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Abstract

A sign-solvable system is a linear system of equations such that the sign pattern
of the solution can be determined by only knowing the signs of the coefficients of the
data. Using optimization techniques, we show that the set of possible sign patterns
of a solution vector of a time-dependent linear system stabilizes, under certain mild
assumptions. Under these same assumptions, we use this result to show that the set
optimal partitions of a multiple objective asymptotic linear program stabilizes.

Keywords: Sign-Solvable, linear programming, multiple objective programming

a Oberlin College, Oberlin OH, Ryan.Herring@oberlin.edu
b Mills College, Oakland CA, cnightin@mills.edu
c University of Nebraska-Lincoln, Lincoln NE, tstohs1@bigred.unl.edu
∗ All research was conducted at Trinity University in the Research Experience for

Undergraduates program, funded by grant #0097366 from the National Science
Foundation.



1 Introduction

The main goal throughout our research was to extend a previous result in [5] showing
that the optimal partition of an linear program stabilizes. Our extension is to the
case of multiple objectives. We first approached this problem by trying to extend the
technique used in the proof of the previous result. When this method proved unsuccess-
ful, we looked for another way to approach the problem and found that sign-solvable
systems provided the insight needed to prove the result that we wanted. We worked
mainly with linear programming throughout our project.

Linear programming is an important tool used to solve optimization problems, with
many real world applications in economics and management. A linear program (LP )
consists of a linear objective funtion to be maximized or minimized with respect to a
set of linear constraints. We work with asymptotic linear programs dependent on time.
The asymptotic linear program is

LP (t) : min{cT (t)x : A(t)x = b(t), x ≥ 0},

where A(t) : R → Rm×n, b(t) : R → Rm, and c(t) : R → Rn. Additionally, every LP
has an associated dual,

LD(t) : max{bT (t)y : AT (t)y + s = c(t), s ≥ 0}.

A vector x satisfying the constraints of the primal linear program LP (t) is called
feasible. The feasible region for LP (t) is P(t) = {x : A(t)x = b(t), x ≥ 0}, and
P0(t) = {x ∈ P(t) : x > 0} is the strict interior. P∗(t) denotes the set of optimal
solutions to the primal linear program. Similarly, D(t) denotes the dual feasible region,
D0(t) = {(y, s) ∈ D(t) : s > 0} is the strict interior of the dual, and D∗(t) is the optimal
dual set. Due to the Strong Duality Theorem of linear programming, we know that
the feasible elements x and y are optimal if, and only if, cT (t)x = bT (t)y. Thus, the
following three equations are necessary and sufficient conditions for optimality:

A(t)x = b(t), x ≥ 0, (1)
AT (t)y + s = c(t), s ≥ 0, and (2)

xT s = 0. (3)

An early result by Goldman and Tucker [4] guarantees that every solvable linear pro-
gram has a strictly complementary solution, meaning that (x∗)T s∗ = 0 and x∗+s∗ > 0.
This leads us to the idea of the optimal partition, which identifies the variables that are
allowed to be positive at optimality and those that must be zero. The unique optimal
partition is denoted (B|N), and is defined by the strictly complementary solution x∗

as follows,
B(t) = {i : x∗i (t) > 0}, and
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N(t) = {1, 2, 3, . . . , n}\B(t).

In other words, B(t) is the set of primal variables that can be positive at opti-
mality and N(t) is the set of primal variables that are zero in every optimal solu-
tion. Hasfura-Buenaga, Holder and Stuart [5] proved under mild assumptions about
A(t), b(t), and c(t) that the optimal partition stabilizes after some time T . This means
that there exists a time T , such that for all t ≥ T , (B(t)|N(t)) = (B(T )|N(T )). We call
(B(T )|N(T )) the asymptotic optimal partition. In this paper, we extend these results
to the optimization of linear programs with multiple objective functions. The multiple
objective linear programs (MOLPs) in this paper are of the form

MOLP (t) : min{C(t)x : A(t)x = b(t), x ≥ 0},

where C(t) : R → Rq×n, meaning that there are q objective functions to minimize.
Since the multiple objective functions do not lie in a completely ordered set, a solution
to the MOLP is defined as an efficient point or pareto optimum. A feasible solution
x is pareto optimal if there does not exist a y ∈ P(t) such that C(t)y ≤ C(t)x, with
strict inequality holding for at least one component. The set of all pareto optimal
solutions is called the efficient frontier and is denoted by E . From Matthias Ehrgott’s
Multicriteria optimization [3], we know that x ∈ E if, and only if, there exists a strictly
positive weighting vector w such that x minimizes {wCT (t)x : x ∈ P}. This linear
program is denoted by

LP (w, t) : min{wCT (t)x : x ∈ P(t)}.

For MOLP (t), we need slightly different conditions to ensure an optimal solution.
The following equations are an extension of (1)-(3) and are the necessary and sufficient
conditions for optimality in the multiple objective case:

A(t)x = b(t), x ≥ 0, (4)
AT (t)y + s = CT (t)w, s ≥ 0, w > 0, and (5)

xT s = 0. (6)

For MOLP (t), the optimal partition is also slightly different than that for a single

objective linear program. (
molp

B(t)|
molp

N(t)) is defined by

molp

N(t) = {i : xi(t) = 0, ∀ x ∈ E} and

molp

B(t) = {1, 2, . . . , n}\
molp

N(t).

This means that
molp

N(t) is the collection of indices such that the corresponding vari-
ables are zero over the entire efficient frontier. Note that since each i ∈ {1, . . . , n}
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is an element of either B(t) or N(t), there are 2n possible two-set partitions. We
let {(B1|N1), (B2|N2), . . . , (B2n |N2n

)} be the collection of all such partitions. Let

L(t) = {i : Bi is a sub-partition of
molp

B(t)}. Note that
molp

B(t) =
⋃

i∈L(t) Bi(t). Thus our

goal of showing that (
molp

B(t)|
molp

N(t)) stabilizes after some time T is equivalent to showing
that L(t) stabilizes.

This paper is organized as follows. In section 2, we introduce sign solvable systems
and show that after some time T , the sign patterns of solutions to a time dependent
linear system become fixed. In section 3, we apply this result to multiple objective
asymptotic linear programs and show that there exists a time T , such that for all

t ≥ T , (
molp

B(t)|
molp

N(t)) = (
molp

B(T )|
molp

N(T )). The last section consists of continuity results for
(x(t), y(t), s(t), w(t)).

2 Asymptotic Sign-Solvability

For a linear system Ax = b, it is often important to make conclusions based on strictly
qualitative information. For a matrix A and vector b, there are times when we do not
know the exact value of each entry but do know what sign each entry has. For example,
suppose we know that Â and b̂ take the form,

Â =
[
− + 0 +
− − + 0

]
and b̂ =

[
+
−

]
.

The question now becomes, is there a vector x̂ that solves Âx = b̂, and if so, what
properties does it have? We need some notation to better analyze these systems. We
define the sign of a real number a as

sign(a) =


+1 if a > 0,

0 if a = 0,
−1 if a < 0.

The sign pattern of a matrix A is a (0, 1,−1)-matrix obtained by replacing each entry
aij with sign(aij). We denote the sign pattern of a matrix A with σ(A). In addition,
we define the following time dependent set,

Σ(t) = {σ(x) : A(t)x = b(t)}. (7)

The set Σ(t) contains all of the possible sign patterns that solve A(t)x = b(t). In this
section, we show that Σ(t) stabilizes under some mild assumptions, which is to say
that Σ(t) becomes constant after some time T . To analyze asymptotic sign-solvability,
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we first examine asymptotic linear programs in order to use some results proved in [5].
We make assumptions on the behavior of A(t) and b(t) in order to make conclusions
about the behavior of the solutions to A(t)x = b(t). We make these assumptions to
ensure that A(t) and b(t) each preserve their respective ranks, meaning the ranks of
each matrix become constant after some time T0. By establishing constant ranks of
A(t) and b(t), we can determine whether or not the system A(t)x = b(t) is consistent
for all t ≥ T0. Once the stability and consistency of A(t) and b(t) are established, we
proceed to show that Σ(t) stabilizes. The following assumption is key to establishing
the stability of A(t) and b(t).

Assumption 1 There exists a time T0 such that for all t ≥ T0, the determinants of
all square sub-matrices of [A(t) | b(t)] are either constant or have no roots. We also
assume that for all t ≥ T0, the functions A(t) and b(t) are continuous.

This assumption is the basis for two important lemmas proved in [5]. These results
are optimization results that we present in order to understand the behavior of sign
pattern solutions to A(t)x = b(t). The first result provides a foundation for studying
asymptotic linear systems in general. The purpose of the following lemma is to establish
whether the system A(t)x = b(t) is consistent.

Lemma 1 (Hasfura-Buenaga, Holder, Stuart [5]) Let M(t) be a matrix function
whose component functions have the property that there exists a time T , such that for
all t ≥ T , the determinants of all square sub-matrices are either constant or have no
roots. Then, rank(M(t)) stabilizes.

Lemma 1 implies that the ranks of A(t) and [A(t)|b(t)] stabilize. We know that
the system Ax = b is consistent if and only if rank(A) = rank([A|b]). Since the ranks
stabilize, we know that if rank(A(t)) = rank([A(t)|b(t)]) then the system is consistent
for all t ≥ T , and if those ranks are not equal then the system will be inconsistent for
all t ≥ T .

The next lemma presents a tool to analyze the partition of solution variables x,
which is described by the following notation. For this notation, assume that σ = σ(x)
for some time t. Let

Λ+(σ) = {i : σi = +1}
Λ−(σ) = {i : σi = −1}
Λ0(σ) = {i : σi = 0}.

A sign pattern σ̃ is a solution if there exists a vector x with σ(x) = σ̃ such that x
solves Ax = b. With the above notation we turn the problem of finding sign pattern
solutions into a linear feasibility problem. A feasibility problem for our purposes is a
linear program that minimizes the zero function. This is called a feasibility problem
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because with the objective function fixed at zero, any feasible solution is also an optimal
solution. Consider the following program:

min {0T x : A(t)x = b(t), x ≥ 0}. (8)

A potential problem for an asymptotic sign-solvable system is that solutions with both
negative and positive components are allowed, whereas a linear program requires solu-
tions to be non-negative. Without loss in generality, it is possible to take all components
in Λ−(σ) and reverse the sign in the corresponding column of A. Thus, B(t) contains
all indices of components.

Despite the fact that the objective function is fixed in (8), we still use optimization
techniques to solve the program. It is important to remember that for any linear
program, there exists a strictly complementary solution. A strictly complementary
solution induces a maximal optimal partition, which means that B(t) contains all
indices whose corresponding variables are not required to be zero. The reader is directed
to Roos, Terlaky, and Vial [7] as well as Wright [8] for more information on strictly
complementary solutions and maximal partitions. With the knowledge of maximal
partitions we use the following result.

Lemma 2 (Hasfura-Buenaga, Holder, Stuart [5]) Assume that (A(t), b(t)) sat-
isfy Assumption 1. Then, there exists a time T , such that for all t ≥ T , the optimal
partition of (8) stabilizes, (B(t)|N(t)) = (B(T )|N(T )).

Lemma 2 asserts that the optimal partition of the feasibility problem stabilizes.
This result is important in our proof that Σ(t) stabilizes. We use the stability of the
optimal partition to show the stability of the sign patterns of an asymptotic linear
system. The stability of each sign pattern solution then implies the overall stability of
Σ(t). We now have the necessary tools to prove our result.

Theorem 1 Assume that (A(t), b(t)) satisfy Assumption 1. Then there exists a time
T , such that for all t ≥ T , Σ(t) = Σ(T ).

Proof: Let t0 ≥ T0 be large enough to satisfy Assumption 1. From Lemma 1
we know that for all t ≥ t0, rank([A(t)|b(t)]) = rank([A(t0)|b(t0)]). Also note that
A(t0)x = b(t0) has a solution if and only if rank(A(t0)) = rank([A(t0)|b(t0)]). If
A(t0)x = b(t0) has no solution, then Σ(t0) = ∅. Since the ranks have stabilized, the
system A(t)x = b(t) is inconsistent for all t ≥ t0, which implies that Σ(t) = ∅ for all
t ≥ t0. Thus, Σ(t) stabilizes.

Now assume that the system does have a solution. Let σ̃ ∈ Σ(t0). We proceed to
show that σ̃ ∈ Σ(t) for all t ≥ t0. Consider the following program:

min {0T x : A(t0)x = b(t0), σ(x) = σ}. (9)
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This is not a linear program because σ(x) is not a linear function. However, this
program is represented by a linear program such that every optimal solution to the
nonlinear program is also optimal for the linear program. We have that (9) can be
represented by:

min {0T x : A(t0)x = b(t0), x
Λ+(σ̃)

≥ 0, x
Λ−(σ̃)

≤ 0, x
Λ0(σ̃)

= 0}. (10)

We know that all linear programs have a strictly complementary optimal solution,
which means that there exists a solution such that the inequalities become strict (—
i.e. x

Λ+(σ̃)
> 0 and x

Λ−(σ̃)
< 0). These strict inequalities induce a optimal partition

that is maximal, which implies that the sign pattern of the solution x at time t0 is
equal to the chosen sign pattern σ̃, namely σ(x) = σ̃. We know from Lemma 2 that
for all t ≥ t0, the optimal partition stabilizes. This means that we can always find a
solution x that maintains the current sign pattern, or equivalently that σ(x) = σ̃ for
all t ≥ t0. This implies that the sign pattern σ̃ remains a solution to A(t)x = b(t) for
all t ≥ t0, and hence σ̃ ∈ Σ(t) for all t ≥ t0.

For each σ̃ ∈ Σ(t) we have shown that σ̃ remains in Σ(t) for all t ≥ t0, which implies
that for all t ≥ t0, Σ(t0) ⊆ Σ(t). If at some time t1 ≥ t0 a new sign pattern σ̂ becomes
a solution to A(t)x = b(t), then by the same reasoning as before, that sign pattern
remains in Σ(t) for all t ≥ t1. Σ(t) is a finite set bounded by 3n, which is the number
of possible sign patterns. Thus, since Σ(t) can never lose any of its components and
is bounded above, there must exist a time T ≥ t0 such that for all t ≥ T , Σ(t) = Σ(T ).

This result is a useful application of optimization to a linear algebra problem.
Intuition leads one to suspect that this result is true, but it is a hard result to prove
directly through linear algebra techniques. The use of an optimization result shows
the power of optimization techniques. In the next section, we extend the main result
in [5] to multiple objective asymptotic linear programming.

3 Multiple Objective Asymptotic Linear Pro-

gramming

In this section we show that the optimal partition (
molp

B(t)|
molp

N(t)) stabilizes under some
mild assumptions on A(t), b(t), and C(t). First, we introduce some notation, followed
by an explanation of how we extend Theorem 1. For j ∈ {1, 2, . . . , 2n}, let

Hj(t) =

 ABj (t) 0 0 0
0 AT

Bj (t) 0 −CT
Bj (t)

0 AT
Nj (t) I −CT

Nj (t)

 , v =


xBj

y
sNj

w

 , and h(t) =

 b(t)
0
0

 . (11)
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A solution v to Hj(t)v = h(t) satisfies the necessary and sufficient optimality conditions
(4)-(6) for the multiple objective asymptotic linear program (MOLP (t)) provided that
v is sufficiently positive, written v >| 0. A sufficiently positive solution v is such that
xBj > 0, sNj > 0, and w > 0. The reader should verify that (11) is equivalent to
(4)-(6), knowing that it is necessary for xNj = 0 and sBj = 0 in any optimal solution.
The optimal partition stabilizes because the sign patterns of v stabilize. For Theorem
1, we made an assumption about the behavior of A(t) and b(t), so for the linear system
Hj(t)v = h(t), we need to make a similar assumption.

Assumption 2 There exists a time T1 such that for all t ≥ T1, the determinants of
all square sub-matrices of [

A(t) 0 b(t) 0
0 AT (t) 0 CT (t)

]
(12)

are either constant or have no roots. We also assume that for all t ≥ T1, the functions
A(t), b(t), and C(t) are continuous.

Assumption 2 combined with Lemma 1 shows that the ranks of Hj(t) and [Hj(t)|h(t)]
stabilize. This fact allows us to use Theorem 1. Later, we show that the stability of the
sign pattern solutions to Hj(t)v = h(t) implies that the optimal partition stabilizes.
Now we present an example that gives an idea of how a multiple objective asymptotic
linear program behaves.

Example 1 Consider the following program:

min
(

z1

z2

)
=

(
x1 − x2

−
(

(t−2)2−t
3t2+4t

)
x1 − x2

)

subject to x1 + x2 ≤ 3,
x1 ≤ 2,
x2 ≤ 2,

x1, x2 ≥ 0.

The data of this program in standard form is

A(t) =

 1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

 , b(t) =

 3
2
2

 , and C(t) =

[
1 −1 0 0 0

− (t−2)2−t
3t2+4t

−1 0 0 0

]
.

First note that the matrix functions A(t), b(t), and C(t) satisfy Assumption 2, with
stabilization occurring after T0 = 4. Also note that in this example n = 5, as there
are two main variables and three slack variables. This example can be visualized in
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two dimensions and the geometry makes the following results more clear. For t ≤ 4
the optimal partition is different than for t > 4. To see this, consider t = 4, at
which point z2 = −x2, which means that the second objective does not contribute to
the overall objective since −x2 is a component of the first objective. So for this case,
there is only one objective to minimize and it leads to the unique optimal solution
x1 = 0, x2 = 2, x3 = 1, x4 = 2, -and x5 = 0. Thus, for t = 4, the optimal partition is

(
molp

B(4)|
molp

N(4)) = ({2, 3, 4}|{1, 5}). However, when t > 4, the second objective function
is −εx1 − x2, where ε ∈ (0, 1). In this case, the objectives lead to different parts of

the feasible region. Thus, by pareto optimality, the optimal partition is (
molp

B(t)|
molp

N(t)) =
({1, 2, 3, 4, 5}|{∅}).

This example shows how quickly the optimal partition can change when the ranks of
the matrices change, as when t = 4. With an idea of what is necessary for the optimal
partition to stabilize, we now formally present the following theorem.

Theorem 2 Assume that (A(t), b(t), C(t)) satisfy Assumption 2. Then there exists a

time T , such that for all t ≥ T , (
molp

B(t)|
molp

N(t)) = (
molp

B(T )|
molp

N(T )). Equivalently, L(t) =
L(T ).

Proof: Let t0 ≥ T1 be large enough to satisfy Assumption 2. We know from
Theorem 1 that for each j ∈ {1, 2, . . . , 2n}, Σj(t) = {σ(v) : Hj(t)v = h(t)} is constant
for all t ≥ T̃ , where T̃ ≥ t0. Let

suff
Σj (t) = {σ(v) : Hj(t)v = h(t), v >| 0}.

Each j corresponds to a partition (Bj |N j). We divide the set of partitions into two
classes: those that contain a sufficiently positive solution and those that do not. Let

Ω(t) = {j :
suff
Σj (t) 6= ∅},

Ψ(t) = {j :
suff
Σj (t) = ∅}.

From Theorem 1 we know that for each partition (Bj |N j), there exists a time T̃ ≥ t0
such that for all t ≥ T̃ , Σj(t) = Σj(T̃ ). That implies that for all t ≥ T̃ , Ω(t) = Ω(T̃ )
and Ψ(t) = Ψ(T̃ ). The set Ω(t) corresponds to all the partitions that contain a suffi-
ciently positive solution and thus, are in the efficient frontier. Therefore, Ω(t) = L(t)
and since Ω(t) remains constant for all t ≥ T̃ , so must L(t).
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4 Continuity results

As stated in our introduction, we began our research with the goal of showing that the

optimal partition (
molp

B(t)|
molp

N(t)) stabilizes after some time T . Although we ended up us-
ing sign-solvability to show this, we tried several approaches beforehand. One of these
methods was to show that there exists a continuous function of the weights for suffi-
ciently large t that keeps the same optimal partition. Working on the proof to this con-
jecture resulted in the proof of a stronger theorem that shows that (x(t), y(t), s(t), w(t))
is continuous after a certain time T . For our proof, we first need the following lemma.

Lemma 3 (Campbell and Meyer [1]) A Moore-Penrose pseudo inverse M+(t) is
continuous at t0 if, and only if, rank(M(t)) = rank(M(t0)) for t sufficiently close to
t0.

Theorem 3 For sufficiently large t, there exists continuous (x(t), y(t), s(t), w(t)), such
that

x(t) ∈ argmin{wT (t)C(t)x : A(t)x = b(t), x ≥ 0} and

y(t), s(t)) ∈ argmax{bT (t)y : AT (t)y + s = CT (t)w(t), s ≥ 0}.

Proof: Let t0 ≥ T1 satisfy Assumption 2, and let (Bj |N j) be the optimal partition
for LP (ŵj , t), where w(t0) = ŵ. Because we satisfy this assumption, there exists a
solution to Hj(t0)v(t0) = h(t0), such that v(t0) is sufficiently positive, where

Hj(t) =

 ABj 0 0 0
0 AT

Bj 0 −CT
Bj (t)

0 AT
Nj I −CT

Nj (t)

 , v(t0) =


xBj (t0)

y(t0)
sNj (t0)

w(t0)

 , and h(t) =

 b(t)
0
0

 .

Thus, v(t0) = H+
j (t0)h(t0) + q0, where H+ is the Moore-Penrose pseudo inverse of

H and q0 ∈ Null(Hj(t0)). We define v(t) = H+
j (t)h(t) + (I − H+

j (t)Hj(t))q0, where
(I − H+

j (t)Hj(t))q0 is the projection of q0 onto the null space of Hj(t). Let tk → t0.
From our definition of v(t), we have that v(tk) = H+

j (tk)h(tk) + (I −H+
j (tk)Hj(tk))q0.

First, we show that v(tk) satisfies Hj(tk)v(tk) = h(tk), which means that our par-
tition (Bj |N j) remains optimal. We have

Hj(tk)v(tk) = Hj(tk)[H+
j (tk)h(tk) + (I −H+

j (tk)Hj(tk))q0]

= Hj(tk)H+
j (tk)h(tk) + Hj(tk)q0 −Hj(tk)H+

j (tk)Hj(tk)q0

= h(tk)−Hj(tk)q0 + Hj(tk)q0

= h(tk).
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Second, we show that v(tk) → v(t0), proving that v is continuous. Note that H+(t)
is continuous from Assumption 2 and Lemma 3. So, as tk → t0, v(tk) = H+

j (tk)h(tk)+
(I−H+

j (tk)Hj(tk))q0 → H+
j (t0)h(t0)+q0 = v(t0). This is because (I−H+

j (tk)Hj(tk))q0

is the projection vector onto the null space of Hj(tk) and q0 ∈ Null(Hj(t0). Hence, as
tk → t0, the projection vector actually becomes a vector in the null space of H(t0).

Notice that v(tk) >| 0 for large k because v(tk) → v(t0) and v(t0) >| 0. The proof
follows because xNj (t) = 0 and sBj (t) = 0, both of which are continuous. Hence, there
exists a continuous (x(t), y(t), s(t), w(t)).

Let wj(t) be the function of weights for the weighted multiple objective linear
program

LP (w, t) : min {wj(t)CT (t)x : A(t)x = b(t), x ≥ 0}.

Since w is a sub-vector of v, we get the following corollary.

Corollary 1 For t sufficiently large, wj(t) is continuous and the partition (Bj |N j) is
optimal for LP (w, t).

5 Conclusion and Final Remarks

We have shown under some mild assumptions that the set of sign patterns for asymp-
totic linear systems stabilizes. We then used this result to show that the optimal
partition of an asymptotic multiple objective linear program stabilizes. The latter re-
sult substantially improves and extends the result in [5], which applied only to single
objective linear programs.

There is also an economic interpretation to our MOLP result. An economic result
known as the Nonsubstitution Theorem says that there is always a collection of (not
necessarily unique) processes in an economy that are optimal, independent of demand.
Hasfura-Buenaga, Holder, and Stuart [5] demonstrated that the collection of optimal
processes stabilizes in a dynamic version of the Nonsubstitution Theorem. In this eco-
nomic model, it is assumed that the labor source is homogeneous, —i.e. every potential
employee has equal skills and thus would earn an equal wage. Our multiple objective
result, however, says that the collection of optimal processes stabilizes even if we allow
multiple labor sources with varying wages, a much more realistic claim. This extension
is more thoroughly explored in [2].

There are further questions to study in this area. We first define the following:
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Wj(t) = {w : the optimal partition for min{wT c(t)x : A(t)x = b(t), x ≥
0} is (Bj |N j)}.

• Does dim(Null(ABj (t))) + dim(Wj(t)) become constant? Graphical analysis with
w = [w1, w2]T intuitively leads to this conclusion, and it may hold true for any
w = [w1, . . . , wq].

• What class of functions satisfy Assumption 2? The assumption holds for ratio-
nal functions, but does not for all differentiable functions (—i.e. sin(t)). There are
no known necessary conditions for this assumption to hold, and it is thus somewhat
ambiguous how strong this assumption is.

We extend our sincerest appreciation to Allen Holder for his insights and dedication
to our project.
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