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Abstract

This paper presents a fresh new combinatorial approach to the study
of minimal zero sequences of a finite abelian group. We begin by present-
ing some general algebraic theory aimed at reducing the search space of
potential minimal zero sequences for a certain class of groups, as well as
describe the optimal algorithm for generating all minimal zero sequences
of such a group. We continue by giving a closed form solution for the
number of atoms in an infinite family of groups. Then, by introducing
the concept of the dimension class of an atom in the block monoid of a
group, we are able to give a partial description of another infinite family
of groups.

Finally, we conclude by making a strong connection between the study
of minimal zero sequences and the polynomials of a group which are in-
variant under a certain class of cyclic variable substitutions.
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1 Introduction

1.1 General Introduction

Before we can do anything, we need to get some terminology out of the way.

Definition 1. Let G be a finite abelian group. A zero-sequence of G is a non-
empty sequence S of elements of G which sums to zero. If there is no proper
subsequence of S which is also a zero-sequence, S is said to be a minimal zero
sequence.

In general, when one wants to sum up two numbers a and b, they would
naturally be inclined to write a + b. However, in our case, we will usually be
summing up many items at once, and it becomes tedious to write the + symbol
so many times. For this reason, it will occasionally serve us to write the sequence
multiplicatively. In other words, let S = g1, g2, ..., gk. For shorthand, we will
simply write this as g1g2 . . . gk. Note that it is quite possible an element repeats
in the sequence. In this case, in keeping with the multiplicative notation, we
will write the multiplicity of the element as an exponent. So, for example, the
sequence S = g1g1g2g2g2g3 is written g1

2g2
3g3. The reader is warned not to

think that we are multiplying things, as what we are really doing is adding
elements. We just use the multiplicative notation as a shorthand. Care has
been taken to make sure that it is always clear from context whether we are
using additive or multiplicative notation.

Actually, what we’ve said about always adding elements is still not quite
true. A group has an arbitrary operation, and what we are really interested in
is sequences which, when “combined” under the operation of the group, result in
the identity of the group. However, because of the following well-known result
from algebra, we can say without loss of generality that any group we’re dealing
with uses the operation addition, and the identity is in fact 0 as we are familiar
with it.

Fundamental Theorem of Finite Abelian Groups[Foo99]. Let G be a
finite abelian group. Then, ∃n1, n2, . . . , nk ∈ N\{1} with nj |nj+1 such that
G ' Zn1 ⊕ Zn2 ⊕ · · ·Znk

.

When dealing with large collections of objects, it is helpful to give them give
them a standard algebraic structure, in order that we can use the entire theory
of algebra to deduce results about the items in the collection. As it happens,
the set of all zero- sequences of a finite abelian group form a monoid.

Definition 2. A monoid is a set G along with a binary operation ◦ such that

1. ∀a, b ∈ G, a ◦ b ∈ G

2. ∃e ∈ G such that ∀a ∈ G, a ◦ e = e ◦ a = a.

In other words, a monoid can be thought of as an algebraic structure which
resembles a group, except for the fact that every element need not have an
inverse.
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We will denote by B(G) the set

B(G) ≡

{
g1, g2, . . . , gt ∈ G

t∑
i=1

gi = 0

}
,

and we will call B(G) the block monoid of G. If we consider B(G) under the
operation of sequence union, then B(G) forms a monoid. It is left as an exercise
to the reader to verify this.

The algebraist will notice that the atoms or irreducibles of B(G) are exactly
the minimal zero sequences of G, and we will use these three terms interchange-
ably.

1.2 Exploring the Davenport Constant

In what follows, we pursue two main paths in the atomic theory of block
monoids, and as a bonus we present a surprising and remarkable connection
with invariant theory of finite abelian groups. In Section 2, we further explore
the long-studied Davenport constant, or the length of the longest atom of B(G).
We determine the Davenport constant for Z2

k ⊕Z6 for k = 4, 5, 6, 7, Z2
4 ⊕Z10,

and Z3
3 ⊕ Z6. Additionally, we strengthen existing upper bounds on D(G) for

the general group G, and we provide better upper bounds for D on a certain
family of groups, strengthening those given by [Maz92].

Much of the work which will be presented was made possible by the use of
a computer program designed for computing minimal zero sequences of finite
abelian groups, and its algorithm is presented in this section. We also give some
ideas on how to improve the speed of the algorithm by orders of magnitude.

In Section 2, we attack the question of the structure and number of atoms
of all lengths in Zk, Z2

n, and Z3
n . We provide a complete description of Zk

and partial descriptions of Z2
n and Z3

n.
The surprising connection to invariant theory is discussed in closing in Sec-

tion 3. Strom[Str48] calculated the number of invariant polynomials of Zn up
to n = 10, and we extend this by leaps and bounds, presenting the table all the
way up to n = 64. We then show how counting minimal invariant polynomials
of a group is equivalent to counting minimal zero sequences, and we finish by
extending Strom’s work to the general case of Zn1 ⊕Zn2 ⊕· · ·⊕Znk

and making
the same connection to minimal zero sequences. We also give a similar table for
the general case, up to Z7 ⊕ Z7.

1.3 Atom Counting 101

While research in block monoids is fairly active, one area that is still relatively
uncharted territory involves counting the number of atoms in the block monoid
of a group. Section 3 provides foundation for such study.

We start by pointing out that the existence of atoms of every length less than
the Davenport constant D(G) is clear. An atom of length D − 1 is constructed
by combining any two elements in a Davenport sequence, and one of length
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D− 2 by combining any two additional elements. Proceeding in this fashion, it
is clear we can construct atoms of length D− 3, D− 4, ..., 1. This fact not only
gives some familiarity with the non-Davenport atoms but will also be assumed
in the final formulas given in section 3.

Secondly, it is well known that the number of Davenport sequences for cyclic
groups of order n is equal to φ(n), the Euler Phi function [Wri80] (Do not
confuse this with the Davenport constant itself. φ(n) is the number of sequences
which have length equal to the Davenport constant). For example, in Z6, the
Davenport sequences are 16, 56 (26 is not a Davenport sequence since it is not
even minimal). It is interesting to note that when n is prime, then the number
of Davenport sequences is n− 1 since φ(n)=n− 1 when n is prime.

It is natural to ask (but difficult to answer) about non-Davenport atoms,
and about non-cyclic groups. In Section 3 we tackle this very question, and
solve the problem of counting the number of atoms in B(Z2

n) and the atoms of
certain types in B(Zn) and B(Z3

n).
Notice that by partitioning atoms into classes where two atoms are in the

same class whenever they have the same length, we obtain an equivalence
relation[Foo99]. We will make use of this fact, and we will refer to the equiva-
lence classes as length classes. Most of the atom counting in Section3 partitions
the atoms by length class and counts the number of atoms in some or all of these
classes. We are able to solve B(Z2

n) completely, and in B(Zn) and B(Z3
n) we

count some of the length classes and give ideas on how to count the others.
The reason for partitioning the atoms into such classes is that it actually

turns out to be easier to count them when they are organized by length. Indeed,
we state a conjecture that this has to do with the varying behavior of different
isomorphism classes (we formally state this conjecture later). The reason that
this partition is sufficient to count all atoms in the case of B(Z2

n) is because
each element of this group is its own inverse and this fact leads to a significant
simplification in the counting process. In other groups, however, this is not
true, and even in B(Zn) and B(Z3

n), partitioning the atoms into length classes
alone is insufficient. More precisely, a length class alone is not specific enough to
define an isomorphism class, so we further partition atoms by their multiplicity
classes.

Multiplicity classes describe the multiplicity of the elements in addition to
the overall length and are defined by the construction that follows: order the
elements from highest to lowest multiplicity. For each distinct element in this
ordering, pick the next lowest symbol of your choosing (we will use the Roman
alphabet exclusively). Write this letter as raised to the k’th power, where k is
the multiplicity of the distinct sequence element you are currently looking at.
Repeat this process for the remaining elements in the sequence, and you are
left with a string representing the multiplicity class. For example, the atom
1 · 1 · 1 · 2 · 3 · 3 in B(Z10) is rearranged 1 · 1 · 1 · 3 · 3 · 2 and represented a3b2c.
The particular atom is then a member of this multiplicity class. Multiplicity
classes are more specific than length classes since we get many more partitions
this way, and hence proofs relying on multiplicity classes tend to be easier than
those relying on length classes. It is interesting to note that all atoms in B(Z2

n)
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are composed of all distinct elements. So in a sense, we are also counting by
multiplicity classes in Z2

n, it is just that they do not further partition the length
classes as they do in other B(G).

Section 3.1 gives proofs for the number of atoms in B(Zn) for some multiplic-
ity classes, and this is as far as we partition A(B(Zn)). However, for B(Z3

n), we
are able to introduce the concept of a dimension classes and partition the atoms
into even finer partitions. Since the term dimension class is specific to section
3.3, it’s exact definition will not be presented until we reach that section. A
general equation is given for the number of atoms in B(Z3

n) that is reminiscent
of the formula for the number of atoms in B(Z2

n), but it is significantly more
complicated, and we only determine its values for certain dimension classes. In
addition, this knowledge gives us explicit formula for atoms of lengths 1, 2, ..., 6.

To this work on counting atoms is appended Section (reference), which gives
select theorems restricting the available multiplicity classes for larger families
of groups, including B(Zp

n), p prime. These are in the same spirit as the first
three subsections which use the ideas of structure in their counting, and this
connection is indicated in detail in the conclusion of the paper.

2 Bounded By The Davenport Constant

2.1 Structure of Davenport Sequences

In this section we aim to determine the structure of Davenport sequences in
groups where D(G) 6= M(G). We do this in two ways. First we restrict the
multiplicities of certain elements appearing in Davenport sequences, and sec-
ondly we fix by group automorphisms many elements appearing in the sequence.
At the end of the section we use these results along with a computer program
(described in section 2.5) to determine the Davenport constant of several groups
for which it was previously unknown.

We will use the following two definitions extensively througout this section.
We define a method of considering irreducibles in one group as irreducibles in a
smaller group for which more may be known about the structure of Davenport
sequences. We also define a means for calling irreducibles equivalent in structure,
thus if we are only interested in the length of the longest irreducible we need
not consider irreducibles which are equivalent.

Definition 1. Let G = Zn⊕G′. Then a reduction from B(G) into B(G′) is an
epimorphism φ : B(G) → B(G′) where φ(B) is the block B′ ∈ B(G′) obtained by
dropping the first coordinate from every element of B. φ(B) will be called the
reduction of B into B(G′).

Definition 2. Let g1, g2 ∈ G. We will call g1 and g2 equivalent if ∃φ : G →
G a group automorphism such that φ(g1) = g2. We will say that two blocks
B1, B2 ∈ B(G) are equivalent if ∃φ′ : G → G a group automorphism such that
φ(B1) = B2.
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Let G = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk
and let B ∈ B(G). Suppose G ' Zn ⊕ G′

for some n and G. We will examine B′, the reduction of B into G′. Since
B is a zero-sequence, the sum of the elements of B is zero in each coordinate
and therefore B′ is also a zero-sequence. In many cases, even when B is an
irreducible, B′ may factor. In fact, since D(G) ≥ D(G′) + n − 1 [vEB69], B
is a Davenport sequence implies that B′ must necessarily factor. On the other
hand, if B′ is irreducible, B must be irreducible since a factorization of B would
induce a factorization of B′ under the reduction. If we know how B′ factors
in G′ we can infer structure about B in G. Theorem 2.1 makes use of this to
examine blocks containing elements with maximal multiplicity (multiplicity one
less than the element’s order). The Corollary to Theorem 2.1 uses this theorem
to make restrictions on the multiplicity of elements in Davenport sequences of
groups where D(G) 6= M(G).

Theorem 2.1. Let G = Zn ⊕G′ and q = (1, 0, . . . , 0). Consider B ∈ A(B(G))
such that B is equivalent to qn−1B′ for some sequence B′. Then the reduction
of B′ into G′ must be irreducible.

Proof. Suppose to the contrary that the reduction of B′ factors in G′. Then
this factorization partitions B′ into non-empty parts each of which sum to an
element of the form (x, 0, . . . , 0) ∈ G. Now, if x = 0 for any part, then this is
a zero-subsequence of B, a contradiction since B ∈ A(G). So therefore x ≥ 1,
and a part which sums to (x, 0, . . . , 0) along with qn−x sums to (0, 0, . . . , 0) ∈ G
producing another contradiction.

Corollary. Let G = Zn ⊕ G′ and q = (1, 0, . . . , 0). If D(G) > D(G′) + n − 1,
then no Davenport sequence contains an element equivalent to q with multiplicity
n− 1.

Theorem 2.2. Let G ' Zp ⊕ Zp ⊕ · · ·Zp ⊕ Zpm ' Zp
k+1 ⊕ Zm where p is

prime. Then every maximal length irreducible is equivalent to one containing
the elements
e1

∗ = (1, 0, . . . , 0, x1), e2
∗ = (0, 1, 0, . . . , 0, x2), . . . , ek+1

∗ = (0, 0, . . . , 1, xk+1)
where xi ∈ [0,m− 1] for each i.

Proof. Consider a Davenport sequence B ∈ B(G) and consider a largest set of
elements in B that are linearly independent in the first k + 1 coordinates. By a
change of basis in Zp

k+1 these elements are equivalent to e1
∗, e2

∗, . . . , ei
∗ where

the last coordinate of each of the e’s lie in [0,m − 1] for some 1 ≤ i ≤ k + 1.
Suppose to the contrary that i < k + 1. Then after the above change of basis
none of the elements of B may have a non-zero entry in the i + 1-st coordinate
since this element could have been added to the set of elements considered and
still be linearly independent in the first k + 1 coordinates, contradicting that
the set was maximal. But then a longer atom of B(G) can be found by adding
(0, 0, . . . , 0, 1, 0, . . . , 0, 0) to B and modifying one element of B to have i + 1-
st coordinate p − 1 instead of 0. This contradicts that B was a Davenport
sequence.
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2.2 Calculating the Davenport Constant

We use a computer program (described in section 2.5) to determine the Daven-
port constant of several groups by searching over all possible zero-sequences. For
large groups G the number of zero-sequences of length m becomes quite large,
approximately |G|m, many of which are not irreducible. Thus, without reducing
the search space, it quickly becomes unreasonable to search all zero-sequences
to determine the longest irreducible. Theorem 2.1 reduces the search space by
restricting the multiplicity of certain elements. Theorem 2.2 reduces the search
space to searching particular cases where many elements of the sequence are
fixed. These reductions alone are enough to examine groups much larger than
before and have been used to determine D(G) for Z2

k ⊕ Z6 for k = 4, 5, 6, 7,
Z2

4 ⊕ Z10, and Z3
3 ⊕ Z6 by searching the following cases:

Z2
n ⊕ Z6:

It has been shown that D(H ⊕ K) ≥ D(H) + D(K) − 1 for groups H and K

[vEB69]. Thus, we know D(Z2
n⊕Z6) ≥ D(|Z2

n−1⊕Z6)+1, so the question re-
mains as to when the inequality is strict. For n = 1, 2, and 3 there is equality. It
was shown in 1969 by P.C. Baayen that D(Z4

2⊕Z6) > M(G) and this is the group
with smallest order such that D(G) 6= M(G). We will consider now n for which
D(Zn

2⊕Z6) > D(Zn−1
2 ⊕Z6)+1. Then by Corollary 2.1 no element of order 2 oc-

curs in a Davenport sequence (since all elements of order 2 are equivalent). Write
G ' Zn+1

2 ⊕Z3 and then by Theorem 2.2 a Davenport sequence will contain the
elements (1, 0, 0, . . . , 0, x1), (0, 1, 0, . . . , 0, x2), . . ., (0, 0, . . . , 1, xn+1) where each
xi ∈ {1, 2} (since there are no elements of order 2, xi 6= 0.) By a change of basis
in the Zn

2 coordinates, it does not matter which xi = 1 only the number of xi, so
all Davenport sequences are equivalent to one with the first m xi equal to one
and the remaining equal to two. By a further automorphism which sends the
last coordinate to its inverse, all Davenport sequences are equivalent to one con-
taining the elements (1, 0, . . . , 0, x1), (0, 1, 0, . . . , 0, x2), . . . , (0, 0, . . . , 0, 1, xn+1)
where x1 = x2 = · · · = xm = 1 and xm+1 = xm+2 = · · · = xn+1 = 2 for some
dn+1

2 e ≤ m ≤ n + 1. There are bn+1
2 c+ 1 cases to consider, one for each i. For

each case, n + 1 of the elements in the sequence are known. Thus, it remains
to use the computer program to search for the remaining elements to determine
the longest such zero-sequence containing these elements. This search can fur-
ther be reduced by restricting the multiplicity of elements. By Corollary 2.1,
elements of order three can have multiplicity at most one and elements of order
six can have multiplicity at most four. Using the program and these restric-
tions we find D(Z2

4 ⊕ Z6) = 11, D(Z2
5 ⊕ Z6) = 12, D(Z2

6 ⊕ Z6) = 13, and
D(Z2

7 ⊕ Z6) = 15.

Z2
4 ⊕ Z10:

If D(Z2
4 ⊕ Z10) > M(Z2

4 ⊕ Z10) then by Corollary 2.1 there will be no ele-
ments of order two in a Davenport sequence, all elements of order five will have
multiplicity at most three, and all elements of order ten have multiplicity at
most eight in a Davenport sequence. Since Z2

4 ⊕ Z10 ' Z2
5 ⊕ Z5, by Theorem
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2.2 every Davenport sequence is equivalent to a Davenport sequence containing
the elements (1, 0, 0, 0, 0, x1), (0, 1, 0, 0, 0, x2), (0, 0, 1, 0, 0, x3), (0, 0, 0, 1, 0, x4),
and (0, 0, 0, 0, 1, x5) where xi ∈ {1, 2, 3, 4}. So there are 45 cases to con-
sider. Consider two sets of values for the five elements, {x1, x2, x3, x4, x5} and
{x′1, x′2, x′3, x′4, x′5}. If there is an automorphism of Z5 which maps the elements
of one set to the elements of the other, then by a change of basis in Z2

4 it can
be shown that the blocks are equivalent. Thus it is only necessary to consider
sets of xi’s which are not automorphic to other sets. Thus there are only 14
cases to consider. The computer program is then used to search these cases for
the longest irreducibles containing these elements. We find D(Z2

4 ⊕Z10) = 15.

Z3
3 ⊕ Z6:

If D(Z3
3 ⊕ Z6) > M(Z3

3 ⊕ Z6) then by Corollary 2.1 the element of order
two does not appear in a Davenport sequence, all elements of order three
have multiplicity at most one, and all elements of order six have multiplic-
ity at most four. Since Z3

3 ⊕ Z6 ' Z3
4 ⊕ Z3, by Theorem 2.2 all Daven-

port sequences are equivalent to a Davenport sequence containing the elements
(1, 0, 0, 0, x1), (0, 1, 0, 0, x2), (0, 0, 1, 0, x3), and (0, 0, 0, 1, x4) where xi ∈ {0, 1}.
Again it does not matter which x are one and which are zero, only the number
of ones and zeros. Thus there are five cases to consider. Using the computer
program, we searched these five cases to find the longest irreducibles. We find
D(Z3

3 ⊕ Z6) = 13 > M(Z3
3 ⊕ Z6) = 12.

2.3 Upper Bound for the Davenport Constant

Let us turn our attention now to bounding the Davenport constant for arbitrary
groups. Currently the best upper bounds are

D(G) ≤ |H|+ |K| − 1 (1)

where G = H ⊕K and |H| | |K| [Ols69],

D(G) ≤ ni(1 + ln |G′|) (2)

where G ' Zni
⊕G′ [Kru69], and

D(Gn,k) ≤ 2 · k(1 + (n− 1) ln 2) + M(Gn,k) (3)

where Gn,k = Z2
n ⊕ Zk with k odd [Maz92].

In Theorem 2.3 we demonstrate an upper bound for D(G) which, although
it seems quite large, beats these previous bounds in many cases.

Theorem 2.3. Let G ' H ⊕K. Then D(G) ≤ D(H)D(K).

Proof. For every g ∈ G, g = (g1, g2) where g1 ∈ H and g2 ∈ K. Consider a
Davenport Sequence B of length D and let B = B1 ∪ B2 ∪ · · · ∪ Bk where the
sequence of first coordinates of the elements of Bi form an irreducible of B(H) for
each i. Then |Bi| ≤ D(H) for each i. Let bi ∈ K be the second coordinate of the
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sum of the elements of Bi (the first coordinates sum to zero). Then the sequence
of bi’s form a zero-sequence in B(K). If this sequence factors, then the partition
of the corresponding Bi’s would be a zero-subsequence of B contradicting that B
is irreducible. Therefore this sequence is irreducible in K. Therefore k ≤ D(K).
Then D = |B| = |B1|+ |B2|+ · · ·+ |Bk| ≤ D(H) · k ≤ D(H)D(K).

Corollary. D(Z2
n ⊕ Z6) = D(Z2

n+1 ⊕ Z3) ≤ 3n + 6.

Proof. Let G = Z2
n ⊕ Z6 ' Z2

n+1 ⊕ Z3. Let H = Z2
n+1 and K = Z3, then by

Theorem 2.3, D(G) ≤ D(Z2
n+1)D(Z3) = 3(n + 2).

Consider G = Z2
n ⊕ Z6 along with the previous three bounds. For the first

bound, we may write G ' (Z2
m)⊕ (Z2

n+1−m ⊕ Z3) where 0 ≤ m ≤ n + 1−m.
Then we know D(G) ≤ 2m + 3 · 2n+1−m − 1. However, 2m + 3 · 2n+1−m − 1 ≥
3 ·2n+1−n+1

2 ≥ 3 ·2n+1
2 . This bound grows exponentially, and for n ≥ 5 is larger

than 3(n + 2). For the second bound, ni = 6 and so D(G) ≤ 6(1 + ln 2n) =
6(1 + n · ln 2) ≈ 6 + 4n which is strictly greater than our bound. And finally,
with the final bound, k = 3 so D(G) ≤ 2 · 3(1 + (n− 1) ln 2) + n + 6 = (6 · ln 2 +
1)n + (12− 6 · ln 2) ≈ 5n + 7 which is also strictly greater than our bound.

Corollary. D(Z3
n ⊕ Z6) ≤ 2(2n + 3).

Proof. Write G ' Z3
n+1 ⊕ Z2 and let H = Z3

n+1 and K = Z2, then D(G) ≤
2(2(n + 1) + 1) = 4n + 6.

Again this bound beats the previous three bound. The first gives rise to
D(G) ≤ 3m + 2 · 3n+1−m − 1 and since 3m + 2 · 3n+1−m − 1 ≥ 2 · 3n+1

2 − 1 which
is exponential and greater than 4n + 6 for n ≥ 5. The second bound gives rise
to D(G) ≤ 6(1 + ln 3n) = 6(1 + n · ln 3) ≈ 6.5n + 6. And the third bound does
not apply to this case.

Corollary. Let G = Z2
n ⊕ Z2k where k is odd. Then D(G) ≤ k(n + 2).

This compares to k ·2n+1
2 −1 of the first bound which is always greater than

k(n + 2) for n ≥ 5, 2k(1 + ln 2n) ≈ 1.38kn + 2k from the second bound, and
2k(1 + (n− 1) ln 2) + n + 2k ≈ (1.38k + 1)n + 2.6k which is strictly greater than
our bound.

Corollary. Let G = Z3
n ⊕ Z2 ⊕ Z2. Then D(G) ≤ 3(2n + 1).

This first gives rise to the bound D(G) ≤ 3m+4·3n−m−1 which is at least as
large as 4 ·3n−m ≥ 4 ·3n

2 which is larger than 6n+3 for n ≥ 2. The second yields
the bound D(G) ≤ 6(1 + ln(2 · 3n−1) = 6(1 + ln 2 + n− 1 ln 3) ≈ 6.59n + 3.56
which is larger than our bound of 6n + 3. And the third bound does not apply.
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2.4 A lower bound on D(G)−M(G)

Definition 3. Let G = Z2
n ⊕ Z6 and define dn = D(G)−M(G).

Since D(Z2
n ⊕ Z6) ≥ D(Z2

n−1 ⊕ Z6) + 1 and M(Z2
n ⊕ Z6) = M(Z2

n−1 ⊕
Z6) + 1, then dn ≥ dn−1. We previously showed that dn ≥ 1 when n ≥ 4 and
dn ≥ 2 when n ≥ 7. In this section we will construct explicit zero-sequences to
demonstrate dn ≥ 3 for n ≥ 35, dn ≥ 4 for n ≥ 56, and dn ≥ 6 for n ≥ 165. If
we use the previously known lower bound for dn of log2 n− 6 [Maz92] we would
need an n of 512 to achieve dn ≥ 3, n = 210 for dn ≥ 4, and n = 212 for dn ≥ 6.

Definition 4. Let G = Zn1⊕Zn2⊕· · ·⊕Znk
and consider x = (x1, x2, . . . , xk) ∈

G. Define the value of x, v(x) =
k∑

i=1

xi ∈ Z.

Let G = Zn
2⊕Z6 ' Zn+1

2 ⊕Z3. Let ei
∗ denote the element of Z2

n+1⊕Z3 with
a 1 in the i’th coordinate, a 1 in the last coordinate, and 0’s everywhere else.
Consider a zero-sequence B = e1

∗e2
∗ . . . en+1

∗q1q2 . . . qm, where q1, q2, . . . , qm ∈
G. Since no subsequence of the ei

∗’s is a zero- sequence, a zero-subsequence of
B must contain some subset of the qi’s.

Claim 2.1. Consider a subsequence Q of the qi’s and let

q = (x1, x2, . . . , xn+1, y) =
∑
qj∈Q

qj ∈ G.

Then there is a zero-subsum of B containing Q and elements of ej
∗, j =

1, 2, . . . , n + 1 if and only if v(q) ≡ 0 mod 3.

Proof. Suppose v(q) ≡ 0 mod 3. Consider the subsequence containing the
elements of Q and ei

∗ for every i such that xi = 1. Then the sum of this
sequence is zero in the first n+1 coordinates. The last coordinate of the sum is
y plus 1 for each ei

∗ in the subsequence, modulo 3, which is, y plus the number
of nonzero xi modulo 3 and this is v(q) mod 3 = 0, and so the sequence is a
zero-subsum of B.

Conversely, suppose there is a zero-subsum containing the elements of Q and
some elements of the ei

∗’s. ei
∗ is an element of the zero-subsum if and only if

xi = 1 since no other ej
∗ has a nonzero entry in the i-th coordinate. Each ei

∗

adds a 1 to the last coordinate of the sum. The last coordinate is y plus the
number of ei

∗’s which is y plus the number of nonzero xi’s which is v(q) and
therefore v(q) mod 3 = 0.

We will use the following construction to create irreducibles for certain n.
Construct a table with m rows and

(
m
k

)
columns. Fill in the table so that each

column has k 1’s and the remaining entries 0 and so each column is distinct. Let
the qi have first and last coordinate 1 and remaining coordinates corresponding
to the i-th row for 1 ≤ i ≤ m.

10



Claim 2.2. Let Q be a subset of the qi’s containing r elements. Then

v(q) = (r (mod 2)) + (r (mod 3)) +
α∑

j=1

(
r

2j + 1

)(
m− r

k − (2j + 1)

)
where α = min{k, b r−1

2 c}.

Proof. Let q = (x1, x2, . . . , xn+1, y) =
∑

qi∈Q

qi ∈ G. Each of the r elements adds

a 1 to x1 and y, so x1 = (r mod 2) and (y = r mod 3). xi = 1 whenever an
odd number of the k choosen elements in the i-th row fall within the r elements
of the subset. That is to say, for every way of choosing an odd number at most
k from the r elements and the remaining elements to make k from the m − r
elements not in the set, a 1 is added to v(q). Therefore v(q) is as claimed.

We will use the general construction above to demonstrate several choices
for m and k so that v(q) 6≡ 0 mod 3 for all subsets of r elements, 1 ≤ r < m.

Claim 2.3. D(Z2
35 ⊕ Z6) ≥ 44 and so dn ≥ 3 for n ≥ 35.

2.5 The Algorithm

We will close this section by presenting the algorithm which was used to calculate
the minimal zero sequences. In essence, what this algorithm actually does is
construct zero-free sequences. In other words, it constructs sequences which
are guaranteed to have no zero-subsum. It is a recursive algorithm which, at
each step, appends an element to the end of the sequence, and then updates
the subsums and determines which elements are no longer available. It then
recurses again, and the algorithm repeats like this. In pseudocode:

GenerateZeroFreeSequences(curSequence, Forbidden)
{

MZS=curSequence
MZS.AddToBack(Inverse(SequenceSum(MZS)))
SaveSequence(MZS)
Avail = EntireGroup\Forbidden
while(Avail6= ∅)
{

k=min{Avail}
Avail = Avail\{k}
Subsums = {k} ∪ ({k} + Subsums)1 ∪ Subsums
Forbidden = Inverses(Subsums)
curSequence.AddToBack(k)
GenerateZeroFreeSequences(curSequence, Forbidden)
curSequence.RemoveLastItem()

}
}

1This is the traditional definition of set addition. In other words, A + B =
{ a + b | a ∈ A, b ∈ B }
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3 Counting Atoms in Block Monoids

The most time in this section has been spent on the frontier that is the atoms
of B(Z3

n), presented in Section 3.3. Section 3.2 is a good introduction to the
style of argument used in Section 3.3.

Keep in mind that we’re counting atoms of the block monoid (and hence
minimal zero sequences of a group) when you begin reading Section 4. As we
will show in that section, counting minimal zero sequences of a group is identical
to answering questions about invariant theory, so while the question of counting
atoms is interesting in it’s own right, it is interesting for other reasons as well.
See Table 1 for a list of formulas.

3.1 Counting Atoms in B(Zn)

Let us start at the beginning. The zero element is the one atom of length 1
in B(Zn), and this is analogously true for any B(G). The number of atoms of
length two in B(Zn) is shown in the following theorem.

Theorem 3.1. There are dn−1
2 e atoms of length two for cyclic groups.

Proof. Atoms of length two consist of elements and their inverses. For n even, n
2

is its own inverse. Otherwise, elements have inverses distinct from themselves.

This theorem is extended in Theorem 3.7. With an equally simple proof, the
formula is given for the number of atoms in the block monoid over any finite
abelian group.

As stated in the introduction Section 1.3, the number of Davenport sequences
in B(Zn) is known to be φ(n). The following theorem uses the idea of repeatedly
combining pairs of elements in the Davenport sequence to determine multiplicity
classes that have the same number of atoms as the number of Davenports, that
is, the number of atoms in the multiplicity class an.

Theorem 3.2. In B(Zn), there are the same number of Davenport sequences
an as there are minimal sequences in each of the multiplicity classes

an−xb, where n ≥ 2(x + 1), x ≥ 2

Proof. Every such an−xb has a corresponding Davenport sequence an where a
is some fixed element of maximal order, and b = ax. Therefore, there are at
least as many; we must show there are only this many. If so, there must be a
fixed a1 with a1

n−xb an atom but a1
n not an atom. Such a1 has order s ≤ n

2
because it must have order that divides n. Then, n− x ≤ s− 2, else we would
have either a zero-subsum a1

s or the atom would be of that form. This implies
n− x ≤ n

2 − 2 ⇒ n ≤ 2(x− 2), which contradicts our assumption.

The reader is encouraged to check the conclusion of this paper for ideas and
conjectures in this area. As in B(Z3

n), atom counting in B(Zn) is now fertile
ground, even for a reader with limited background in algebra.
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3.2 Counting All Atoms in B(Z2
n)

B(Z2
n) is complete and short. Furthermore, we have a place in our hearts for

B(Z2
n) since it was the block monoid that first captured us into atom counting

and away from our previous endeavor which had been to characterize monoids
through various graph models. Although the graphs do not appear in this paper,
their fruits are scattered throughout.

Theorem 3.3 plays the role of preparing the reader’s mind for the web to
come in Section 3.3. B(Z2

n) is the most accessible, but also the least interesting
because it provides no further study.

The method of choosing the elements in the following theorem is reminiscent
of the computer algorithm presented in section 2.5. One difference is that the
algorithm had a built-in ordering of the elements to guard against counting
repetitions. This theorem methodically counts all permutations and then divides
out by the number of them at the end.

Theorem 3.3. The number of atoms of length m, m ≥ 2, in A(B(Z2
n)) is

m−2∏
i=0

2n−2i

m! .

Proof. Consider an atom a1a2...am of length m in B(Z2
n). The number of these

atoms is found by determining the number of choices, or number of available
elements, for each of the first m − 1 ai. There will be one choice for the final
element am, the inverse of the sum of all the other elements and never a part of
a proper zero subsum. There are 2n−1 available choices for a1, all the elements
in the group but the zero element, herein denoted 0. There are 2n−2 choices for
a2, all but 0 and a1, and 2n− 4 choices for a3, all but 0, a1, a2, and x = (a1a2).

In general, elements are unavailable for a choice if they would produce a zero
subsum with a subset of the elements that have come before. In the present
case Z2

n, elements are their own inverses and any element equal to a sum of
elements before it produces a zero subsum with those elements. In any group, 0
produces its own zero subsum. Therefore, the number of elements unavailable

for the ith choice is
i−1∑
j=0

(
i−1

j

)
= 2i−1, and the number available (2n − 2i−1).

The number of ways to choose an atom is the product of the choices for the

individual element:
m−1∏
i=1

2n − 2i−1 =
m−2∏
i=0

2n − 2i. Since there are all possible

repetitions by permutation of the m elements in this count, the expression is

divided by m!,

m−2∏
i=0

2n−2i

m! .

Corollary. A simple summation of lengths m ≥ 2 added to 1 to account for the
zero element atom of length m = 1 gives the total number of atoms in B(Z2

n)
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as

n+1∑
j=2

j−2∏
i=0

2n − 2i

j!
+ 1.

It is noted only here and in passing that when m = 3, the expression reduces
itself to the Gaussian binomial coefficient2

[
n
2

]
2

[Ros00].

3.3 Counting Atoms in B(Z3
n)

The case of the atoms of B(Z3
n) is the most interesting because it provides a

gateway to the counting and classifying of atoms in the block monoids over more
complicated finite abelian groups. For instance, B(Zn

p ) for prime p and B(Zn
l )

for integer l are close in structure to B(Z3
n). For beginning work in B(Zn

p ), see
Section 3.4.

As in the above count of atoms of B(Z2
n), we count the number of atoms

of a length m of B(Z3
n) by considering the number of choices in the sequence

element-by-element, ensuring that no elements produce zero subsums. Since in
B(Z2

n) each element is its own inverse, no element in an atom could repeat or
be linearly dependent on previous ones, which is not the case in the atoms of
B(Z3

n).
In place of the atom a1a2...am, we consider a sequence of the same length

with elements I, N , and I called a dimension class and defined as follows.
Choosing an element ai can either increase the dimension of the subspace by
one or not increase it at all, denoted I or N , respectively. In other words, if ai

cannot be written as a linear combination of the previous elements, we write I,
and if it can be written as such a linear combination, we write N . If an element
has multiplicity two, let it be chosen before the others and be denoted I, one
symbol counting for two elements. Thus, the number of permutations in the
count is (m− 2|I|)!|I|!, the first term for the number of elements of multiplicity
1 and the second term for the number of elements of multiplicity 2. We divide
out by this number of permutations at the end of the process. Unlike the length
and multiplicity classes, this current definition of dimension class is specific to
B(Z3

n). For instance, in B(Z7
n), we might have a multiplicity class of a4b4c that

we were required to partition into dimension classes. However, our definition
of multiplicity classes would not be able to handle most cases of elements of
multiplicities ≥ 3. Furthermore, let Xi represent either I or N , and let |I| and
|X| be the number of I’s and X’s, respectively.

This recently-developed notation will be convenient to abstract from the
details of B(Z3

n). However, most of the intuition for this section developed
elsewhere from study of what we called tree diagrams of B(Z3

n). The tree
diagrams are not included in this paper, because they became cumbersome as
early as lengths 5 and 6, and nearly impossible for lengths 8 and greater. Though
the outdated tree diagrams were intuitively accessible for small lengths, once

2also called the q-binomial coefficient, and written
[a
b

]
q
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the difficulty of understanding the current notation is overcome, the greater
abstraction provided by the dimension classes proves able to handle arbitrary
lengths.

Theorem 3.4. A Dimension Class Structure Theorem
The dimension sequence is of the form I1, I2, ..., I|I|, X1, X2, ..., X|X|, N , where
2|I| + |X| + 1 = m; and if |X| ≥ 1, then X1 = I; and if |I| = 0 and |X| ≥ 3,
then X2 = I.

Equivalently:
a) If no I is in the sequence, i.e. if no ai = aj, and the number of elements in
the sequence is greater than or equal to 3, then the first two elements are I.
b) Every I increases the subspace dimension by 1.
c) In case |I| ≥ 1, the element following the last I is an I if there is more than
one element of multiplicity 1.
d) The last element in the sequence is always N .

Proof. a) The first element a1 increases the subspace from 0 to 1 and so is
denoted I. If the second element a2 did not increase the subspace dimension,
then it would be a multiple of the first element equal to 0, a1, or (a1)2 = (a1)−1.
These are all unavailable because they either repeat the first element or produce
a zero subsum. If a2 is the last choice, then the number of elements in the
sequence is 2, contrary to assumption. Therefore, the choice of a2, if not the last,
must also increases the subspace dimension and be denoted I in the dimension
sequence.
b) The first I, I1, denotes that in the sequence a1 = a2. The choice of a1

increases the dimension for the same reasons as in a). As is the case for all I,
the repetition of the element again does not increase the subspace.

Since the I’s are chosen first and are located at the beginning of the sequence,
an element a2k−1, the first element of the pair Ik, k ≥ 2 is preceded only by other
I’s. Assume that some Ik does not increase the dimension. Then its first element
a2k−1 must be a linear combination of the previous 2k − 2 elements. This is
shown in the following equation where only the first element a2i−1 of the pair Ii is
shown and where accordingly si ∈ {0, 1, 2}: a2k−1 = s1a1+s2a3+...+sk−1a2k−3.
But any such a2k−1 will produce a zero subsum. Let ri = (3−si) mod 3. Then
a2k−1 + r1a1 + r2a3 + ... + rk−1a2k−3 = 0.
c) If the element following the last I is not an I, it is an N . But such an N
would be a linear combination of the first element a of the pairs of I’s preceding
it. As in b), such an N would produce a zero subsum. This is only possible in an
atom if this element were the last element, and the subsequence were the entire
sequence. But it is required that there be more than one element of multiplicity
1.
d) The last element is determined to be the inverse of those that come before
it.

Theorem 3.4 restricts the form of the possible dimension classes. Another
clear restriction but one yet to be proved, is an upper bound ratio of |N | : |I|
counting the previous elements from any element. For instance, we cannot
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have the dimension class IIINNNN , or even IINN . There simply are not
enough elements linearly dependant on two elements to prevent repeats and
zero subsums. In general, ideas such as this for furthering the research are
found in the conclusion of the paper, Section 5.

Theorem 3.5 that follows gives the general formula of the number of atoms
in B(Z3

n) of length m. It contains a function f that gives the number of choices
available for the choice of any N , which is only determined small |N |, and thus
the only lengths completely determined are small m. After this theorem, the
formula is then determined for classes of x’s where N ≤ 2. Finally, the explicit
formulas for m=1,2,...,6 will be presented at the end of this section.

Theorem 3.5. Let x be a dimension class of length m, and Em be the set of
all x’s for an m; let u(x) = |I| + |I|; let the indexing of N be 1, 2, .., j, and let
v(x) be the number of N ’s in x. Let f(N(x, j)) denote the number of choices
for N(x, j).

Then, the formula for the number of atoms of a particular length m is

∑
x∈Em

(u(x)−1∏
i=0

(3n − 3i)
v(x)∏
j=1

f(N(x, j))
)

(m− 2|I|)!|I|!
.

The proof will follow Theorem 3.6

Theorem 3.6. There are
u(x)−1∏

i=0

3n − 3i choices for the u(x) elements labelled I

or I in the sequence x.

Proof. The only restriction on the choice of the ith I or I is that it must not
be an element that is in the subspace of the elements chosen before it. Such
elements total 3i−1. Because there are 3n group elements, there are 3n − 3i−1

choices for the ith I or I. Therefore, the number of choices for the u(x) I or I’s

of sequence x is
u(x)∏
i=1

3n − 3i−1 =
u(x)−1∏

i=0

3n − 3i .

We now prove Theorem 3.5.

Proof.
∑

x∈Em

sums over the possible dimension classes of atoms of length m, and

the denomenator divides out by (m−2|I|)! for the permutations of the elements
of multiplicity 1, and |I|! for the permutations of the elements of multiplicity
2. The first product in the sum is the product for the I’s and I’s (theorem

3.6). The second product
v(x)∏
j=1

f(N(x, j)) is by definition the number of choices

of each N . And the number of choices for any dimension class is the number of
elements available of each of the I’s, N ’s, and I’s.
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Let w(x, j) be the number of I’s and I’s before N(x, j) in x, and let W (x, j)
be the set of the coordinate place of the previous N ’s for N(x, j) in x. Then tj =
(w + |W |) ∈ 1, 2, ...3,m, and it seems that f(x,N(x, j)) = f

(
w(x, j),W (x, j)

)
denote the number of choices for N(x, j).

In other words, it seems that w, W , t are the important properties of a
N(x, j), and that t is a function of w and W , so we can let f be a function of
these latter two only. This is stated generally now without proof.

The last N(x, j), N(x, v), is a special case for which there is only one choice;
notated f(N(x, v)) = f(w(x, v),W (x, v)) = 1.

The penultimate N is also a special case because, in addition to not pro-
ducing a zero subsum and not repeating an previous element, the elements
chosen for the penultimate also cannot be such that it forces the final ele-
ment to repeat a previous element or to produce a zero subsum. In particular,
the final element cannot repeat the penultimate element. Where u(N(x, j)) is
the set of unavailable elements for N(x, j), f(N(x, j)) = (3wj − |u(Nj)|). Let
ur(N(x, j)) be the set of elements unavailable because they would repeat a pre-
vious element, and uz(N(x, j)) be the set of elements unavailable because they
would cause a zero subsum. For all N(x, j), tj /∈ {m− 1,m}, u(N(x, j)) =
ur(N(x, j)) ∪ uz(N(x, j)). Let uf (N(x, j)) be the elements unavailable for the
penultimate choice because they would determine the final element unavailable
(an example of computing uf (N(x, j)) is given for v = 2 below). Then for Nv−1

and tj = m − 1, u(N(x, j)) = uz(N(x, j)) ∪ ur(N(x, j)) ∪ uf (N(x, j)). For all
other N(x, j), t(x, j) ≤ m− 2, u(N(x, j)) = uz(N(x, j)) ∪ ur(N(x, j)).

The inner part of the formula, the two products, is determined for particular
x’s in the following applications of the formula, all of which except the first
require their own proofs.

Application 1. For sequence x, v(x) = 1, that is, of the form I, I, ..., I,N ,

there are
m−2∏
i=0

(3n − 3i) choices.

Lemma 3.6.1. There is an automorphism from each subspace defined by a sub-
sequence of an atom under which all the I’s and I’s are mapped to the standard
bases elements of that subspace.

Proof. Since each choice I or I increases the dimension of the subspace by 1, they
form an independent basis for the subspace. Therefore, they can be mapped
to {(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), (0, 0, 1, ..., 0), ..., (0, 0, 0, ..., 1)}. The elements la-
belled N are mapped accordingly.

Application 2. For sequence x, v(x) = 2, t(x)1 = m − 1, that is, of the form

I1, I2, ..., Im−2, N, N , there are
(

m−3∏
i=0

(3n−3i)
)(

3m−2−2m−2−2m+3
)

choices.

Proof. Assume the automorphism of the lemma. Since the subsums of the first
m − 2 elements unioned with the zero element has a 0 or 1 in each coordi-
nate, uz(N1) = {α1, α2, ..., αm−2|αi ∈ {0, 2}}. The elements N1 cannot repeat
are clearly ur(N1) = {(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 1)}. Since N1 is
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Length Formula

3 (3n−1)(3n+3)
3!

4 (3n−1)(3n+3)(3n−3)
4!

5 (3n−1)(3n+3)(3n−3)(3n−4)
5!

6
(3n−1)(3n−3)(3n−9)(32n−3n+1+12)

6!

Table 1: Formulas for atoms of length m in Z3
n

the penultimate choice, we also compute the elements unavailable because they
would make the final choice unavailable. uf (N1) = {uz(d)}∪{α1, α2, ..., αm−2|αi

all 2 but one 1} ∪ (1, 1, ..., 1). The first set contains the elements that chosen
as the penultimate element would force the final element to be unavailable, and
the second set is the elements that chosen as the penultimate would make the
final a repeat of a previous element. The final element (1, 1, ..., 1) would make
the penultimate equal to the final element. (Repeats are bad because we have
assumed all repeats to be moved to the beginning of the sequence and repre-
sented I.) u(N1) = uz(N1)∪ur(N1)∪uf (N1) or u(N1) = {α1, α2, ..., αm−2|αi ∈
{0, 2}} ∪ {(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 1)} ∪ {α1, α2, ..., αm−2|αi all
2 but one 1} ∪ {1, 1, 1, ..., 1}.

These number [m−3∏
i=0

(3n − 3i)
][ 2∏

j=1

f(N(x, j))
]

=
[m−3∏

i=0

(3n − 3i)
][

3m−2 − (2m−2 + 2(m− 2) + 1)
]

=
(m−3∏

i=0

(3n − 3i)
)(

3m−2 − 2m−2 − 2m + 3
)

Table 1 gives the number of atoms of lengths 3, 4, 5, 6 in B(Z3
n).

3.4 Additional Theorems

This section gives a few theorems that do not fit into the above categories. As
promised in Theorem 3.1, the first theorem in this section gives the number of
atoms of length 2 in arbitrary G.

Theorem 3.7. In any finite abelian group G ' Zn1 ⊕ Zn2 ⊕ · · ·Znk
where

1 < n1|n2| · · · |nk, let x be the number of ni such that 2 divides ni. Then the
number of atoms of length 2 is

|G| − 2x

2
+ 2x − 1
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.

Proof. There are exactly 2x − 1 elements of order 2, and |G|−2x

2 elements of
order ≥ 3. Each of the former is its own inverse, so forms a length 2 atom.
Pairs of the later form length 2 atoms.

The next two proofs are multiplicity class restriction theorems on (Zp)n.

Theorem 3.8. In (Zp)n, there is no atom of the form a1
xa2

x...ay
x, where

x ≥ 2.

Proof. Assume to the contrary there is such an atom. Then a1a2...ay = a 6=
0 ⇒ a1

xa2
x...ay

x = ax ⇒ ax = 0 ⇒ x = p ⇒ (ai)x = 0, a zero subsum of the
supposed atom.

Theorem 3.9. In (Zp)n, there is no atom of the form a1
p−x1a2

p−x2 ...ay
p−xy ,

where p ≥ xi ≥ p
2 .

Proof. a1
x1a2

x2 ...ay
xy is a zero subsum if xi ≤ p− xi (by theorem 3.8 they are

not all equal), that is, if xi ≥ p
2 .

4 Minimal Zero Sequences and Invariant The-
ory of Finite Abelian Groups

4.1 Preliminary Results

We will conclude by presenting a remarkable and unexpected connection be-
tween the invariant theory of cyclic groups, which is generally studied from
the perspective of algebra, and the study of minimal zero sequences of a cyclic
group, which can be thought of as more combinatorial in nature. Previous re-
search has aimed to, given a cyclic group order n, count the number of n-variable
polynomials of the group which are invariant under a cyclic substitution of the
variables[Str48]. Since then, no major advancements have been made with re-
spect to the number of these invariant polynomials of a cyclic group, and cur-
rently it is only known for cyclic groups of equal order and degree up to degree
10 (which were calculated by Strom). Using the results which will be presented
in this paper, the number of invariant polynomials of cyclic groups of equal
order and degree have been calculated up to degree 60, and we will conclude
with a table listing these values, as well as another table listing these values for
the groups Zm ⊕ Zn.

First we shall prove a lemma, and mention a few other facts which will be
used consistently through the paper.

From this point on, it is assumed that sn denotes the cyclic permutation of
n variables defined by

sn = (xn−1xn−2 . . . x1x0)

and
εn = e

2πi
n , n ∈ Z
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Fact 1. [Nee00]
εn

kn ≡ 1, k ∈ Z (9)

Fact 2. [Gra94]
n∑

k=0

rk =
{

1−rn+1

1−r , for r 6= 1;
n + 1, for r = 1.

(10)

The following lemma will be useful in simplifying many of the arguments
that follow, so we will present it here. If the reader is eager to get directly to
the main results, she may skip this for the time being, and come back to it later.

Lemma 4.0.1. Let m,n ∈ N, 0 ≤ j ≤ m ≤ n, and suppose that pk = 1 ⇔ k ≡ 0
(mod n). Then,

n−1∑
k=0

(pm−j)k =
{

n, if m = j;
0, if m 6= j.

Proof. Clearly if m = j, then the sum reduces to

n−1∑
k=0

1k

and we can apply (10). So suppose m 6= j. Then, pm−j 6= 1. So, again by (10),

n−1∑
k=0

(pm−j)k =
1− pn(m−j)

1− pm−j

But by hypothesis, pn(m−j) = 1, and pm−j 6= 1

We would like to point out in passing that if p and q are polynomials in
the variables x1, x2, . . . , xk, then the cyclic permutation of variables Sk respects
both addition and multiplication of polynomials. In other words, Sk(p + q) =
Sk(p) + Sk(q) and Sk(pq) = Sk(p)Sk(q). This is fairly easy to see if you just
think of Sk as replacing one variable with another variable, and so forth.

4.2 Zero Sequences and Invariant Polynomials of Zn

At this point for the reader’s convenience we will reproduce Strom’s original
argument[Str48] providing necessary and sufficient conditions for a polynomial
of a cyclic group to be invariant. We will fill in some of the details left out of
the original argument, but nonetheless the reader is referred to [Str48] for the
original argument.

Consider the polynomial in the n variables x0, x1, . . . , xn−1:

yj =
n−1∑
k=0

εn
jkxk, j = 0, 1, . . . , n− 1.

Theorem 4.1. For all j, 0 ≤ j ≤ n − 1, xj can be written as a linear combi-

nation of y’s. Specifically, nxj =
n−1∑
k=0

εn
k(n−j)yk
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Proof. Replacing yk in the sum, we obtain the following double sum:

n−1∑
k=0

εn
k(n−j)

n−1∑
m=0

εn
kmxm

Notice that by (9) εn
k(n−j) = εn

−kj . Therefore, making the simplification
and rearranging the double sum yields

n−1∑
m=0

xm

n−1∑
k=0

(εn
m−j)k

And now, by Lemma 4.0.1, the inner sum is 0 whenever m 6= j, and the
inner sum is n when m = j.

The proofs that follow will use the previous theorem in order to switch
polynomials in xj to polynomials in yj and vice versa, where convenient.

The astute reader may be wondering about the relationship between our
strange definition for εm and the fact that we are in essence ”rotating” the
variables while keeping the constants fixed. The next theorem presents a striking
result which makes this relationship precise.

Theorem 4.2. Let Hj(y) = yj. The cyclic permutation sn applied to Hj can
be written in terms of elementary multiplication as

sn ◦Hj = εn
jHj

Proof.

sn ◦Hj =
n−1∑
k=0

εn
j(k+1)xk = εn

j
n−1∑
k=0

εn
jkxk = εn

jyj = εn
jHj

We are nearly done at this point, because the problem of finding polynomials
which are invariant under this strange permutation has reduced itself to poly-
nomials which are invariant when multiplied by a simple constant. Using this
fact, we can easily find necessary and conditions that a polynomial be invariant.

Theorem 4.3. The polynomial

Q(y0, y1, . . . , yn−1) =
∑

α0,...,αn−1

cα0,...,αn−1y0
α0y1

α1 . . . yn−1
αn−1

is invariant under sn if and only if, for every term of the polynomial

α1 + 2α2 + · · ·+ (n− 1)αn−1 ≡ 0 (mod n) (11)
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Proof. Notice that

sn ◦ yk
αk = (εn

kyk)
αk = εn

kαkyk
αk

Thus, by Theorem 4.2,

sn◦Q(y0, y1, . . . , yn−1) =
∑

α0,··· , αn−1

cα0,··· ,αn−1εn
α1+··· +(n−1)αn−1y0

α0 . . . yn−1
αn−1

and when
εn

α1+2α2+···+(n−1)αn−1 = 1

the individual terms of the polynomial are invariant under sn.

Now, we know what all invariant polynomials look like, but it suffices to
consider only minimal invariant polynomials (i.e. those which do not contain a
sub-polynomial which is also invariant) since the set of all invariant polynomials
is completely determined by the set of all minimal invariant polynomials, as we
can just form linear combinations of them[Str48].

We will now state a few basic definitions about minimal zero sequences, and
proceed to make the connection with (11)

Note the appearance of the integers 1, 2, . . . , n − 1 in (11). In words what
(11) says is that some number of 1’s + some number of 2’s + · · · + some number
of n-1’s ≡ 0 (mod n). But this is exactly what a zero-sum sequence is. The
connection is of course extended to minimal zero sequences since we are counting
only those invariant polynomials which are minimal.

Theorem 4.4. Let G = Zk. Denote by MZS(k) the number of minimal zero
sequences of G, and denote by Inv(k) the number of invariant polynomials of
G. Then, MZS(k) ≡ Inv(k).

In fact, this follows as a corollary of the previous results, but we state it as
a theorem due to it’s extreme importance.

Proof. Let P be a minimal invariant polynomial of G. Then, combining (11)
with the fact that minimal invariant polynomials contain exactly one term,
we know this polynomial corresponds to exactly one minimal zero sequence.
Conversely, let K be a minimal zero sequence of G. We can therefore write∑

K in the form α1 + 2α2 + · · · + (n − 1)αn−1, and since
∑

K ≡ 0 (mod n),
we see that it corresponds to the invariant polynomial

P = cα0,··· ,αn−1y0
α0 . . . yn−1

αn−1
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4.3 The Next Simplest Case: Zero Sequences and Invari-
ant Polynomials of Zm ⊕ Zn

Now that we have established the basic connection between the counting of min-
imal zero sequences of a cyclic group and the counting of invariant polynomials
of a cyclic group, and in fact shown that they are equivalent, we will proceed to
extend Strom’s original work by first establishing the same connection between
the number of invariant polynomials of the group Zm ⊕ Zn and the minimal
zero sequences of Zm ⊕ Zn. This will give the reader some insight into how to
proceed towards the general case. Finally, we will establish the connection with

the general case of G =
k⊕

i=1

Zni
.

In what follows, we will simply present the generalization of the previous
theorems along with their proofs. The reader is encouraged to compare each
theorem with its more specific counterpart which precedes.

Consider the polynomial in the mn variables xab, (a, b) ∈ G = Zm ⊕ Zn,

defined by yjk =
m−1∑
a=0

n−1∑
b=0

εm
jaεn

kbxab ∀(j, k) ∈ G

Theorem 4.5. For all j, k ∈ G, xjk can be written as a linear combination of

y’s. Specifically, |G|xjk =
m−1∑
a=0

n−1∑
b=0

εm
a(m−j)εn

b(n−k)yab

Proof. Replacing yab in the sum, we obtain the following double sum:

m−1∑
a=0

n−1∑
b=0

εm
a(m−j)εn

b(n−k)
m−1∑
c=0

n−1∑
d=0

εm
acεn

bdxcd

=
m−1∑
c=0

n−1∑
d=0

xcd

(
m−1∑
a=0

(εm
c−j)

a
n−1∑
b=0

(εn
d−k)

b

)
Now, by Lemma 4.0.1,

n−1∑
b=0

(εn
d−k)

b
=
{

0, if d 6= k;
n, if d = k.

Similarly,
m−1∑
a=0

(εm
c−j)

a
=
{

0, if c 6= j;
m, if c = j.

Thus, the only contribution to the outer two sums is when c = j∧d = k.

Corollary. Any polynomial P in the mn variables xjk, (j, k) ∈ G can be written
uniquely as a polynomial Q in terms of the mn variables yjk, (j, k) ∈ G.

Let sij denote the cyclic permutation on mn variables defined by

sαβ : xij −→ x(i+α)mod m,(j+β)mod n
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Notice that any polynomial in the variables xjk, (j, k) ∈ G is invariant under
cyclic permutation of the variables if and only if it is invariant under s10 and
s01.

Theorem 4.6. Let Qjk(y) = yjk. Then, s10 ◦ Qjk = εm
jQjk. Likewise,

s01 ◦Qjk = εn
kQjk

Proof.

s10 ◦Qjk = s10

(
m−1∑
a=0

n−1∑
b=0

εm
jaεn

kbxab

)
=

m−1∑
a=0

n−1∑
b=0

εm
jaεn

kbx(a+1)mod m,b

=
n−1∑
b=0

εn
kb

(
εm

j(m+1)x0b +
m−1∑
a=1

εm
j(a+1)xab

)
=

n−1∑
b=0

εn
kb

m−1∑
a=0

εm
j(a+1)xab

= εm
j
n−1∑
b=0

m−1∑
a=0

εn
kbεm

jaxab = εm
jQjk

And similarly for s01 ◦Qjk = εn
kQjk.

Theorem 4.7. The polynomial

Q(y) =
∑
αrs

(r,s)∈Zn⊕Zm

C∗
m−1∏
j=0

n−1∏
k=0

yjk
αjk

is invariant under s10 whenever each term of Q satisfies

m−1∑
j=0

j

n−1∑
k=0

αjk ≡ 0 (mod m) (12)

Likewise, Q is invariant under s01 whenever each term of Q satisfies

n−1∑
k=0

k
m−1∑
j=0

αjk ≡ 0 (mod n) (13)

Proof. Notice that

s10 ◦ yjk
αjk = (εm

jyjk)
αjk = εm

jαjkyjk
αjk

Now, let Γj =
n−1∑
k=0

αjk. Then, by Theorem 4.6,

s10 ◦Qk =
∑

α0,··· , αn−1

C∗εm
Γ1+2Γ2+···+(m−1)Γm−1

m−1∏
j=0

n−1∏
k=0

yjk
αjk

24



and when
m−1∑
j=0

jΓj =
m−1∑
j=0

j
n−1∑
k=0

αjk ≡ 0 (mod m)

the individual terms of the polynomial are invariant under s10.
The proof of the other case follows similarly.

Notice that what 12 really says is that if you consider the set Sk = {(k, p) ∈ Zm ⊕ Zn},
then some number of elements of S1 plus some number of elements of S2 plus
· · · plus some number of elements of Sm−1 add up to an element in Zm ⊕ Zn

whose first coordinate is 0. Likewise, 12 ensures that the second coordinates
sum to 0.

Theorem 4.8. Let G = Zm ⊕Zn. Denote by MZS(G) the number of minimal
zero sequences of G, and denote by Inv(G) the number of invariant polynomials
of G. Then, MZS(G) ≡ Inv(G).

This probably comes as no surprise to the reader, but we shall prove it
nonetheless.

Proof. Let P be a minimal invariant polynomial of G. Then, combining (12) and
(13) with the fact that minimal invariant polynomials contain exactly one term,
we know this polynomial corresponds to exactly one minimal zero sequence.
Conversely, let K be a minimal zero sequence of G. We can therefore break∑

K into two separate equations corresponding to the sum of the first coordinate
and the sum of the second coordinate. It is easy to see that these correspond
exactly to (12) and (13), respectively, and thus to exactly one minimal invariant
polynomial.

4.4 The Whole Shebang: Zero Sequences and Invariant
Polynomials of Zn1 ⊕ · · · ⊕ Znk

At this point the reader is probably has a pretty good idea of how to extend the

previous argument to the general case of
k⊕

i=1

Zni
. For the sake of completeness,

however, we will present the argument here. Now that the hard work is out
of the way, the only real difficulty is in getting past the notation. As in the
previous section, we shall only present the generalized versions of the theorems
along with their proofs.

Let us set the following notation in advance, in order to simplify matters:

1. G =
k⊕

i=0

Zni .

2. If α ∈ G, then πi(α) denotes the i’th coordinate of α.
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Consider the polynomial in the |G| variables xα, α ∈ G, defined by

yα =
∑
β∈G

(
k∏

p=1

εnp

πp(α)πp(β)

)
xβ

Theorem 4.9. For all α ∈ G, xα can be written as a linear combination of
y’s. Specifically,

|G|xα =
∑
β∈G

(
k∏

q=1

εnq

πq(β)(nq−πq(α))

)
yβ

Proof. Replacing yβ in the sum, we obtain the following:

∑
β∈G

(
k∏

q=1

εnq

πq(β)(nq−πq(α))

)∑
γ∈G

(
k∏

p=1

εnp

πp(β)πp(γ)

)
xγ

=
∑
γ∈G

xγ

∑
β∈G

k∏
q=1

(
εnq

πq(γ)−πq(α)
)πq(β)

Now, πq(γ) − πq(α) = 0 means that the q’th coordinate of γ and the q’th
coordinate of α are the same. Note that this only happens for every value of q
when γ = α. Thus, the only contribution to the inner sum comes when γ = α,
in which case the inner sum is equal to nq. Thus, for each value of q, we get
one contribution to the sum, namely, a factor of nq.

Since, |G| =
k∏

q=1
nq we are done.

Corollary. Any polynomial P in the |G| variables xα, α ∈ G can be written
uniquely as a polynomial Q in terms of the |G| variables yα, α ∈ G.

Let sα denote the cyclic permutation on |G| variables defined by

sα : πj(xβ) −→ [πj(xβ + α)]mod nj , α ∈ G

From now on, we will write ej to denote the j’th basis vector. In other
words, ej is the vector with 1’s in the j’th coordinate, and 0s everywhere else.

Theorem 4.10. Let Qα(y) = yα. Then, sej ◦Qα = εnj
πj(α)Qα.

Proof.

sej
◦Qα = sej

∑
β∈G

(
k∏

p=1

εnp

πp(α)πp(β)

)
xβ


Now, notice that this operation only affects the j’th coordinate of xβ , and leaves
the other ones alone. Thus, we can pull out the term in the product where p = j,
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and rewrite the product.

=
∑
β∈G

(εnj

πj(α)(πj(β)+1)
) ∏

1≤p≤k
p6=j

εnp

πp(α)πp(β)xβ




= εnj

πj(α)
∑
β∈G

(
k∏

p=1

εnp

πp(α)πp(β)xβ

)

= εnj

πj(α)Qα

Theorem 4.11. The polynomial

Q(y) =
∑
αβ

β∈G

Cαβ

n−1∏
γ∈G

yγ
αγ

is invariant under sej whenever each term of Q satisfies

ni−1∑
i=0

i

 ∑
γ∈G

πj(γ)=i

αγ

 ≡ 0 (mod nj) (14)

Proof. Notice that

sej
◦ yγ

αγ = (εnj

πj(γ)yγ)
αγ = εnj

αγπj(γ)yαγ
γ

We should make a few comments here. If we apply sej
to yγ

αγ for every γ ∈ G,
what we will get is a product of ε terms like that which you see above. When
combined, the exponent will be a sum that looks like

αγ1πj(γ1) + αγ2πj(γ2) + αγ3πj(γ3) + · · ·+ αγ|G|πj(γ|G|)

However, fixing any j, many different elements of G clearly will have the same
j’th coordinate, meaning that, for example, if we choose γ1 and γ2 appropriately,
γ1πj(γ1) + γ2πj(γ2) = πj(γ1)(γ1 + γ2). Thus, the sum inside the parentheses
is the sum of all elements of G which have the same j’th coordinate. Since the
j’th coordinate ranges from 0 to nj − 1, we can use this to write the sum in a
more compact form.

Let
Γab =

∑
γ∈G

πb(γ)=a

αγ
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. Then, by Theorem 4.6,

sej ◦Qγ =
∑
αβ

β∈G

Cαβ
εΓ1j+2Γ2j+···+(nj−1)Γnj−1,j

n−1∏
γ∈G

yγ
αγ

and when
nj−1∑
i=0

iΓij =
nj−1∑
i=0

i
∑
γ∈G

πj(γ)=i

αγ ≡ 0 (mod nj)

the individual terms of the polynomial are invariant under sej
.

Theorem 4.12. Let G = Zn1 ⊕ · · · ⊕ Znk
. Then MZS(G) ≡ Inv(G).

Proof. Let K be a minimal zero sequence of G. Then,
∑

K = 0, and this can be
broken into k diophantine equations, or the following compressed diophantine
equation:

ni−1∑
i=0

i

 ∑
γ∈G

πj(γ)=i

αγ

 ≡ 0 (mod nj)

In other words, the sum of some number of elements which have j’th coordinate
1+ · · ·+ the sum of some number of elements which have j’th coordinate nj −1
equal to 0 modulo nj . Thus this corresponds to a minimal invariant polynomial.
Conversely, if P is a minimal invariant polynomial, then P contains exactly one
term and the exponents of its variables satisfy the diophantine equation

ni−1∑
i=0

i

 ∑
γ∈G

πj(γ)=i

αγ

 ≡ 0 (mod nj)

Thus, this corresponds to a minimal zero sequence.

4.5 Computational Results

We conclude this section with a table listing the number of minimal zero se-
quences (and hence the number of invariant polynomials) of the cyclic groups
Zn, broken down into the number of minimal zero sequences of each length.
The last column is the total number of minimal zero sequences of the group.
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Table 2: Minimal Zero Sequences of Zn

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total
Z1 1 1
Z2 1 1 2
Z3 1 1 2 4
Z4 1 2 2 2 7
Z5 1 2 4 4 4 15
Z6 1 3 6 6 2 2 20
Z7 1 3 8 12 12 6 6 48
Z8 1 4 10 18 16 8 4 4 65
Z9 1 4 14 26 32 18 12 6 6 119

Z10 1 5 16 36 48 32 12 8 4 4 166
Z11 1 5 20 50 82 70 50 30 20 10 10 348
Z12 1 6 24 64 104 84 36 20 12 8 4 4 367
Z13 1 6 28 84 168 180 132 84 60 36 24 12 12 827
Z14 1 7 32 104 216 242 162 96 42 30 18 12 6 6 974
Z15 1 7 38 130 306 388 264 120 88 56 40 24 16 8 8 1494
Z16 1 8 42 158 388 532 386 236 144 88 56 40 24 16 8 8 2135
Z17 1 8 48 192 528 832 736 496 352 240 176 112 . . . 3913
Z18 1 9 54 226 642 1044 822 514 282 174 90 66 . . . 4038
Z19 1 9 60 270 846 1566 1566 1098 774 540 396 270 . . . 7936
Z20 1 10 66 314 1020 1972 1912 1120 608 416 272 176 . . . 8247
Z21 1 10 74 366 1284 2718 2952 1986 1224 . . . 12967
Z22 1 11 80 420 1532 3422 3900 2810 1830 . . . 17476
Z23 1 11 88 484 1892 4598 5940 4620 3234 . . . 29162
Z24 1 12 96 548 2208 5560 6996 4772 2848 . . . 28065
Z25 1 12 104 624 2684 7324 . . . 49609
Z26 1 13 112 700 3108 8828 . . . 59358
Z27 1 13 122 788 3692 11160 . . . 83420
Z28 1 14 130 878 4244 13364 . . . 97243
Z29 1 14 140 980 4984 16660 . . . 164967
Z30 1 15 150 1082 5658 19538 . . . 152548
Z31 1 15 160 . . . 283082
Z32 1 16 170 . . . 295291
Z33 1 16 182 . . . 405919
Z34 1 17 192 . . . 508162
Z35 1 17 204 . . . 674630
Z36 1 18 216 . . . 708819
Z37 . . . 1230258
Z38 . . . 1325732
Z39 . . . 1709229
Z40 . . . 1868565
Z41 . . . 3045109
Z42 . . . 2804473
Z43 . . . 4694718
Z44 . . . 4695997
Z45 . . . 5902561
Z46 . . . 7581158
Z47 . . . 10761816
Z48 . . . 9772607
Z49 . . . 15214301
Z50 . . . 15826998
Z51 . . . 20930012
Z52 . . . 23378075
Z53 . . . 34502651
Z54 . . . 32192586
Z55 . . . 44961550
Z56 . . . 47162627
Z57 . . . 63662925
Z58 . . . 74515122
Z59 . . . 102060484
Z60 . . . 85954379

Table 3: Minimal Zero Sequences of Zm ⊕ Zn

Z2 Z3 Z4 Z5 Z6 Z7
Z2 5 20 39 166 253 974
Z3 20 69 367 1494 2642 12967
Z4 39 367 1107 8247 19463 97243
Z5 166 1494 8247 31029 164967 508162
Z6 253 2642 19463 164967 390861 4694718
Z7 974 12967 97243 508162 4694718 9540473
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5 Conclusion

In closing, we present further ideas for areas of research, mostly furthering
those of section 3. Some similar notes are contained within the main body of
the paper.

Some of the ideas presented here are well-considered and known to be dif-
ficult, such as the F-T conjecture. However, most of the ideas are fresh and
untouched except by the glance that deemed them interesting, accessible, and
probably true.

Within section 3, Section 3.3 is the most interesting and most promising for
future work, but also the most difficult. Section 3.1 on cyclic groups is also open
for further work, and is probably more easily attainable. B(Z2

n) is a special
case; and its potential ends with itself . However, B(Zn) , and especially B(Z3

n),
will provide the foundation for future work in groups not so nice. (The nature
of research is shown by the fact that by now ago we thought counting the atoms
in B(Zm

n) would have been a solved problem now.)
An example of some ideas that will lead to an understanding and general

formula for B(Zn) is the following conjecture: The number of atoms in the
following classes is a “nice” multiple of the number of Davenport atoms:

an−xb1
β1b2

β2 ...by
βy , where n ≥ 2(x− 1), x ≥ 4,

and β1 + β2 + ... + βy = x, βi ≥ 2.

This should give the idea of what is involved in counting by the method of
working-down from the Davenport sequences. Furthermore, one should be able
to prove the uniqueness of length n− 1 atoms in B(Zn) to be of the multiplicity
class an−2b, and be able to union the multiplicity classes of the above conjecture
into the number in length classes. Clearly, it is only a step further to start
considering the atoms of all the various orders in the group in a similar manner
individually and then summing up all the various results from these explorations
of classes of elements of different order.

Note that order classes will play a role that they are only trivially playing
in Zm

n, where every element is of the same order. Order classes need to be
defined in a similar manner to our other classes, and there may be more than
one way of doing it.

We were lead to the idea of counting atoms by considering isomorphism
classes. These were simply multiplicity classes in B(Z2

n). It seems that with
our classes we are really trying to find the classes that uniquely determine the
automorphism or isomorphism classes for different groups. The interplay of the
various classes, sometimes being equivalent and sometimes partitioning differ-
ently is very interesting. Multiplicity classes clearly partition length classes,
and dimension classes partition multiplicity classes, so that there is a hierarchy
among them. However, the order class seems to be of a different beast, but
necessary to consider for groups with various orders. Of the three groups we
looked at, B(Zn) had order class different from multiplicity class, but B(Z2

n)
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and B(Z3
n), and in general B(Zn

n), are not partitioned at all by order class,
since every element is of the same order.

Order classes and multiplicity classes are found by the same computer pro-
gram that found minimal zero sequences.

For B(Z3
n), it is natural to ask about bounding the ratio |N | : (|I| + |I|),

as mentioned in Section 3.3. In addition, it would be nice and easy to produce
an overall bound for the function itself. Furthermore, the applications given at
the end of that section have been furthered on paper using the help of a Maple
program to produce the number of available choices for particular N ’s when
|N | = 3. These additional applications were based on an intuitive tree diagram
model of the atoms and will probably look nice in the rather new notation of
dimension classes.

The explored question of Davenport sequences is, given the block monoid
over a finite abelian group, what is the length of the longest atoms? A similar
and complimentary question is: given a length, what portion of block monoids
over a family of finite abelian groups have atoms that length? If one answer is
known for a family of groups, so is the other. Currently the former is better
explored than the latter, into which little effort seems to have been put. It
is easy to prove the theorem which gives a formula for which n of (Z3)n have
atoms of a given length m. However, if much progress is made in the direction
of section 3, then the informing could flow in the opposite direction, and we
could learn more about the Davenport theory from the structure theory that
accompanies the counting of atoms. Similarly, in the realm of computation,
we could have further multiplicity inclusion theorems, which would be more
powerful in searches for Davenport sequences than their older brothers, the
multiplicity exclusion theorems.

Similarly, within the ideas presented in section 3, the more structural theories
can feed off the combinatorial proofs and vice versa.

Can a connection be made from counting atoms in B(Z2
n) to Gaussian

coefficients similar and as close as the connection of minimal zero sequences to
invariant theory?

Further conjectures include the F-T conjecture: Let G, H be finite abelian
groups of the same order, with rank(G) ≤ rank (B), then |A(B(G))| ≥ |A(B(H))|.
This checks out for orders up to about 40 (we have the data, usually just some
statistics about the atoms instead of every single atom, stored for groups such
fairly small order).

A further conjecture concerns the difference in the number of atoms of
two consecutive cyclic groups B(Zn) and B(Zn+1). Not only is it true that
|A(B(Zn+1))| − |A(B(Zn))| has no upper bound, but it is here conjectured that
it has no lower bound either. A lower bound seems to be pushed when n + 1 is
a composite with many distinct factors and n is a prime.
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