already defined since h reconciles some g* € Gj. For every h € T, set an
h' € H,U(N(y)\T,) such that h & h’ = . Since + is unique, we know that this
will always yield a value for h' that differs from every other haplotype in H.
Note that the last p, loci of every A’ must all contain B’s by the construction.

Let F' = {h : h has no assigned value and h € H,U(N(vy)\T,)}; that is, F' is
the set of remaining unlabeled haplotypes. Since | N (7)| is even by construction,
and since we have assigned pairs of haplotypes, |F| must be even. Let all but

the last p, loci of ‘F|2_1 h € F contain B’s. Let all but the last p, loci of the

remaining h € G contain A’s. Next, let the first and second of these remaining
P loci contain an A and B, respectively, for the |F|T*1 elements of F' that were

assigned B’s in all but the last p, loci. Conversely, let the first and second of




[F|—1

these remaining p, loci contain a B and A, respectively, for the remaining “——

elements of F. So, F' looks like the following:

{ BBB.BAB——...—,
BBB.BAB— —...—

7

BBB..BAB——...—
AAA.ABA — — ... —
AAA.ABA — — ... —

’
7

Y

AAA.ABA-—...— }

Assign the last p, — 2 loci on each element of F' as demonstrated in the base
case; that is, lexicographically assign the odd elements, and let the even elements
mate with the odd.

Notice that if (h*,v) € F, we have that 3 € F 3 h' @ h? = ~. In addition,
we have now constructed values for every h € IV, so that every h can mate with
an h' € Ny to form . Hence, we have by our construction of NW and by our
assumption that Dy, is a diversity graph that if (h!, g) € E, then there exists an
h? € H such that (h%,g) € E and h' ® h? = g. Therefore, D = (H,G,E) is a
diversity graph.

|

Our investigation is broadened by exploring the effects of controlling the
highest number of mates that any haplotype is allowed. We now extend our
optimization problem to incorporate restrictions on the maximum number of
mates that any h can have, denoted m. To this end, we define a function ¢(m)
that relates m to the cardinality of the H*.

Definition 10 Let D = (H,G, E) be a diversity graph. Then, ¢(m) =
|H*|, where no haplotype can have more than m mates.

At some threshold, increasing m does not change the cardinality of H*. Intu-
itively, this makes sense; for instance, if a haplotype is not compatible with more
than m genotypes, then allowing this haplotype to mate with m + 1 haplotypes
introduces no additional edges. Thus, ¢(m) = ¢(m + 1) for some m. In addi-
tion, increasing the number of possible mates that any haplotype is allowed will
never cause an increase in H*. Thus, ¢(m) > ¢(m+1) for all m, or equivalently,
¢(m) is non-increasing,.

Definition 11 m* is the smallest m such that ¢(m) = ¢(m+k) for
all ke N.

For any natural number m > m*, ¢(m) = ¢(m*). Notice that haplotypes
cannot reconcile more than |G| genotypes. Hence, no haplotype can ever mate
with more than |G| other haplotypes.



Fact 12 Since ¢(|G|) = ¢(|G| + k) for all k € N, it must also be true that
d(m*) = ¢(m* + k) for all k € N for some m* <|G|.

Thus, we have established an upper bound on m*. Alternatively, if no haplotype
reconciles more than one genotype, then m* = 1. This places a lower bound on
the value of m*.

Fact 13 1 <m* <|G|.

The example in Figure 4 shows that for some G, m* < |G|. Note that since
no other set of haplotypes could resolve G, m* must equal two. Since |G| = 3,
m* < |G|.

H"
G

MH,

__=J-a'| AAX

“kar—#.éﬂm

Figure 4: Example showing m* < |G|. Here, m* = 2, whereas |G| = 3.

When there is an h € H that is compatible with every g € G, restricting m*
to a number less than |G| often forces an additional haplotype to be included
in H in order to resolve G. For example, let G = {XAAA, AAXA, AXAX]}, as

shown in Figure 5.

E G "' G
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Figure 5: Example showing m* = |G|. Here, m* = |G| = 3.
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Haplotype AAAA can reconcile every g € G if it is allowed at least three mates.
However, if only two mates are allowed for any h, then |H| must increase by
one. Hence, m* = |G|.

Earlier, we described our problem as finding an H* for various G’s. In
certain cases, we can explicitly identify the structure of a diversity graph in
relation to the cardinality of a minimum haplotype set. Recall that N(g) is the
set of h € H that reconcile g € G and T, = U [N(g) N N(g")].

979’

Lemma 14 Suppose that Ty # 0 for some g € G. Then H* contains an element

of U T,.

geG

Proof: Let T, # () for some g € G. Suppose that H* does not contain an
element of U Ty. Then, to resolve G we must select two elements from each
geG
N(g)\ U T, to resolve {g} provided that g has at least one ambiguous locus. If
geG
g contains no X'’s, we select one element from N(g)\ U T, to resolve {g}. This
le]
implies that |H*| = 2|G|—wu, where u is the number ogf g with no ambiguous loci.
However, we know that T, is nonempty for some g, which means 3¢*,¢* € G
such that h! @ h? = g' and h' @ h® = g2 for some h', h?,h® € H. If we include
hl,h? k% in H*  then |H*| = 2|G| — u — 1, which contradicts the previously
established size of H*. Hence, H* contains an element of U Ty. u
9€G

Theorem 15 Let all g € G have one or more ambiguous loci. Then, |H*| =
2|G| if, and only if, {N(g) : g € G} U {{h : deg(h) = 0}} partitions H.

Proof: (<) Let all ¢ € G have at least one ambiguous locus, and let
{N(g) : g € G} U {{h : deg(h) = 0}} partition H. Then, there does not exist
an h € H such that h reconciles both g; and g, in G, with g; # g». Since
all g are ambiguous in some locus, there does not exist an h € H such that
h@h = g for any g € G. So, two distinct h must mate to form every g. Since H
is partitioned, H* has exactly two h from each N(g). Therefore, |H*| = 2|G|.

(=) Let |H*| = 2|G|, and suppose that T, # () for some g € G. Then by

Lemma 14, H* contains an element from U T,. Let g*,¢* € G be such that
geG
hl @ h% = g' and h!' @ h® = g2 for some h',h? k3 € H. Let G' = G\{g',*},
and let H' = U N(g). Let (H")* be such that
geG’

|(H')*| = min{|H| : H C H, H resolves G'}

11



. So, we find (H')* on (H,G', E'). It is obvious from the definition of H* that
|(H')*| < 2|G"|. We know that we can resolve G’ by adding h', h?, and h® back
into (H')*. Since all three haplotypes might not be required to resolve G', we
know that 2|G| = |H*| < |(H')*| + 3. This means the following:

< |(H)|+3
< 2IG'|+3
= 2(G|-2)|+3
2|G| - 1.

2G| = |H|

Since this is a contradiction, we have that T, = 0Vg € G. Hence, N(g%) N
N(g’) = 0Vi # j. Obviously, {{h : deg(h) = 0}} N N(g) = BV g. Notice that
{N(g) : g € G}U{{h : deg(g) = 0}} = H. Hence, {N(g) : g € G} U {{h:
deg(g) = 0}} partitions H. [ ]

One advantage of identifying m* is that we may use it to elucidate the size
of H* either independently (as with the previous theorem) or through ¢(m*).

Theorem 16 Let m* = |G|. Then,

$(m*) = |G| if 3ge G > W @ h' = g for some h' € H*,
m)= |G| +1 otherwise.

Proof: Let m* = |G|. Then, 3h' € H* 5 h' is compatible with every g € G.
Since H* resolves G by definition, there exists h* € H* 3 h' @ bt = gV g € G.
We have two cases:

Case 1: Suppose that h' ® b' € G. Then, Fact 1 gives us that h' mates with
a unique h? € H to reconcile each g' € G. Hence, ¢(m*) = |H*| = |G| + 1.

Case 2: Suppose h' @ h' € G. From Fact 1 we know that h' mates with a
unique hi € H to reconcile each g € G. So, h' mates with |G| — 1 haplotypes
in addition to itself to yield the remaining genotypes. Hence, ¢p(m*) = |H*| =
1+ (Gl - 1) = [G]. "

We would like to identify m* efficiently from a given diversity graph. Recall
from the discussion of Figure 5 that if there is an h € H that is compatible
with every g € G, restricting m* to less that the number of g that h reconciles
often forces an additional haplotype to be included in H in order to resolve
G. So, it might make sense for m* to be the largest number of mates held
by any haplotype. Unfortunately, this supposition does not hold true, and a
counterexample is supplied in Figure 6. We first develop a function, denoted
f(h), that measures the size of the largest subset of G that any h € H reconciles.
Let D = (H,G, E) be a diversity graph such that H is the set of all possible
haplotypes that can resolve G. For all h € H,let S, = {LC G: h®dgq €
L for some g € H}. For all h, let f(h) = maz{|L|: L € Sp}.

Proposition 17 m* = maz,{f(h)}.
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The proposition is false, as seen in the following example. Let G = {AXAAX,
AXXAA, AAXXA, AXAXA, XAAXA}, as shown in Figure 6. Then, we can find
H, C H such that |Hy| = 6 and mazpem, f(h) = f(AAAAA) = 5. However,
we also can find Hy C H such that |Hs| = 5 < |Hy| and mazpem, f(h) =
f(ABAAA) = f(AAABA) = 3 < mazpen, f(h). Hence, for this G, m* < 3,
while mazpecg f(h) > 5. Thus, the maximum number of mates needed to resolve
G does not directly relate to the maximum quantity of mates with which any
given haplotype has the possibility of pairing.

max, . {i{h)} =3
Il =5

Figure 6: Counterexample demonstrating that m* # mazpcg{f(h)}. In the left
graph, |H;| = 6 and mazpecp, {f(h)} = 5. In the graph on the right, |Ha| = 5
and mazpem, {f(h)} = 3. Overall, m* < 3, while mazpea{f(h)} > 5.

Despite this counterexample, we have found valuable information about the
role of m* in determining |H*|. Depending on the diversity graph from which
it is derived, |H*| can take many forms; therefore, we have not established
a general bound on the minimum number of haplotypes that resolves any G.
Nevertheless, using the constructs N(g), m*, and ¢(m), we have placed bounds
on certain H'’s in relation to a diversity graph D = (H,G, E).

Since diversity graphs are essentially mathematical translations of biologi-
cal ideas, we can relate many of our results back to the biological basis from
whence they arose. Finding an H* is the mathematical equivalent of finding
the minimum genetic diversity necessary in an ancestral population of living
organisms to achieve the genetic diversity present in a later population. In the
study of genetics, establishing such genetic inheritance relationships aids the
development of pedigrees (family trees that contain genetic information).

Pedigrees are useful tools for studying transmission of genetic traits through
families. For instance, they provide great insight into the genetic basis for dis-
eases and aid gene therapists in identifying potentially life-threatening disorders
before children become symptomatic. In addition, pedigrees can give informa-
tion about the spread of historic epidemics, such as the black plague, and can
give insight into the genetic basis for disease resistance. Thus, any significant
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insight into pedigree structures, whether biological or mathematical, can poten-
tially have a cascading effect in the level of biological understanding of genetic
events.
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