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Abstract: While much of the behavior of the generic quadratic family of
dynamical systems is understood, extending it to the realm of non-automous
dynamical systems left the long-range behavior of the system yet to be de-
termined. In this paper, we produce an abstract lemma that will provide
sufficient conditions to guarantee a globally asymptotic fixed point. With
this lemma in hand, we are able to disprove a previously made conjecture [3]
by finding a bound which will guarantee a globally attractive 2-cycle under
the infinite composition of two quadratic functions f and g.

I. Introduction

For our purposes, a dynamical system is the iterative process of composing
a continuous function f : I — I, where [ is an interval. The composition
of two functions is denoted by f o g(z) = f(g(z)), and thus, the n-fold
composition of f with itself is the function f"(z) = fo...o f(x).

In the area of discrete dynamical systems, one application of f corre-
sponds to the passage of one unit of time, ¢. For any such time-dependent
process, the goal of dynamical systems is the following: Given an initial
state T, we want to understand the eventual behavior of this iteration in the
distant future (¢ — oo) and determine what, if any, asymptotic properties
it has. Differential equations with time as the independent variable can be
thought of as dynamical systems with continuous, rather than discrete, time.

Outside the purely mathematical realm, dynamical systems occur in fields
such as physics, economics, and biology. Biologists, for example, construct
mathematical models to monitor changes over time in populations, taking
into account several factors, which include predators, climate, food, over-
crowding, birth rate, and death rate. Biologists hope to determine whether a
population tends toward zero over time, causing species extinction; whether
the population grows exponentially large, leading to overcrowding; whether
the population fluctuates periodically, such as with the seasons; or whether
it fluctuates in a random, even chaotic, manner.

The simplest population model, both in discrete and continuous time,
assumes that the growth rate of a population is directly proportional to the
present population. Regardless of whether time is discrete or continuous,
this assumption implies that the population grows, or decays, exponentially
leading to unmonitored growth or extinction. Solving the differential equa-
tion % = kP yields the solution P(t) = Pye*?, where k is the proportionality
constant and Py = P(0) is the initial population. A positive k leads to un-
limited population expansion since P(t) — oo as t — oo, while a negative k
leads to population depletion since P(t) — 0 as t — oc.



Analagous to the above continuous model is the discrete difference equa-
tion P,.; = kP, in which the next generation’s population is directly pro-
portional to the present generation’s population. In this case, k is again the
proportionality constant and P, represents the population after n genera-
tions (n € N). This leads to the system

P1 = k?PO
P2 = k?Pl = k’QPQ
P; = kP, = k3P,

P,=kP, 1 =Fk"F,
where P, - occif k> 1,and P, - 0if 0 < k < 1.
Rewriting this system of equations in terms of the function f(x) = kx,
where x = F, yields
P = f(z)=kx
P, = f(f(x)) = ¥
Py = F(f(f(2)) = K

P, = f"(x) = k"z
allowing the eventual behavior of the population to be viewed in terms of a
dynamical system.

By taking into account a limiting factor, L, to more accurately represent
reality, the population model becomes % = kP(L — P). For k > 0, the
population either remains constant if P = L (4 = 0), decreases if P > L
(22 < 0), or increases if P < L (4 > 0). While this equation can be
explicitly solved for, the solution to the corresponding difference equation
yields a most complex dynamical system that is still not entirely understood
today.

To simplify the model further, the population is viewed in terms of a
percentage, P,, with the limiting factor L = 1: P,y = kP,(1 — P,). As
before, the equation is rewritten as a function, f(z) = kz(1 — z), where
x = Py, producing the system of equations

P = f(x)
Py = 1(f(x))
Py = 1((f(2))

P, = f " (:L’)
Now the population’s behavior can be monitored by studying the logistics of
this quadratic function. Many of the features found in dynamical systems are
illustrated by the dynamics of this logistic family causing it to be a central
focus of modern mathematical research.



For 1 < p1 < 3, each element of the quadratic family F),(z) = pz(1 — 2)
has two fixed points: a repelling fixed point at 0 and an attracting fixed point
at p, = “7_1 As n — oo for F}’(x), points that lie outside the unit interval
[0, 1] approach —oo while p, is globally attracting for all points within the
open interval.

Values of ;1 > 3 lead to very rich and increasingly complex dynamical
behavior. In particular, there is no globally attracting fixed point. However,
this will not be discussed here as the focus is strictly 1 < p < 3. For a more
detailed discussion, refer to [1].

Once the dynamics of a single i value are understood, it is desirable to
vary the value of ;1 with time. For example, varying the values of i cyclically
emulates the periodic nature of many environmental factors. To illustrate
this, from [3|, we have the non-autonomous dynamical system

fn<x) = ,unfn71<x)(1 - fn71<x)) (1)

given x € (0,1), pntp = py, for all n € N, and f,,1, = f, with fo(x) defined
as x. Conjecture 2.6 claims equation 1 has a globally asymptotically stable
p-cycle if and only if 1 < min p; < max p; < 3. Our following research
disproves this statement by considering the case where p = 2.

In our argument, we will consider the case where there are two functions
with different p values, A and B, that are periodic in a 2-cycle. We define
them as F'(x) = g(f(x)) and G(z) = f(g(x)) where f(x) = Az(1 — x) and
g(x) = Bx(l —z) with 1 < A, B < 4. Also, let h(z) = z.

II. Theorems and Definitions

It is necessary to begin by stating a number of theorems and definitions
which will be used throughout our argument.

A. Dynamical Systems:
Definition 1. The point = is a fized point for fif f(x) = .

Definition 2. The orbit of x is the set of points
{z, f(2), f2(2), ..., f"(2), ...}

Definition 3. The point = is a periodic point of period n if f™(z) = x.

Definition 4. A point x is eventually periodic of period n if there exists
m > 0 such that f""(x) = fi(x) for alli > m. That is, f'(x) is periodic for
1> m.



Definition 5. A two-cycle of the two-periodic non-autonomous dynamical
system { f(x) = Az(1—x), g(x) = Bx(1—x)} is a pair {xo, f(x0)} such that
g(f(xo)) = xo is globally attracting if x € (0,1) =

JlrgoF"(x) = ng;o(g o f)™"(x) = xo.

Theorem 1. Sarkovskii’s Theorem: Suppose f : R — R is continuous.
Suppose f has a periodic point of prime period k. If k1 in the ordering

3p5>7>--->2-302-5p---022.322.5p22. 7.
p23.3p23 . 5523 . 7Tt n >23>22p2p 1

then f also has a periodic point of period .
B. Numerical Analysis:

Theorem 2. Archimedes’ Principle: Let € and M be any two positive real
numbers. There exists a k in N such that M < ke.

Definition 6. Let S be a nonempty set of real numbers that is bounded above.
A supremum or least upper bound of S, denoted sup S, is a real number n
such that

(i) © < u, for all  in S.

(i1) If M is an upper bound for S, then p < M.

Definition 7. Let S be a nonempty set of real numbers that is bounded below.
An infimum or greatest lower bound of S, denoted inf S, is a real number v
such that

(i) v <z, for all x in S.

(1) If m is any lower bound for S, then v > m.

Theorem 3. The Completeness Axiom for R: If S is a nonempty set of real
numbers that is bounded above, then sup S ezists in R. (Similarly for inf S
if S is bounded below.)

Theorem 4. Let S be a nonempty set of real numbers and let i and v be
real numbers.
(i) Suppose that S is bounded above. Then p = sup S if and only if p is
an upper bound for S and, for every e > 0, there exists an = in S such
that p—e <z < p.
(i1) Suppose that S is bounded below. Then v = inf S if and only if v is
a lower bound for S and, for every e > 0, there exists an z in S such
that v < x <v-+e



Theorem 5. Intermediate Value Theorem:
(i) Suppose f : |a,b] — R is continuous. Suppose that f(a) = u and
f(b) =wv. Then for any z between u and v, there exists ¢, a < ¢ < b,
such that f(c) = z.
(1) If f is a continuous, real-valued function on |a,b] and if f(a)- f(b) < 0,
then f must have value 0 at some point in (a,b).

Theorem 6. The Mean Value Theorem: Suppose that f is continuous on

[a,b] and differentiable on (a,b). There exists a point ¢ in (a,b) such that
f(c) = Lo=ta

b—a
Theorem 7. Racehorse Theorem: Suppose that f and g are differentiable on
[a,00), that f(a) = g(a), and that f'(x) < ¢'(x) for all z in (a,00). Then
f(z) < g(x) for all z in (a,00). (Similarly for intervals of the form [a,b].)

Theorem 8. Chain Rule: If f and g are differentiable functions, then
(fog)(z)=f(g9(x)g (). In particular, if h(z) = f"(z), then
W(x) = f/(f" 1) f (2 @) - f(w).

Theorem 9. [’Hopital’s Rule: Suppose that f and g are each continuous on
[a,b] and differentiable on (a,b). Suppose that c is a point of [a,b] such that
f(e) = g(c) = 0. Suppose also that, on some deleted neighborhood N'(c), ¢’
f'(z) f(z)

does not vanish. If lim 7 = L exists, then limm also exists and equals L.

ITI. Research Results

Proving sufficent bounds to guarantee the globally asymptotic 2-cycle will
require an abstract tool — one which will guide the search for locating such
bounds. The following lemma does just that, while also applying itself to a
whole class of functions.

Lemma 1. For a function F' with the with the following properties:

(i) v <xog= F(z) >z

(1)) v >z = F(z) <z

(ii1) | F"(wo)] < 1

(i) F(0) =0,
the fized point xq is globally attracting if and only if F' has no other periodic
orbits.

Proof. = (By Contradiction)
Let F' have a globally attracting fixed point zo € (0, 1):
Vo € (0,1), lim F™(z) = .
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Assume F has a periodic point y € (0, 1), y # xo, of order m.
Since y € (0, 1), JLI&OF(”)(y) = .
Fix 0 < e < |zg —y|.
By the definition of the limit of a sequence, 3k, € N such that
k> ko, |zg — F® (y)| < e.
By Archimedes’ Principle, 3p € N such that kg < m - p.
By the definition of a periodic point, F™)(y) =y,
yet |zo — FU™)(y)] = |zg — y| > ¢
=<« JHISOF(")(y) = Zo.

.. F has no periodic points.

< (By Contrapositive)

Assume there is a point  whose orbit

{Z,2y = F(Z),x9 = F(x1),...} does not converge to .

Case 1: The orbit of z is eventually strictly to the left of xg.
In € N such that for k > n, F¥(z) < .
By (i), F"(z) < F"™(z) < F"™2(7) < ... < 0.
The sequence above is bounded and monotone increasing,

SO (71111]20]7"(@) = %)

By continuity,

Thus, 7 is a new fixed point.
Case 2: The orbit of z is eventually strictly to the right of z,.
In € N such that for k > n, F¥(z) > x.
By (i), F™(z) > F"(z) > F""(z) > ... > x.
The above sequence is bounded and monotone decreasing,
SO (JmoloF"(a_:) = :?)

By continuity,

Thus, T is a new fixed point.
Case 3: The orbit is infinitely often to the left and right of x.
Let ' = sup{F™(z) : F"(Z) < zo},
and 2" = inf{F™(z) : F™"(T) > xo}.
Claim: F(2') > 2.



Assume F(2') € (2, z9).
F' is continuous, so choose € > 0 small enough such
that for z € N(2/,¢), F(z) € N(F(2'),0) where
0 <0 <min{|F(z") — 2|, |F(2") — xol }-
By Theorem 4, Ji € N such that F'(z) € N(«/,¢).
Hence F”l( ) € N(z0,0) C (2, z0)
=< o = sup{F"(z): F"(Z) < x}.
SR () ¢ (2 )
Assume F(z') = x.
By (i), o is a locally attracting fixed point, so
3y > 0 such that for x € N(zo,7), JEI;OFn(ZL‘) = .
F' is continuous so choose € > 0 small enough such
that for x € N(2/,¢), F(z) € N(xg,9) for 0 < § < .
By Theorem 4, 3F"(x) € N(a/,¢). Hence,
Fti(z) e N(xo,é) C N(zo,7) and lim F(Z) = xo.
=< definition of z. o
s (@) # wo
Assume F(2') € (z9,2").
F'is continuous, thus choose € > 0 small enough such
that for x € N(2/,¢), F(x) € N(xo,d) where
0 <6 <min{|F(x') — x|, |F(z") — 2|}
By Theorem 4, 3i F'(z) € N(2/,¢).
Hence, F’“( ) € N(xo,6) C (zo,2")
=< " =inf{F"(z): F"(z) > &}
() ¢ (x, 27).
- F(x/) Z :L,//.
By Theorem 4,V ¢ > 0, 3 F(z) € N(a2/,¢). Thus, by
the continuity of F*, k € N, choose ¢ > 0 small enough
such that for F/(z) € N(z',¢),
Fitl(z) € N(F(a'),01) and
F2(2') € N(F™(z),6,)
F3(2') € N(F™2(z),65)

Fn( ) c N(FiJrnfl(f),é‘n)
where 0 < 0, < & — 2’/ and F"™"~!(z) € (0, z) which
is guaranteed to exist by our case assumption.
Then 4 n € N, n > 1, such that
F(z') € N(F™*(z),6,) C (0, ).
Claim: F™(2') < 2.
Assume F"(z) € (2/,x¢). F is continuous, so F* is
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continuous for k € {1,2,...,n}. Hence, choose ¢ > 0
small enough such that for x € N(2/,¢), the following
occurs:
F(z) € N(F(a'),61)
F?(x) € N(F*(2'), 09)
F™(z) € N(F™(2'),0,)
with 0, < min{|F"(2") — /|, |F"(2") — xo|}.
By Theorem 4, 3i € N such that F(z) € N(2/,¢).
Hence, F""(z) € N(F"(z'),0,) C (', z0)
=<2’ = sup{F"(Z) : F*"(ZT) < x¢}.
cFM () ¢ (2 xo).
M) <o
Claim: 3% > 0 such that £ < F™(Z) < 2.
By (iv), F(0) =0, thus F"(0) = 0. F is continuous at
0, so F'* is continuous at 0 for k € {1,2,...,n}. There
exists an open interval P, = (0, (")) such that for all
x € Py, F(x) > x. Define
Py=FY(P)NnP =(0,2%)
Py =FYP)NP,=(0,20)

P,=FYP,_1)N P,y =(0,2(),
The inverse image of each open set is open since F
is continuous, and the intersection of 2 open sets is open,
thus each P;, i € {1,2,...,n}, is a nonempty open
set. For any x € P, = (0,z(™),
r< F(r) < F?(z) < ... < F"(x).
By continuity, choose an = € P,, small enough such that
Fr(z) <.
. 3% > 0 such that z < F"(%) < 2.
Note that on the interval [z, 2], F"(Z) > & and
Fr(z') <«
Claim: F' has a periodic point of period n > 1 in
[z, 2] C (0, zo).
Assume F"(2') = 2.
Then 2’ is a fixed point of F™.
.2’ is a periodic point of F' of period n > 1 in
[z, 2'] C (0, x0).
Assume F"(2') < 2.
Define I(x) = F™(x) — . Since F™(Z) > & and



Fr(2') <o, I[(z) = F"(Z) — % > 0 and
I(z') = F"(2') — 2’ < 0. Hence, by the Intermediate
Value Theorem, Jx* € (Z, 2') such that
I(x*) = F"(z*) — 2" = 0.
o F™(2*) = o* and 2* is a fixed point of F™ in
(z,2).
.. x* is a periodic point of F' of period n > 1 in
[z, 2] C (0, x).
.. F' has a periodic point of period n > 1 in
[z, 2] C (0, x0).
.. I has another periodic orbit.
-, If F" has no other periodic orbits, then the fixed point z is
globally attracting. O

With the above lemma, it is now evident what needs to be true about F'
and G with various values of 1 < A, B < 4. First off, it is necessary to prove
the existence of such fixed points for /' and G.

Lemma 2. F has a fized point zo in the open interval (0,1).

Proof. Let h(x)=x
Both F'(0) =0 = h(0).
Furthermore,
F'(0) = ¢'(f(0)) - f'(0) by the chain rule
=9'(0) - f'(0)
=A-B>1=1(0) for A and B as specified.
So by the Racehorse Theorem, there exists a neighborhood about 0
such that (x) for € (0,¢), F(x) > x for some 0 < € < 1.
Let ¢ € (0,¢).
Define I(z) = F(z) — .
I(c) > 0 by ()
1) = F(1) = 1= ~1<0

Thus by the Intermediate Value Theorem, there exists a point

€ (¢,1) € (0,1) such that I(m) = F(m) —m = 0, and hence
F(m) = m.
.. I has a fixed point 2, € (0, 1). 0O

Lemma 3. G has a fized point in the open interval (0,1).

Proof. By the same argument as Lemma 2, GG has a fixed point in the interval
(0,1). O



Knowing such fixed points exist, it is important to understand how these
points are related under the alternate composition of f with g. Although the
below lemma is written for the alternate composition of only two functions,
it can be extended to the periodic composition of n functions of the type
described in Lemma 1 with the same concepts and techniques.

Lemma 4. If xy is the only fized point of F, then f(xy) is the only fized
point of G.

Proof. Let xy be the only fixed point of F'.
Claim: f(xo) is a fixed point of G.
Consider G(f(zo)):
G(f(x0)) = F(g(f (o))
— (Fla0))
= f(@o)
since x is a fixed point of F.
Thus, f(xo) is a fixed point of G.
Claim: f(xg) is the only fixed point of G.
Let = be any fixed point of G.
Consider F(g(z)):
F(g(z)) = 9(f(9()))
)
= 9(2)
since T is a fixed point of G.
Thus, ¢(Z) is a fixed point of F' and xy = g(Z).

Consequently,
f@o) = f(9(2))
=)

since T is a fixed point of G.
This makes f(zo) the only fixed point of G. O

It is interesting to note that the maximum value of F' is independent of
our value of A; it depends solely on the chosen value of B. This will come
into play in the various calculations to come.

Lemma 5. F' has a marimum at x = % — %,/1 — % for A > 2 with

G- B=2
Proof. F will have a local maximum where F’(z) = 0.
F(z) = ABz(1 —z)(1 — Az(1 — )
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= ABz(1— (A+ 1)z + 2A2* — Az?)
= ABx - p(z) from Claim 1.

Thus, by the Chain Rule,

F'(z) = AB(p(z) + zp'(2))
. AB(1 —(A+ 1)z 42422 — Az® +2(— (A+1) +4Ax—3Ax2))
= AB(1 —2(A+ 1)z + 6A2? — 4A2?)

Hence, we are interested in those x values for which
1—2(A+1)x+6Ar? —4A23 =0
(z — 3)(—4Az* + 4Az — 2) =0
@ = D44 — 2+ ) = 0,

Using the quadratic equation yields the roots z =
x:%i%,/l—%forfl>2.

Evaluating F' at these values of x gives
F(3) = AB(3)(1- )1~ AG)(1 - })

or

DO [

= 22(454)
_ AB(4-A)
- 16
F3=5/1-%)
=B - 51- ) (1- (G- 3y/1 - 3)
(1-46-3/i-D(-4- 41— D))
=AB(3 -3\ 1- 3G+ H/1-3)
(1-a¢- 1D +4/1-D)
= AB() (1 - Az)
'y
F3+5/1-3%)

— 2. Since F(0) =



F(1)=0<Z, <% — 1\ /1=2 %) is also an absolute maximum of F
onz € (0,1). 0O

Below is a rather lengthy lemma that will establish our sufficiency con-
ditions. The concept will work as follows: After choosing a value of A > 3,
a bound Pp will be found such that for values of B falling between 1 and
Py will guarantee one requirement established in Lemma 1 as well as condi-
tions necessary to ensure the other properties. This bound is determined by
finding values of B for which each of the conditions is met separately and by
then putting together a piecewise function that will guarantee the properties
will happen simulataneously.

Lemma 6. There exists A" € (3,4) such that for 1 < B < Pg(A) with

2 A€ (3,4

1 Ac(A,4)

(A-2)
F' has the following properties:
(i) F(x) has ezactly one fized point xo € (0,1)
(i) | F'(wo)] < 1
(iti) F has a mazimum value of £ < 1.

Proof. Claim 1: For 0 < B < 972A+(6ii) VIZHA ith
A€ (3,4), F(z) = ABz(1 — z)(1 — Az(1 — z)) has only one fixed
point in (0, 1).
F has fixed points exactly where
F(z)==x
ABz(1—1z)(1 - Az(1—2)) ==
ABz(1 — (A+ 1)z + 2A2* — A2®) = = and thus
1— (A4 1)z + 242? — Az® = = since A, B,z # 0.
Define p(z) =1 — (A + 1)x + 2Az? — Az3.
Facts about p(z):
[1a] p(0) =1
[1b] p(1) =1—-A—-1424-A=0
[1c] p has an inflection point at z = 2:
p'(z) = —(A+1) +4Az — 3A2?
p'(z) =4A —6Ax
p has an inflection point where
P(z) = 0
4A —6Ax =0

12



4A = 6Azx
r=1
[1d] p has a local maximum and minimum € (0,1) for A > 3:
P(2) = —(A+1) +4A(2) — 3A(2)?

=—A-1+(5A-(5A
=—1+4+(3)4

p(3) <0forall A<3

p/(3) >0 forall A>3

[le] The local minimum and maximum occur at

3 and © = —Y—A respectively:
Local minimums and max1mums occur where
p(x)=—(A+1)+4Az — 3A2% = 0.

The quadratic formula yields
—4A£4/16A2+4(-3A)(A+1)

L= 64

— 2 :t V16A2— 12.42 12A
_ 2 + 2V A2-3A 3A
- —6A

Wb

:21% for A > 3.

Since, by [1d], p is increasing at © = %, there is a

2—/1-3

3 and a local maximum

local minimum at

2+4/1-3
3 .
1-3  9-24-64/1-3+24 15;)_
27 :

[1f] The local maximum is <2+ T,

24+4/1-3
p(*52)
=1

(A1) [ pa [BVIER )y 2R

at r =

—1-24-1a /132 1 /13 84,

%AmjLzA_g_A(leMJFQ_A >< 31_%>

18 2 24
—1-BA_2a /132 8 /1 3424,

24 1—z+ SA-8_ 8Ly /13

9—-2A-6 1——+2A 1——

27
Thus, for F(x) to have exactly one fixed point, by [6a],
1 9—2A—64/1-3424,/1-3

1B >

13



3 3
1 > 9A—2A%—6A\/1-5+2A%,/1—-=
7

B 2
< 27
9A—2A2—6A,/1-5 4242, /1-2
_ 27
A(9-2A)—(6A—242) /13
- 27 ) A(9—2A)+(6A—242)/1-3

A(9-24)—(6A-2A42),/1-3  A(9-2A)+(6A-242),/1-2
214(9-241(6-24)y/1- %)
T A2(9-24)2—(6A—2A42)2(1-3)

274(9-24+(6-24),/1-3))

T A2(B1—36A14A2)—A(36A—24A2+4A3)(1—3)

27(9-24+(6-24),/1-3)

= S1A_36A214A%_36A124A% 1 4A31108_T2A | 12A2

 27(9-244(6-24)/1-3)

—27A4108

_9-24+4(6-24)4/1-3
= e, A

9—2A+(6—24)4/1-3

with lim

A—4— 1-A
—2+4(6—2A4) (1) 1 (35)—24/1-3
g A
A—4—
by L’Hépital’s Rule
T __3(6-24) 3
_AILIZLQ Tz T T +24/1 v
_sleew) L s
o 2(4)2,/1-3 4
=2+2+41
_
8
= 3.375
_ _ 3
- For 0 < B < 2 O2OVIT0 with A e (3,4),

F(z) = ABx(1—z)(1— Az(1—z)) has exactly one fixed point.
Claim 2: For 0 < B < =2 with A € (0,4), F has a fixed point
in (0,1).
Define I(x) = F(z) — z. By the proof for Lemma 2, there exists
an 0 < ¢ < 1 such that for x € (0,¢), F(z) > z. Let ¢ € (0,¢).
Thus, I(c) > 0.
For 0 < B < 75,
8 > B(4A — A%)  since 44 — A%? >0 for all A € (0,4)
0> AB(4—A) -8
=4AB(1—-1A) -8
= 16/34B(1 - }4) - }]

= 16[AB(})(1 - (1 - AG)(1 - D) - §]
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= 16[F(3) - 4]
- 161(3)
Thus, 1(3) < 0.
By the Intermediate Value Theorem, 3 m € (0
I(m) = F(m) —m = 0, and hence, F(m) = m.
. F has a fixed point in (0, 3) for 0 < B < ; A2 with A € (0,4).
Claim 3: F'(x) < 1 when the ﬁxed point zg € (0, 3)-
From the proof from Claim 1,
F(x) = ABx - p(x) with p(z) =1 — (A+ 1)z + 2Az? — Az3.
So by the product rule, F'(z) = AB(p(z) + xp/(z)).

, 2) such that

For x = xo,
F(z9) = ABxzop(zo)
p(x0) = %ﬂfg
=45  since F(zg) =z

Thus, by substitution,
F'(z9) = AB(F5 + zop(0))
=14 ABzop'(xp).
By [1d], p/(z) < 0 for all z € (0, %). Hence, p'(x) < 0 and
ABuxop'(x9) < 0.
oo F' (o) < 1.

Claim 4: For 0 < B < (\A/Q—)Q with A € (3,4) and
the fixed point z € (0,1), F'(z9) > —1.
By calculations from Lemma 5,
F'(z) = AB(1 = 2(A + 1)z + 6A2® — 4A2?).
For F'(z) > —1,
AB(1—2(A+ 1)z + 6A2* — 4A2*) > —1 and thus,
1—2(A+ 1)z + 6Az* — 4Ax* > =L since A, B # 0.
Define g(x) =1 —2(A + 1)z + 6 Az? — 4Az3.
Facts about ¢(x):
[4a] ¢(0) =1
[4b] ¢(1) =1 —-2A -2+ 6A—4A = —
[4c] ¢ has an inflection point at = = 1:
¢ () = =2(A+1) +12Az — 12A2?
q"(x) = 12A — 24 Ax
q has an inflection point where ¢"(x) =0
12A — 24Ax =0
12A = 24Ax
T = l

[4d] ¢(1) =1 - 2(A +1)(3)+64(2)2—44(3)3 =0

15



[4e] ¢ has a local minimum € (0, 1) for A > 2:
70)=-2A41)<0
q'(3) = —2(A+1) + 12A(3) — 124(3)?
=—-2A-2+6A-3A
=A-2
q(3) <0forall A <2
¢ (3) > 0for all A > 2
Thus, by the Intermediate Value Theorem, 3 ¢ € (0, 1)
such that ¢’(¢) = 0 when A > 2, and ¢ is a local
minimum.
[4f] The local minimum occurs at z = 3 —

N[
o

1

6

z)=0
0

—~

Local minimums occur where ¢’
—2(A+1) + 124z — 12Ax?
—(A+1)+6Ar — 642> =0

The quadratic formula yields

—6A£4/36A2+4(—6A)(A+1)

—124

— 1 4 V/B6A7—24A7 214
2 124

_ 1 4 VI12A7-244
=T

=3+5/3-5%  forA>2

Since, by [4e], the local minimum is in (0, 1), it must

216
=1-A+3A/3—-%-1+3,/3 - S+34-A,/3 - S+
G- -4+ iA5— 5 - 1G-S+



[4h] 12— A),/3- ¢

- 1s the absolute minimum of ¢ on

(0,5):

By [4e] and [4f] it is conclusive that ¢ is decreasing on

(O,% — %,/3— %) and increasing on
1 1 6 1 1 6 1 1 6 1
(5_6 -4 §+6\/3_Z>:—)<5_6\/3_Z’§>'

Thus $(2 —

A)

(0,3) and is negative for A > 2.

Thus to ensure F'(zq) >

5 < s(2-A4)

Claim 5: For A € (3,4), w

y Claim 4, B < 3“3__ for A €

(A—2)2
By Claim 1, F has only one fixed point xy € (0,1)

when B < (9—2A+ (6 —2A),/1— %)/(4—14). Define

_ _ 3
g(A) = 9 2A+(6472;14)\/1 % and h(A) =
Facts about ¢ and h:

_6
hen B < (—V?’

—1, by [4h]

\/3— Z is the absolute minimum of ¢ on

which is positive for A > 2

5 F automatically has only
one fixed point zy € (0,1) and F'(z() > —1.

I5a] g(3) = 9-2(3)+ (6—2(3))\/@ _5

U’ﬁ

3—3

h<3) = (3
Thus, ¢(3) =
[5b] ¢'(

g'(A) =

4-3

2)2

( )-

A) >0 for all A € (3,4):

(4—A) (—2+(6—2A)(%)< 1

1—

3
A

(3,4) guarantees F'(zq) > —1.

3y/3- 5%

- (A-22

)(%)—2\/@) —(-1) (9—2A+(6—2A)\/ 1—%)

17
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_ _9, 3B=4) o /1_3 _3
_(4 A)( 2+A2ﬂ 24/1 ) (9 2A4+(6—2A)4/1 )

(4-A)?
—8+ 12(3_1A>3 —8y/1-3 24— 3A<3_A) +244/1- 3 49-2446,/1-3 —24,/1- 2
- a-ap
/ _ 3 12(3—A) _ 3(3—A)
-2 +A21/1— A2, /1-3 A%/l—%
- (a—A)? Az\/l,g
A

A24/1-3 242 (1-3) +12(3—A)-3A4(3-4)
A2(4-A)2,/1-3

A2\ /1-2-2A24+6A+36—12A—9A+3A2
A2(4-A)2\/1-3

A2 /1-3 442154436

A2(4-A)2\/1-3

Define ¢ = /1 — 32 > 0 for A € (3,4). Note

[1_3_1 3
Cmaz = \/1 — 5 =35 and cpin = /1 —5 =0

on A € (3,4). Then
e+1) A2 15A+36
g'(A) =1 Jrciﬁ(A_zx);r

cA%(A — 4)? is obviously positive for all A € (3,4).
Assume (c+ 1)A% — 15A + 36 < 0.
By the quadratic formula,

0> [x B (15+3 25—16(c+1))] [x _ (15—3\/M>}

2(c+1) 2(c+1)
These are distinct roots only when
25 —16(c+1) >0
9 > 16¢
E>c=4/1-32

256>1—— since /1 — 2 >0 for A € (3,4)

3> 175

256
175A<768

768 68
A< =4+,

so they are distinct for A € (3,4). For the product to
be negative with A € (3,4), then either

() 15+3\/25 16(c+1) 15—&-3\/25 16(cmin+1)
1

2(c+1) 2(cmaz+1)
and
< 15—34/25—16(c+1) 15—34/25—16(cmaz~+1)

( +1 ) 2(0m1n+1)
Thus, A>8andA<6:><:
or
.. 15434/25—16(c+1)
(i) A 2(c+1)

18



and
15—34/25—-16(c+1)

A> 2t 1)
By (i),
15434/25—16(c+1) 15-34/25_16(c+1)
50 D) > 8 and 5ot D) <6

so at the very least, A € (6, 8).
Thus, consider A = T7:
(c+1)(7)% — 15(7) + 36

_ <\/E+ 1)(49) — 69
- (%”)(49) 69

= 14V/7 + 49 — 69
=14V7-20>0
=< Assuming (c+ 1)A% — 154 + 36 < 0.
Therefore, (¢ + 1)A? — 15A + 36 > 0 for all A € (3,4),
and ¢'(A) > 0 for all A € (3,4).
[5¢] A'(A) < 0 for all A € (3,4):

(A—2)2(3)(§) (\/sl_—ﬁ) (%)—3«/3—%(2)(,4—2)
A

W (A) = (A—2)1
A2 e 5
o 6(A—2)¢/3-%

- (A—2)f

9(A-2)2—642(4-2)(3- %)
A2,/3- 5% (A-2)t

9(A-2)—642 (3-8

A2,/3-8(A-2)
9A—18—18A%+36A
A2(A-2)34/3-5
_ (—18A2445A-18),/3- %
A2(A-2)3 (3-5)

6
_ —9(242-5A+2)4/3-%

~ T (AT 6A)(A-27

—9(24-1)(A-2)4/3-
— T 3A(A—2)(A—2)3

_ =3(24-1)4/3-%

A(A—2)
Both A(A — 2)* and 3(24 — 1),/3 — £ are clearly

positive for A € (3,4). Thus, h'(A) = % \/)33*% <0
for A € (3,4).
[5d] Corr(1bini)ng [5b] and [5c¢] yields h'(A) < ¢'(A) for all
A€ (3,4).
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Applying the Racehorse Theorem to facts [5a| and [5d] yields

3/3-8
h(A) < g(A) for all A € (3,4). Thus when B < Cige We are
guaranteed exactly one fixed point xy € (0,1) and F'(xy) > —1.

Claim 6: For all A € (3,4), 7505 > 2.
0< (A-—2)>
—2(A2—4A+4) <0
—2A% +8A <8
2< o since 44— A% > 0 for all A € (3,4)

e > 2 forall A € (3,4).
Claim 7: There exists a point A’ € (3.2,3.3) [A" = 3.2728898] such

/ /3— 8
that for A € (S,A,), 2< 3( - )2 and for A € (A 4>a 2> 3(,4:0’2); .

Define h(A) = 3(,43;)2% and i(A) = 2.
Define V(A) = h(A) —i(A).
Facts about V(A):

[7a] V(3.2) > 0:
B32) = Yaad = ir/55 ~ 2.2007

i(3.2) = Y
2.V (3.2) > 0.
[7b] V(3.3) < 0:

__6
h(3.3) = 2aa — 30 /89 1 95971

(33-2)2

i(3.3) = 2

. V(3.3) <0.
Thus, by the Intermediate Value Theorem, 3 A’ € (3.2, 3.3) such
that V(A") = h(A") —i(A’) = 0 and hence, h(A") =i(A").
Simplification and the quartic equation yields A’ &~ 3.2728898.
By Claim 5 [5¢], h'(A) < 0 for all A € (3,4), thus h is monotone
decreasing on (3,4). i'(A) =0 for all A € (3,4). It is therefore
evident that A’ is the only intersection of 4 and i in (3,4), and by
|7a| and [7b]

2 < (A” 2A for A e (3,4’) and

2> 37”3_2% for A e (A, 4).

(A-2)
Claim 8: For B < 2, I' has a maximum value % < %
By Lemma 5 F has a maximum value of %
For B<2,2<2=1
. F has a, maxnnum value less than 1.
Combining Claims 2, 5, 6, 7, and 8, it is conclusive that for

j
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1 < B < Py with

2 A€ (3,4

WIS g e (A 4)

(A-2)?

F' is guaranteed the following properties:
(i) F(z) has exactly one fixed point z, € (0,1)
(if) [F7(zo)| <1

(iii) F has a maximum value £ < O

1
5-

Below is a graph displaying the various bounds found throughout the
Lemma 6. Our function Pg(A) is then the piecewise function formed by

taking, for each A € (3,4), the bound with the lowest output value.

073 32 34 36 38 4

X

Enough is now understood about F' to prove the final two properties
required to include F' in the family of functions that Lemma 1 covers.

Lemma 7. For 1 < B<Pg and A € (3,4),
(i) z € (0,29) = F(x) > x
(i1) © € (x0,1) = F(z) < .
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Proof. Proof by Contradiction.
By Lemma 6, F' with 1 < B < Py has exactly one fixed point
Tg € (O, 1)
(i) Assume that 32" € (0, zo) such that F'(2’) < 2’. By Lemma 2,
there exists a neighborhood about 0 such that for = € (0, ),
F(z) > x for some 0 < ¢ < zg. Let 2” € (0,¢) and thus,
F(2") > 2”. Define S(z) = F(z) — x. Then
S(z') <0 and
S(x") > 0.
By the Intermediate Value Theorem, there exists an x* in
between z’ and z”, z* € (0, zg), such that
S(z*) = F(z*) —2* = 0.
Thus, F(z*) = 2* and x* is a fixed point, z* # x.
=<« For 1 < B < Pp, F has exactly one fixed point in (0, 1).
sz €(0,x0) = F(x) > .
(ii) Assume that 37 € (zo, 1) such that F(z) > .

F(1)=0<1.

Define S(z) = F(xz) — x. Then
S(z) > 0 and
S(1) <.

By the Intermediate Value Theorem, there exists an 2* € (z, 1)
such that S(2*) = F(2*) —2* = 0. Thus, F(z*) = 2* and z* is
a fixed point, x* # x.

=<« For 1 < B < Pp, F has exactly one fixed point in (0, 1).
oz € (x,1) = F(x) < x. O

With the knowledge that F' is of the correct type for Lemma 1, it is
simply necessary to prove that [ has no other periodic points of period
n € N, n > 1. This argument is laid out in the next three lemmas.
Lemma 8. For ' with 1 < B < Pgp,

(i) F'(x) € (—1,0) for all x € (% —24/1— %,%)

(it) F'(z) € (=1,0) for all x € (o, 3)

(iii)F’(a:)>0forall:U€<0,%—% —%)

Proof. By Lemma 5,
F'(z) = —4A’B(z—1%) (x—(
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(:1:— [%—l—% 1—%}) <0
<x—[%—% 1-2 ) >0
—4A?B < 0
Thus, F/(r) € (-1.0) for € (3~ 31— %,
with Lemma 6, Claim 4 [4h].
(ii) Claim: zg € (% — /1= %é)
Let I(z) = F(x) —
B>1
>2-2,/t

N[

x.

>2-24/1-2  since A € (3,4)

Intermediate Value Theorem, there exists a point

7e (% . %,%) such that 1(z) = F(z) — & = 0
making z a fixed point of F'. Yet by Lemma 6, F' with

1 < B < Pp has exactly one fixed point x4 € (0, 1).

5. =19 and xg € (%—%Ml—%,%).

Thus, (zo,1) C (l _1/1-2 %) and F'(z) € (—1,0) for

v (o) 2 72
(iii) For = € (O, % — %m>
(z—3) <0
[

—4A’B <0

Thus, F'(z) > 0 for a € (0,3~ 3,/1-3).

) when combined

O

Lemma 9. For all 1 < B < Ppg with A € (3,4), F' has no periodic 2-cycle.
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Proof. F will have a distinct periodic 2-cycle, {x1, 25}, only if F?(z) = z at
T = 1, Te With x1, 19 # x0.
Claim 1: For F' to have a periodic 2-cycle, exactly one of
x1, 29 € (0, z0).
Proof by Contradiction:
Assume to the contrary:
Case 1: Both z1, 25 € (0, xo).
Without loss of generality, let 0 < 1 < x93 < 9. By Lemma 7,
since 1,29 € (0,20), 11 < F(x1) = 29 < f(22) = 21
=><r £
..xp and x9 are not both in (0, z).
Case 2: Both z1, 29 € (20, 1).
Without loss of generality, let 2o < x; < x5 < 1. By Lemma 7,
since 1,9 € (2o, 1), Ty > F(x9) = 21 > F (1) = 29
=< 19 £ X9
. o1 and x5 are not both in (g, 1).
.. Exactly one of x;, 25 are in (0, z).
Claim 2: For all 1 < B < Py with A € (3,4), F*(z) > x for all
x € (0, ).
Let = € (0, o).
Case 1: 0 < F(z) < xo.
By Lemma 6, Claims 1 [1d] and 2,
p(F(x)) > plzo)
since p is monotone decreasing on (0,2/3) and x € (0,1/2).
But by Lemma 6, Claim 3, p(zy) = -5. Thus,
p(F(2)) > 5

ABp(F(x))'> 1

ABF(z)p(F(x)) >x  since F(x) > x for all z € (0, z)
by Lemma 7.

F*(z) > o

Case 2: z < zp < F(x).
Since F(x) € (xg,1), by Lemma 7, F*(z) < F(z).
Subcase 1: = < F?%(z) < F(x)
S F(z) >z
Subcase 2: [?(x) <z < xg < F(x).
F?*(z) is a continuous differentiable function on (z, z() by
virtue of F. Thus, by the Mean Value Theorem,
3z € (z,x) such that
<F2)/<i’) _ F2(x0)—F2(J:) _ :L‘()—F2($) -1

To—T To—T
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by our case assumptions. Yet, (F%)(z) = F'(f(2))F'(z) by
the chain rule.

Subcase a: x<———,/ —%

F'(z) > 0 by Lemma 8 (%i). By case assumptions and
Lemma 5, F(2) € (:co, %) Applying Lemma 6, Claim
7, B <53 1 Thus, F(z) e (xo 4) C (xo,%). Thus, by
LemmaS(zz) F’( (z)) € (—1,0).

S () (2) = F'(F(2))F'(2) < 0

2
Since T € (— — %@/1 — %,x()) - (% — %\/1 — 2,5) by
Lemma 6, Claim 3, F'(z) € (—1,0) by Lemma 8. By
case assumptions and Lemma 5, F(&) € (o, £).
Applying Lemma 6, Claim 7, % <53 1 thus
F(2) € (z0,2) C (20,3). Thus, by Lemma 8 (),
F'(F(z)) € (—1,0).
L (F?)(2) = F'(F(2))F'(2) € (0,1)
=< (F?)(2) > 1.
F*(x) £z
-, In both cases, F?(z) > z for all z € (0, zy).
Applying Claim 1, it is conclusive that for all 1 < B < Pg, F has no
distinct periodic 2-cycle. O

Subcase b: 7 —1,/1— 2 <& <z < .

Lemma 10. For all 1 < B < Ppg, F has no distinct periodic n-cycles for
n €N, n>1.

Proof. Since, by Lemma 9, F' has no distinct periodic 2-cycle for all
1 < B < Pg, the contrapositive of Sarkovskii’s Theorem rules out all
other periodic n-cycles. O

With that proven, we can now confirm that our fixed point zy of F' is
globally attractive on the open interval (0, 1).

Lemma 11. For all A € (3,3.9), 3 B € (1,3) such that F has a globally
attractive fized point xy € (0,1).

Proof. Let A € (3,3.9).
Choose B € (1,Pp).
Lemmas 6 and 7 combine to ensure F' has the following properties:
(i) z € (0,z0) = F(x) > x
(ii) z € (xg,1) = F(x) <z
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(iil) | F'(zo)| < 1

(iv) F(0) = AB(0)(1 —0)(1 — A(0)(1 —=0)) =0
Furthermore, by Lemma 10, /' with 1 < B < P has no other periodic
orbits.
.. By Lemma 1, the fixed point x; is globally attracting. O

To fully disprove the aforementioned conjecture [3|, it must be shown
that the knowledge that F' has a globally attractive fixed point zq € (0,1)
guarantees that the infinite composition of f and g has the globally attractive
2-cycle. This, it turns out, relies mainly on the continuity of f.

Lemma 12. For every A € (3,3.9), 3B € (1, 3) such that the non-autonomous
dynamical system {f, g} has a globally attractive 2-cycle, {xq, f(xo)}, where
xo 18 the fized point of F, xy € (0,1).

Proof. Let A € (3,9).
Choose B € (1,Pp).
By Lemma 6, F' has exactly one fixed point z¢ € (0,1). Applying
Lemma 4 yields that f(xq) is the only fixed point of G, f(xq) € (0, 1).
Lemma 10 guarantees that x is globally attractive in F.
Thus, let z € (0, 1).
Fix 6 > 0.
lim F"(x) = xo, so for every 0 < e < o, Jky € N such that for

k Z k’o, Fk(l’) S N(ZL‘Q,El).

By the continuity of f, choose €5 > 0 small enough such that for
Fm(x) € N(xo, &), f(F™(2)) € N(f(x0),0)-

Fix ¢ = min{ey, e2}.

Then for k > ko, f(F¥(x)) € N(f(x),0) and
Tim f(F7(x)) = lim G (2) = F(xo).

Thus {z, f(x0)} is a globally attractive 2-cycle for {f, g}.

VA € (3,3.9), 3B € (1, Pp) such that the non-autonomous quadratic
dynamical system { f, g} has the globally attractive 2-cycle {zo, f(x¢)}
where z; is the fixed point of F', x5 € (0,1). 0O

IV. Further Research

It is worth noting that 1 < B < Py is a sufficient, but not necessary,
condition. Empirical evidence suggests that, in fact, both A and B can
be larger than 3 and still have a globally attractive 2-cycle for the non-
autonomous dynamical system { f, g}. For example,

{f(z) =3.05z(1 — x), g(x) = 3.1z(1 — z)}.
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It is our hope that further research will allow the bound P 5 to be extended
upward to take such cases into consideration. The ideal upper bound will, at
the very least, include the possibility for A = 3, B = 3 since this reduces to
f = g, and we would be back in the simple case detailed in the introduction.
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