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Abstract

Let S ⊆ Z. Polynomials in Q[x] mapping members of S into the integers are called integer-valued over S. The
ring of such polynomials is denoted Int(S,Z). Because Int(S,Z) does not constitute a unique factorisation
domain, factorisation properties in this ring are especially appealing.

In this thesis, we present a criterion for irreducibility, a detailed analysis of factorisation lengths, and a class
of polynomials that factor uniquely in Int(S,Z).
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Chapter 1

An Introduction to Int(S,Z)

Let S ⊆ Z and f(x) ∈ Q[x]. We say that f(x) is integer-valued over S if f(s) ∈ Z for every s ∈ S. The set
of all such polynomials is denoted Int(S,Z):

Int(S,Z) = {f(x) ∈ Q[x] | f(s) ∈ Z ∀ s ∈ S}.

Notice that polynomials in Z[x] are integer-valued over Z, as well as over every subset of the integers. For
convenience, we use the notation Int(Z,Z) = Int(Z). Furthermore, if a polynomial in Q[x] is integer-valued
over all of Z, it will be integer-valued over any subset S of Z. We observe:

Z[x] ⊆ Int(Z) ⊆ Int(S,Z) ⊆ Q[x],

and remark that although Z[x] and Q[x] both constitute unique factorisation domains, Int(Z) and Int(S,Z)
do not.

Example 1.1. x
2 is integer-valued over 2Z but not over Z.

Example 1.2. x(x−1)
2 ∈ Int(Z), although x(x−1)

2 6∈ Z[x]. For every integer x, either x or x−1 is even; hence,
2 | x(x− 1).

Definition 1.3 (See [5]). Let R be a ring. A (left) R-module is an additive abelian group A together
with a function R×A→ A (the image of (r, a) denoted by ra) such that for every r, s ∈ R and a, b ∈ A the
following hold:

(i) r(a+ b) = ra+ rb

(ii) (r + s)a = ra+ sa

(iii) r(sa) = (rs)a,

and if R has an identity element 1R and

(iv) 1Ra = a ∀ a ∈ A,

then A is said to be a unitary R-module.
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Note that if R is commutative, then every left R-module A can be given the structure of a right R-module
by defining ra = ar for every r ∈ R and a ∈ A. So every module A over a commutative ring R is said to be
both a left and a right module with ar = ra for all r ∈ R and a ∈ A.

Example 1.4. If S is a ring and R is a subring, then S is an R-module with ra (r ∈ R, a ∈ S) being
multiplication in S. In particular, R[x1, . . . , xm] is an R-module.

Proposition 1.5. Int(S,Z) is a unitary Z-module.

Proof Observe first that Int(S,Z) is an additive abelian group. Let f(x), g(x) ∈ Int(S,Z). Then
f(x) + g(x) ∈ Q[x] and ∀s ∈ S, f(s), g(s) ∈ Z so f(s) + g(s) ∈ Z. Hence, f(x) + g(x) ∈ Int(S,Z). Moreover,
Int(S,Z) is closed under multiplication with the integers. Since for every integer a, af(x) ∈ Q[x], and ∀z ∈ Z,
af(z) ∈ Z, we have af(x) ∈ Int(S,Z).

Thus, Int(S,Z), together with scalar multiplication in Z satisfies the requirements to be a unitary Z-module,
because for every r, s ∈ Z and f(x), g(x) ∈ Int(S,Z) we have the following:

(i) r(f(x) + g(x)) = rf(x) + rg(x)

(ii) (r + s)f(x) = rf(x) + sf(x)

(iii) r(sf(x)) = (rs)f(x)

where the properties (i) - (iii) follow from the properties of scalar multiplication in Z. Finally, Z has an
identity element 1, so that

(iv) 1f(x) = f(x) for every f(x) ∈ Int(S,Z). �

Definition 1.6 (See [6]). Let A be a module over a ring R and let H be a subset of A. We say that H is
a basis of A if H is not empty, if H generates A, and if H is linearly independent. If H is a basis of A, then
in particular A 6= {0} if R 6= {0} and every element of A has a unique expression as a linear combination of
elements in H. A module that admits such a basis is said to be a free module.

1.1 The Generalised Binomial Polynomials

By Proposition 1.5, we have that Int(S,Z) is a unitary Z-module for subsets S of the integers. In order to
determine an appropriate Z-basis for Int(S,Z), we turn to Bhargava and his generalisation of the Binomial
Polynomials for subsets of Z (see [2]).

Let S ⊆ Z, and fix a prime integer p. Bhargava details the construction of a p-ordering of S as follows.

• Choose an element a0 ∈ S arbitrarily.

• Choose an element a1 ∈ S that minimizes the highest power of p dividing (a1 − a0).

• Choose an element a2 ∈ S minimizing the highest power of p dividing (a2 − a0)(a2 − a1).

• In general, at the kth step, choose ak ∈ S minimizing the highest power of p dividing
(ak − a0)(ak − a1) · · · (ak − ak−1).

Bhargava argues that having obtained such a p-ordering {aj}∞j=0, then one obtains a monotone increasing
sequence {νk(S, p)}∞k=0 of powers of p, where the kth element νk(S, p) is precisely the power of p minimized
at the kth step of the p-ordering process. So
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νk(S, p) = wp((ak − a0)(ak − a1) · · · (ak − ak−1)),

where wp(z) is the highest power of p dividing z. For example, w3(54) = 33 = 27. The sequence {νk(S, p)}
is known as the associated p-sequence of S corresponding to the chosen p-ordering {aj} of S. We now define
the generalised factorial function, denoted k!S :

k!S =
∏
p

νk(S, p).

Example 1.7. Let S = 3Z = {3k : k ∈ Z}. Then the natural ordering, {0, 3, 6, . . . } also forms a p-ordering
for every prime p. Then

k!3Z = (3k − 0)(3k − 3) · · · (3k − (3k − 3)) = 3kk!.

In particular, k!Z = k!, where k! represents the standard definition of the factorial function. We may now
define the generalised binomial polynomials, denoted Bi,S(x) for S:

Bi,S(x) =
(
x

i

)
S

=
(x− a0,i)(x− a1,i) · · · (x− ai−1,i)

i!S
,

where {aj,k}∞j=0 is a sequence in Z that, for each prime p dividing k!S , is termwise congruent modulo νk(S, p)
to some p-ordering of S. In the case that S = Z, we have

Bi,Z(x) =
(
x

i

)
=
x(x− 1) · · · (x− i+ 1)

i!
,

which are the familiar Binomial Polynomials. We now have the tools to offer a basis for Int(S,Z).

Theorem 1.8 (Theorem 23, [2]). The set {
(
x
i

)
S
}∞i=1 forms a basis for the Z-module Int(S,Z).

Hence, the familiar Binomial Polynomials form a basis for Int(Z).

Suppose that, given a polynomial f(x) ∈ Int(Z) of degree n, one wishes to find its unique expression
explicitly as a linear combination of the Binomial Polynomials: f(x) = f0

(
x
0

)
+ f1

(
x
1

)
+ . . . + fn

(
x
n

)
, where

fi ∈ Z and fn 6= 0. C. Long provides a method of finding these fj [8]. One first finds the set of images
{f(0), f(1), . . . , f(n)}, and then creates a “difference table”, denoting the entry in the jth row and kth
column Dj(k):

0 1 2 · · · n
f(0) f(1) f(2) · · · f(n)

D1(0) = f(1)− f(0) D1(1) = f(2)− f(1) D1(2) = f(3)− f(2) · · · D1(n) = f(n)− f(n− 1)
...

...
...

...
...

Dn(0) Dn(1) Dn(2) · · · Dn(n)

Note that in general, Dj(k) = Dj−1(k + 1) − Dj−1(k). After having generated such a table, we have the
following representation for f(x):



Barbara Anne McClain 4

f(x) = D0(0)
(
x

0

)
+D1(0)

(
x

1

)
+ . . .+Dn(0)

(
x

n

)
. (1.1)

It is important to note that as a consequence of this construction, we have the following:

Corollary 1.9. Let f(x) ∈ Q[x] have degree r. If f(0), f(1), . . . , f(r) ∈ Z, then f(x) is integer-valued over
all integers.

Proof Assume that f(0), f(1), . . . , f(r) ∈ Z. Then applying the difference table construction, there are
integers f0, f1, . . . , fr, with fr 6= 0, so that

f(x) = f0

(
x

0

)
+ f1

(
x

1

)
+ . . .+ fr

(
x

r

)
.

Since
(
x
i

)
is integer-valued on Z for every i ∈ [0, r], we have that f(x) is integer-valued on Z. �

Example 1.10. Let f(x) = 2x2 + 3x + 5. Notice that f(0) = 5, f(1) = 10, and f(2) = 19. We construct
the difference table:

f(0)=5 f(1)=10 f(2)=19
5 9
4

so we have

f(x) = 5
(
x

0

)
+ 5
(
x

1

)
+ 4
(
x

2

)
= 5 + 5x+ 4

x(x− 1)
2

= 5 + 3x+ 2x2.
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Chapter 2

The Fixed Divisor

Definition 2.1. Let f(x) =
∑n
i=0 aix

i ∈ Z[x], where ai ∈ Z and an 6= 0. The content of f(x), denoted
c(f), is defined as

c(f) = gcd(a0, a1, . . . , an).

If c(f) = 1, we say that f(x) is primitive over Z[x].

Definition 2.2 (See [2]). Let f(x) ∈ Int(S,Z). The fixed divisor of f over S, denoted d(S, f), is defined
as

d(S, f) = gcd{f(s) : s ∈ S}.

Definition 2.3. Let p(x) ∈ Int(S,Z). If d(S, p) = 1, we call p(x) image primitive over S.

Lemma 2.4. Let f(x) ∈ Int(S,Z). Then d(Z, f) | d(S, f).

Proof This result is clear since S ⊆ Z. �

Example 2.5. Each of the binomial polynomials
(
x
i

)
is image primitive over Z, since

(
i
i

)
= 1, for each i ∈ N.

Lemma 2.6. Let F (x) ∈ Int(Z) have degree r, so that F (x) = F0 + F1

(
x
1

)
+ . . .+ Fr

(
x
r

)
, where Fi ∈ Z and

Fr 6= 0. The following are equivalent:

1 d(Z, F ) = D.

2 gcd(F0, F1, . . . , Fr) = D.

3 gcd(F (0), F (1), . . . , F (r)) = D.
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Proof

(1 ⇔ 2) (⇒) Suppose that d(Z, F ) = D. Now, amongst the coefficients Fj , there is a smallest j for which
Fj 6= 0. For such a j, F (j) = Fj . Since d(Z, F ) = D, D | F (j) implies that D | Fj . Assuming that Fj+1 6= 0,
we see that F (j+ 1) = (j+ 1)Fj +Fj+1. Since D | F (j+ 1) and D | Fj , we have D | Fj+1. We may proceed
in this fashion to see that D | F (j + 2), implying that D | Fj+2, and so on until we see that D | Fr. So we
have that D | Fj for each j. Hence, we may write

F (X) =
r∑
i=0

FiBi(X) = D

r∑
i=0

F ′iBi(X),

where each F ′i is in Z. Suppose that gcd(F ′0, . . . , F
′
r) = W > 1. Then

F (X) = DW

r∑
i=0

F ′′i Bi(X),

where each F ′′i is in Z. Hence,

F (X)
DW

=
r∑
i=0

F ′′i Bi(X) ∈ Int(Z),

implying that d(Z, F ) ≥ DW , a contradiction.

(⇐) Suppose gcd(F0, . . . , Fr) = D. Then, as above, we may write F (X) =
∑r
i=0 FiBi(X) =

D
∑r
i=0 F

′
iBi(X), where gcd(F ′0, . . . , F

′
r) = 1. Then D | F (z) for every z ∈ Z, implying that D ≤ d(Z, F ).

We apply an argument similar to that above. Among the coefficients, there is a smallest j for which Fj 6= 0,
and for such a j, F (j) = Fj . Then d(Z, F ) | Fj . As above, it follows that d(Z, F ) | Fi for each i. Then
d(Z, F ) ≤ gcd(F0, . . . , Fr) = D. Combining D ≤ d(Z, F ) and d(Z, F ) ≤ D yields D = d(Z, F ).

(1 ⇔ 3) Suppose gcd(F (0), . . . , F (r)) = M . Recalling the Difference Table construction for polynomials in
Int(Z) [8], we see immediately that M | Fi for each i. Then, by the previous argument, M ≤ gcd(F0, . . . , Fr)
implies that M ≤ D.

On the other hand, by definition, D | F (0), . . . , D | F (r). Hence, D ≤ gcd(F (0), . . . , F (r)) = M . Thus
M = D and the result follows.

�

We remark that Narkiewicz found the following [9]:

Theorem 2.7 (See [9], Thm. 3.4). If f ∈ Z[x] is a polynomial of degree n and d ∈ Z, then
f(Z) ⊆ dZ if and only if d divides the numbers f(i) for i = 0, 1, . . . , n.

Recall the familiar reducibility test for members of Z[x]:

Theorem 2.8 (Eisenstein’s Criterion, See [5] III.6.15). Let D be a unique factorisation domain with
quotient field F . If f =

∑n
i=0 aix

i ∈ D[x], deg(f) ≥ 1 and p is an irreducible element of D such that

p 6 | an; p | ai for i = 0, 1, . . . , n− 1; p2 6 | a0,

then f is irreducible in F [x]. If f is primitive, then f is irreducible in D[x].
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Example 2.9. Let f(X) = X2+9X+6
2 . Noticing that f(0) = 3, f(1) = 8, and f(2) = 14, and applying

Corollary 1.9, we have that f(X) ∈ Int(Z). Further, notice that 3 | 6; 3 | 9; and 32 6 | 6, so that X2 + 9X + 6
is irreducible in Z[X] by Eisenstein’s Criterion above.

Theorem 2.10 (See [7], Thm. 3.13). For m > 1, a necessary and sufficient condition that the congru-
ence

ax ≡ b (mod m)

be solvable is that d | b, where d = gcd(a,m). If this condition is satisfied, there is a unique solution modulo
m
d , say x0, and hence there are d solutions modulo m, namely

x ≡ x0, x0 + 1 · m
d
, . . . , x0 + (d− 1)

m

d
(mod m).

Notice that gcd(a,m) = 1 implies ax ≡ b (mod m) is solvable.

Theorem 2.11. For every m,n ∈ N, there are infinitely many irreducible polynomials f(X) ∈ Int(Z) with
leading coefficient n

m .

Proof For ease of notation, let us write the falling factorial polynomials in the following manner:

X(n) = X(X − 1) · · · (X − n+ 1) = α
(n)
1 X + α

(n)
2 X2 + . . .+ α

(n)
n−1X

n−1 + α(n)
n Xn.

Note that since X(n) is monic for each n, we have α(i)
i = 1 for each i.

Observe that for every m ∈ N, there is a least r ∈ N for which m | r!. Let us denote such a pair as {m, r}.
Given any m,n ∈ N, we find the pair {m, r} and will construct a polynomial of degree r fulfilling the theorem.

If F (X) is an arbitrary integer-valued polynomial of degree r, then F (X) can be written in the form

F (X) = F0 + F1X + F2B2(X) + . . .+ Fr−1Br−1(X) + FrBr(X)
= F0 + F1X + F2

X(2)

2! + . . .+ Fr−1
X(r−1)

(r−1)! + Fr
X(r)

r! .

Since m | r!, we have mβ = r!, some β ∈ N. Let F ′2, . . . , F
′
r−1 be nonnegative integers such that

F2 = 2!F ′2, . . . , Fr−1 = (r − 1)!F ′r−1 and set Fr = nβ. Clearly, F (X) may be written as

F (X) = F0 + F1X + F ′2X
(2) + . . .+ F ′r−1X

(r−1) +
nX(r)

m
. (2.1)

Now, we can rewrite Equation (2.1) as

F (X) =
mF0 +mF1X +mF ′2X

(2) + . . .+mF ′r−1X
(r−1) + nX(r)

m
.

Let us expand about the X(i), so that
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F (X) =
mF0+mF1X+mF ′2

(
α

(2)
1 X+α

(2)
2 X2

)
+...+mF ′r−2

(
α

(2)
1 X+α

(r−2)
2 X2+...+α

(r−2)
r−3 Xr−3+α

(r−2)
r−2 Xr−2

)
m + . . .

. . .+
mF ′r−1

(
α

(r−1)
1 X+α

(r−1)
2 X2+...+α

(r−1)
r−1 X(r−1)

)
+n
(
α

(r)
1 X+α

(r)
2 X2+...+α

(r)
r−1X

r−1+α(r)
r Xr

)
m .

Recalling that α(i)
i = 1 for each i and combining like powers of X, we arrive at

F (X) =
mF0+X

(
mF1+mF ′2α

(2)
1 +...+mF ′r−1α

(r−1)
1 +nα

(r)
1

)
+X2

(
mF ′2+mF ′3α

(3)
2 +...+mF ′r−2α

(r−2)
2 +mF ′r−1α

(r−1)
2 +nα

(r)
2

)
m

. . .+
Xr−2

(
mF ′r−2+mF ′r−1α

(r−1)
r−2 +nα

(r)
r−2

)
+Xr−1

(
mF ′r−1+nα

(r)
r−1

)
+nXr

m .

Set F0 = p, for some prime integer p such that gcd(p, nr!) = 1. Note that gcd(p,m) = 1 as well since
m | r!, and that gcd(p, nβ) = 1 since nβ | nr!. Hence, p | F0 while p2 6 | F0 and p 6 | Fr. Consider the system
of congruences:

mF ′r−1 ≡
[
−nα(r)

r−1

]
(mod p) (2.2)

mF ′r−2 ≡
[
−mF ′r−1α

(r−1)
r−2 − nα

(r)
r−2

]
(mod p) (2.3)

...
mF ′2 ≡

[
−mF ′3α

(3)
2 − . . .−mF ′r−2α

(r−2)
2 −mF ′r−1α

(r−1)
2 − nα(r)

2

]
(mod p) (2.4)

mF1 ≡
[
−mF ′2α

(2)
1 − . . .−mF ′r−1α

(r−1)
1 − nα(r)

1

]
(mod p). (2.5)

Since gcd(p,m) = 1, Theorem 2.10 implies that Equation (2.2) has a solution F ′r−1. Using the value F ′r−1, we
can now recursively solve Equation (2.3) for F ′r−2. Iterate this process to obtain integers F ′r−1, F

′
r−2, . . . , F1

which solve the system. Now, set

G1 = mF1 +mF ′2α
(2)
1 + . . .+mF ′r−1α

(r−1)
1 + nα

(r)
1

G2 = mF ′2 +mF ′3α
(3)
2 + . . .+mF ′r−2α

(r−2)
2 +mF ′r−1α

(r−1)
2 + nα

(r)
2

...
Gr−2 = mF ′r−2 +mF ′r−1α

(r−1)
r−2 + nα

(r)
r−2

Gr−1 = mF ′r−1 + nα
(r)
r−1,

so that

F (X) =
mF0 +G1X +G2X

2 + . . .+Gr−2X
r−2 +Gr−1X

r−1 + nXr

m
.

By construction, p | mF0, p2 6 | mF0, p | G1, . . . , p | Gr−1, and p 6 | n. Hence, the numerator of F (X) is
irreducible in Z[X] by an application of Eisenstein’s Criterion.

To see that d(Z, F ) = 1, recall that Fr = nβ, and that F0 = p. Since we have chosen p so that gcd(p, nr!) = 1,
and nβ | nr!, we have that gcd(F0, Fr) = 1. Hence, gcd(F0, F1, . . . , Fr−1, Fr) = 1. By Lemma 2.6, we have
d(Z, F ) = 1.

Finally, to see that there are infinitely many such irreducible polynomials, notice that in Congruence (2.5)
alone, there are infinitely many solutions F1 that we might have chosen. (For, having found one such
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solution, say x0, there are infinitely many integers congruent to x0 modulo p.) Translating this observation
into infinitely many valid G1 completes the claim.

�

Notice that by our method of constructive proof in Theorem 2.11, we make the following claim (which may
be of greater intrinsic interest to the reader).

Corollary 2.12. For every m ∈ Z, there are infinitely-many irreducible polynomials f(x) ∈ Z[x] for which
d(Z, f) = m.

Proposition 2.13. Let f(x) ∈ Int(Z) have degree n, and

fk(x) = f(x) · · · f(x)︸ ︷︷ ︸
k factors

in the usual polynomial multiplication. Then

d(Z, fk) =
(

d(Z, f)
)k
. (2.6)

Proof Recall that

d(Z, f) = gcd(f(0), . . . , f(n)), (2.7)

and express f(0), . . . , f(n) in their prime decompositions:

f(0) = p
e01
1 · · · p

e0s
s

...
f(n) = p

en1
1 · · · p

ens
s ,

where we slightly abuse notation: eij ∈ Z is the power of the jth prime pj corresponding to f(i).

By definition, gcd(f(0), . . . , f(n)) = pm1
1 · · · pmss , where mi = min(e0

i , . . . , e
n
i ), each i. Notice that

fk(0) =
(
p
e01
1 · · · p

e0s
s

)k
= p

ke01
1 · · · pke

0
s

s

...

fk(n) =
(
p
en1
1 · · · p

ens
s

)k
= p

ken1
1 · · · pke

n
s .

s

Again employing the definition of the greatest common divisor, we have

gcd(fk(0), . . . , fk(n)) = pr11 · · · prss , (2.8)

where ri = min(ke0
i , . . . , ke

n
i ), each i. But it is clear that
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ri = min(ke0
i , . . . , ke

n
i )

= kmin(e0
i , . . . , e

n
i )

= kmi (from above).

Making this substitution into Equation (2.8), we find

d(Z, fk(x)) = pr11 · · · prss
= pkmi1 · · · pkmss

= (pm1
1 · · · pmss )k

= gcd(f(0), . . . , f(n))k

= dk(Z, f(x)),

completing the proof. �

Lemma 2.14. Let f(x) ∈ Z[x] be such that d(S, f) = 1 over an infinite subset S of Z. The following hold.

(1) f(x) is primitive in Z[x].

(2) If f(x) 6= ±1 and f(x) = f1(x)f2(x) · · · fk(x), where each fi(x) is irreducible in Z[x], then
deg(fi(x)) ≥ 1 for every i ∈ [1, k].

(3) If f(x) = q1(x) · · · qr(x), where each qi(x) is irreducible in Z[x], then d(S, qi) = 1 for every 1 ≤ i ≤ r.

Proof To see (1), suppose that c(f) = m > 1. Then f(x) = mf ′(x), where f ′(x) is primitive in Z[x], and
f(x)
m ∈ Int(S,Z) implies m = ±1 since d(S, f) = 1, a contradiction.

For (2), f(x) image primitive over S implies that f(x) is primitive in Z[x] by (1) above. Assume without
loss of generality that f1(x) = m ∈ Z. Then

f(x)
m

= f2(x) · · · fk(x),

and each fj(x), j ≥ 2 is primitive and irreducible in Z[x]. Since f(x) is primitive, f(x)
m 6∈ Z[x], a contradiction.

Finally, for (3), suppose that d(S, qi) = m > 1 for some i. Then

f(x) = m
qi(x)
m

q1(x) · · · qr(x)

implies f(x)
m ∈ Int(S,Z). But d(S, f) = 1 implies that m = ±1, a contradiction. �

Notice that the converse of Lemma 2.14(1) is not necessarily true. Consider, for example, the familiar
f(x) = x(x − 1) over Z. Although f(x) is primitive in Z[x], f(x) is not image primitive over Z, since
d(Z, f) = 2.

Lemma 2.15. Let f(x) ∈ Int(S,Z) be of degree r ≥ 1. The following hold.
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(1) f(x) irreducible in Int(S,Z) implies d(S, f) = 1.

(2) If f(x) is image primitive over S, and f(x) = f1(x)f2(x) · · · fw(x), with each fj(x) ∈ Int(S,Z), then
each fj(x) is also image primitive over S.

Proof For (1), assume that d(S, f) = m. Then

f(x) = d(S, f)
f(x)

d(S, f)
= m

f(x)
m

,

with f(x)
m ∈ Int(S,Z). Then f(x) irreducible in Int(S,Z) implies m = d(S, f) = ±1.

For (2), let γi = d(S, fi). Then for every z ∈ S, γ1γ2 · · · γw divides f(z). Since d(S, f) = 1, we have
γ1γ2 · · · γw = ±1, implying γi = ±1 for each i ∈ [1, w]. Hence, d(S, fi) = ±1 for each i.

�

Note that the converse to Lemma 2.15(1) is not necessarily true. Consider f(x) = x(x + 2) over Z. Since
f(0) = 0, f(1) = 3, and f(2) = 8, d(Z, f) = gcd(0, 3, 8) = 1. Hence, f(x) is image primitive, yet reducible
in Z[x].

We present an interesting and somewhat surprising example of how the converse to Lemma 2.15(2) fails.

Example 2.16. Consider f3(x) = x(x−2)(x+2)
3 and f2(x) = (x+1)(x+4)

2 over Z. Now,

d(Z, f3) = gcd(f3(0), f3(1), f3(2), f3(3)) = gcd(0,−1, 0, 5) = 1.

Similarly,

d(Z, f2) = gcd(f2(0), f2(1), f2(2)) = gcd(2, 5, 9) = 1,

so both f3(x) and f2(x) are image primitive in Int(Z). Let h(x) = f2(x)f3(x). Then

d(Z, h) = gcd(h(0), h(1), h(2), h(3), h(4), h(5)) = gcd(0,−5, 0, 70, 320, 945) = 5,

so h(x) = f2(x)f3(x) is not image primitive.

One may easily verify that several familiar polynomial properties (Thm 6.1, [5]) hold for Int(S,Z) as in
R[x1, . . . , xn] (where R is an integral domain). Let f(x), g(x) ∈ Int(S,Z). Then

• deg(f + g) ≤ max(deg f ,deg g)

• deg(fg) = deg(f)+deg(g)

Recall (Thm 6.2, [5]), that if R is a ring with identity and f, g ∈ R[x] are nonzero polynomials such that the
leading coefficient of g is a unit in R, then there exist unique polynomials q, r ∈ R[x] such that

f = qg + r, and deg(r) < deg(g).
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Furthermore, when R = Q, every q ∈ Q is a unit. Notice that this division algorithm does not necessarily
work for polynomials in Int(Z).

Example 2.17. Consider f(x) = (x−3)(x−4)(x−5)
3 and g(x) = (x−4)(x−5)

2 over Z. Notice that
f(x), g(x) ∈ Int(Z). Applying the above division algorithm, and treating f(x) and g(x) as members of Q[x],
we have

(x− 3)(x− 4)(x− 5)
3

=
(

2(x− 3)
3

)(
(x− 4)(x− 5)

2

)
, so that

f(x) = q(x)g(x) + r(x),

where q(x) = 2(x−3)
3 and r(x) = 0. Further, q(x) and r(x) are unique in Q[x] by the division algorithm.

However, it is clear that q(x) 6∈ Int(Z).

We may conclude that given two arbitrary polynomials f(x) and g(x) in Int(Z), there is not necessarily a
way to express them in the form f(x) = g(x)q(x) + r(x) with q(x) and r(x) members of Int(Z).

In the following Lemma, we present one specific case where a division algorithm may be applied for members
of Int(Z).

Lemma 2.18. Let f(x), g(x) ∈ Int(Z). Write

f(x) =
f1f
′(x)
f2

and g(x) =
g1g
′(x)
g2

,

where f ′(x), g′(x) are primitive in Z[x] and gcd(f1, f2) = 1 = gcd(g1, g2). If f ′(x) and g′(x) are monic, and
if f1

f2
is an integer multiple of g1

g2
, then there exist unique polynomials q(x) and r(x) in Int(Z)

(deg(r(x)) < deg(g(x))) such that

f(x) = g(x)q(x) + r(x).

Proof (Existence) Proceed by induction on n = deg(f(x)). Let us rewrite f(x) and g(x) for convenience:

f(x) =
n∑
i=0

aix
i and g(x) =

m∑
j=0

bix
i,

where in the notation of the above, an = f1
f2

, and bm = g1
g2

. If deg(g(x)) > deg(f(x)) then q(x) = 0 and
r(x) = f(x) satisfies the result. Hence assume deg(g(x)) ≤ deg(f(x)).

Now, if n = 1, then f(x) ∈ Z[x] may be written f(x) = f1f
′(x) where f1 is the content of f(x) and f ′(x)

is primitive in Z[x]. Then either m = 1 and g(x) divides f(x) or g(x) fails to divide f(x). In the former
case, we need not proceed. In the latter, write g(x) = g1(x − g0), and f(x) = f1(x − f0). The assumption
implies that g1 divides f1, say g1β = f1. In this case, f(x) = βg(x) + βg1(f0 − g0), which fulfills the lemma.
Otherwise, m = 0, and the assumption of the lemma in this case implies that g(x) | f1. We may write
g(x)γ = f1. Then f(x) = f1f

′(x) = gγf ′(x) and we have the desired result with q(x) = γf ′(x) and r(x) = 0.

Suppose that the existence holds for polynomials of degree less than n = deg(f(x)). Notice that the
polynomial (anb−1

m xn−m)g(x) is a polynomial in Int(Z) of degree n, with leading coefficient an. Hence,
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f(x)− (anb−1
m xn−m)g(x) = (anxn + . . .+ a0)− (anxn + . . .+ anb

−1
m b0x

n−m)

is an integer-valued polynomial of degree less than n. By the induction hypothesis, there are polynomials
q′(x) and r(x) such that

f(x)− (anb−1
m xn−m)g(x) = q′(x)g(x) + r(x) deg(r(x)) < deg(g(x)).

Therefore, if q(x) = anb
−1
m xn−m + q′(x) ∈ Int(Z), then

f(x) = (anb−1
m xn−m)g(x) + q′(x)g(x) + r(x) = q(x)g(x) + r(x).

(Uniqueness) Assume that f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x), where q1(x), r1(x), q2(x) and
r2(x) are members of Int(Z) and that deg(ri(x)) < deg(g(x)) for i = 1, 2. In this case, we have

q1(x)g(x)− q2(x)g(x) = r1(x)− r2(x)

and hence

(q1(x)− q2(x))g(x) = r1(x)− r2(x).

But recall from the above that deg(r1(x) − r2(x)) < deg(g(x)). Furthermore, if q1(x) − q2(x) 6= 0, then
deg((q1(x)− q2(x))g(x)) ≥ deg(g(x)). Combining these observations necessitates that

q1(x)− q2(x) = 0 = r1(x)− r2(x),

or, equivalently, q1(x) = q2(x) and r1(x) = r2(x). �

Corollary 2.19. If f(x), g(x) are irreducible in Int(Z), then the sufficient conditions in Lemma 2.18 above
are reduced to: if d(f) | d(g), then there exist unique polynomials q(x) and r(x) in Int(Z)
(deg(r(x)) < deg(g(x))) such that

f(x) = g(x)q(x) + r(x).
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Chapter 3

The Structure of Irreducibles in
Int(S,Z)

Let f(x) ∈ Z[x]. Recall [5] that if f(x) is primitive in Z[x] and is irreducible in Z[x], then f(x) is irreducible
in Q[x].

Lemma 3.1. Let f(x) ∈ Int(S,Z) be image primitive over S. Then there is a unique (up to associates)
primitive polynomial f ′(x) ∈ Z[x] and unique n ∈ Z such that

f(x) =
f ′(x)
n

. (3.1)

Proof Write f(x) = h(x)
m , h(x) ∈ Z[x] and m ∈ Z. If h(x) is not primitive in Z[x], then write

h(x) = c(h)h1(x), where c(h) is the content of h(x) in Z[x] and h1(x) is primitive in Z[x]. Then

f(x) =
c(h)h1(x)

m
.

Since d(S, f) = 1, d(S, c(h)h1(x)) = m. Now, d(S, c(h)h1(x)) = c(h)d(S, h1(x)) so

f(x) =
c(h)h1(x)

c(h)d(S, h1(x))
=

h1(x)
d(S, h1)

.

Setting f ′(x) = h1(x) and n = d(S, h1) yields the desired representation.

Suppose

f ′(x)
n

=
f ′′(x)
n′

,

with f ′(x), f ′′(x) primitive in Z[x] and n, n′ ∈ Z. Then unique factorisation in Z[x] and n′f ′(x) = nf ′′(x)
yield f ′(x) = f ′′(x) and n = n′.

�
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Lemma 3.2. Let f(x) be primitive in Z[x], with deg(f) = r ≥ 1. If

f(x) = f1(x)f2(x),

where f1(x) and f2(x) ∈ Z[x], then d(S, f) ≥ d(S, f1)d(S, f2).

Proof Assume that f(x) = f1(x)f2(x) and d(S, f) < d(S, f1)d(S, f2). Notice that f1(x)

d(S,f1)
and f2(x)

d(S,f2)
are

members of Int(S,Z). Then d(S, f1)d(S, f2) | f1(x)f2(x) = f(x) for every x ∈ S. By definition of the fixed
divisor of f over S, d(S, f) ≥ d(S, f1)d(S, f2), a contradiction. �

Theorem 3.3. Let f(x) be primitive in Z[x], and assume that deg(f(x)) ≥ 1. The following conditions are
equivalent:

(1) f(x)

d(S,f)
is irreducible in Int(S,Z).

(2) Either f(x) is irreducible in Z[x] or d(S, f) > d(S, f1)d(S, f2) for every pair of nonunit polynomials
f1(x) and f2(x) such that f(x) = f1(x)f2(x).

Proof [(1) ⇒ (2)] Assume that f(x) is not irreducible in Z[x]. Assume that d(S, f) ≤ d(S, f1)d(S, f2),
where deg(f1),deg(f2) ≥ 1, and f1(x)f2(x) = f(x). Applying Lemma 3.2, we must have
d(S, f) = d(S, f1)d(S, f2). Then

f(x)
d(S, f)

=
f1(x)f2(x)

d(S, f)

=
f1(x)f2(x)

d(S, f1)d(S, f2)

=
f1(x)

d(S, f1)
· f2(x)

d(S, f2)
,

so that f(x)

d(S,f)
is reducible in Int(S,Z).

[(2)⇒ (1)] Assume that

f(x)
d(S, f)

= h1(x) · · ·hr(x)

where each hi(x) is irreducible in Int(S,Z). Since f(x)

d(S,f)
is image primitive, deg(hi(x)) ≥ 1 for each i. By

Lemma 3.1, we may write this product as

f(x)
d(S, f)

=
h′1(x)

d(S, h′1)
· · · h′r(x)

d(S, h′r)

where each h′i(x) is primitive in Z[x]. If f(x) is irreducible in Z[x], then unique factorisation in Z[x] forces
r = 1 and f(x)

d(S,f)
= h1(x) is irreducible. Otherwise, we obtain, using unique factorisation in Z[x], that

d(S, f) = d(S, h′1) · · ·d(S, h′r),
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contradicting (2). �

Lemma 3.4. An element z ∈ Z is irreducible in Int(S,Z) if and only if it is irreducible in Z.

Proof (⇒) Suppose z ∈ Z is irreducible in Int(S,Z). Then z = g(x)h(x), where g(x), h(x) ∈ Int(S,Z),
implies that either g(x) or h(x) is a unit in Int(S,Z). Furthermore, the degree of both h(x) and g(x) must
be zero as deg(z) = 0. Since the units of Int(S,Z) are ±1, z = ±c, for some integer c, implying z = c as Z
is a unique factorisation domain. Hence, z ∈ Z is also irreducible.

(⇐) Let us assume that z = p(x)q(x) for p(x), q(x) ∈ Int(S,Z). By the same argument as above, both p(x)
and q(x) must be constants, so that p(x) = α and q(x) = β, and α, β ∈ Z. But since z is irreducible in Z,
either α = ±1 or β = ±1. Hence, z is irreducible in Int(S,Z), as ±1 are units for Int(S,Z) as well as Z.

�

The next Corollary characterizes the irreducible elements of Int(S,Z) and follows directly from Theorem 3.3
and Lemma 3.4.

Corollary 3.5. Let f(x) = f ′(x)
n be a non-unit image primitive polynomial in Int(S,Z) expressed in the

form of (3.1). f(x) is irreducible in Int(S,Z) if and only if

(1) deg(f(x)) = 0 and f(x) is a prime integer in Z.

(2) f ′(x) is irreducible in Z[x] and n = d(S, f ′).

(3) n = d(S, f ′) and for every factorisation f ′(x) = f1(x)f2(x) into non-units of Z[x],
d(S, f ′) > d(S, f ′1)d(S, f ′2).

We now apply the results of this chapter to construct some irreducible elements of Int(S,Z) which will later
be of interest.

Corollary 3.6. Let the integers i1, i2, . . . , ip form a complete set of residues modulo a prime p and an
incomplete set of residues modulo every prime q 6= p. Then the polynomial

fp(x) =
(x− i1)(x− i2) · · · (x− ip)

p

is irreducible in Int(Z).

Note for any prime p, such a sequence {ij}pj=1 outlined above exists and may be chosen by the Chinese
Remainder Theorem.

Proof Let I denote the set {i1, . . . , ip} outlined above, and f(x) = (x− i1)(x− i2) · · · (x− ip). Note that
f(x) is primitive in Z[x] with deg(f(x)) = p.

Claim: d(Z, f) = p. For every integer z, z ≡ ij (mod p) for some j ∈ [1, p]. For such a j, p | (z − ij), so
p | d(Z, f), and pα = d(Z, f) for some α ∈ Z. Notice that for no prime q 6= p does q | d(Z, f), since I fails
to form a complete set of residues modulo every such q. Thus α = 1 and d(Z, f) = p.

Finally, by construction, any subset of I is also an incomplete set of residues modulo every prime q 6= p. It
follows that for every polynomial f1(x) and f2(x) in Z[x] with f(x) = f1(x)f2(x), we have
d(Z, f1) = d(Z, f2) = 1 (recall f(x) is primitive implies that deg(f1(x)) and deg(f2(x)) ≥ 1). Hence
d(Z, f) = p > d(Z, f1)d(Z, f2) = 1 for every such f1(x) and f2(x). Applying Theorem 3.3 completes the
proof.

�
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Theorem 3.7. For each n ≥ 1, Bn,S(x) is irreducible in Int(S,Z).

Proof Suppose that Bn,S(x) = g(x)h(x), with g(x), h(x) ∈ Int(S,Z) such that deg(g(x)) = r and
deg(h(x)) = s. Then n = r + s. Because {

(
x
i

)
S
}∞i=0 forms a basis for Int(S,Z), write

g(x) = g0B0,S(x) + g1B1,S(x) + . . .+ grBr,S(x)

and

h(x) = h0B0,S(x) + h1B1,S(x) + . . .+ hsBs,S(x).

Then

r!Sg(x) =
(
r!S
0!S

)
g0B0,S(x) +

(
r!S
1!S

)
g1B1,S(x) + . . .+ grx

(r)
S

and

s!Sh(x) =
(
s!S
0!S

)
h0B0,S(x) +

(
s!S
1!S

)
h1B1,S(x) + . . .+ hsx

(s)
S .

Now, p!S
l!S
∈ Z for every l ≤ p (see [2]), so

(r!Sg(x))(s!Sh(x)) = (r!Ss!S)(g(x)h(x)) = (r!Ss!S)Bn,S ∈ Z[x]. (3.2)

Then we must have

(r!Ss!S)
n!S

=
r!Ss!S

(r + s)!S
∈ Z.

But (by Theorem 8, [2]) r!Ss!S | (r + s)!S . Hence, to avoid contradiction, we must have s = n or s = 0. We
are left with one of two cases:

(i) s = 0⇒ h(x) is constant (or)

(ii) s = n⇒ r = n− s = 0⇒ g(x) is constant.

Without loss, let us take s = n, so that g(x) = w ∈ Z. Then from Equation (3.2) we have
n!Swh(x) = n!SBn,S ∈ Z[x]. Since n!SBn,S is monic in Z[x], n!Swh(x) must be monic in Z[x]. Hence
w = ±1.

Thus Bn,S(x) = g(x)h(x) implies Bn,S(x) = ±h(x).

�
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Chapter 4

Some Elements With Unique
Factorisation in Int(S,Z)

Theorem 4.1. Let f(x) ∈ Z[x] be of degree d ≥ 1. If d(S, f) = 1, then f(x) factors uniquely in Int(S,Z).

Proof Z[x] is a unique factorisation domain, so let f(x) = q1(x) · · · qt(x), with qi(x) irreducible in Z[x], be
a unique factorisation up to order and multiplication by ±1. Since d(S, f) = 1, f(x) is primitive in Z[x] by
Lemma 2.14(1), and d(S, qi(x)) = 1 for each qi(x). Assume f(x) factors in Int(S,Z) as

f(x) = j1(x) · · · jr(x),

where each ji(x) is irreducible in Int(S,Z).

Claim I: No ji(x) is a non-unit integer.

Proof of Claim I: Assume without loss that j1(x) = z ∈ Z is not a unit. Then
f(x) = zj2(x) · · · jr(x) ∈ Int(S,Z) and thus f(x)

z ∈ Int(S,Z). Since d(S, f) = 1, z = ±1, a contradiction.

Claim II: No ji(x) ∈ Q[x]− Z[x].

Proof of Claim II: Applying Lemma 3.1, ji(x) = j′i(x)

d(S,j′i)
. Then

f(x) =
j′1(x) · · · j′r(x)

d(S, j′1) · · ·d(S, j′r)
.

Gauss’s Lemma gives that the product of primitive polynomials in Z[x] is primitive, so the product
j′1(x) · · · j′r(x) is a primitive polynomial. Since d(S, f) = 1, f(x) is primitive as well. Then d(S, j′1) · · ·d(S, j′r)
divides each coefficient of the polynomial j′1(x) · · · j′r(x), and so d(S, j′1) · · ·d(S, j′r) = 1 implies that
d(S, j′i) = ±1 for each i ∈ [1, r]. Hence, ji(x) = ±j′i(x) ∈ Z[x] for each i, completing Claim II.

Finally, each ji(x) must be irreducible in Z[x], hence

f(x) = j1(x) · · · jr(x) = q1(x) · · · qt(x)

implies that r = t and for some permutation of the ji’s, each ji(x) = qi(x). �
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Example 4.2. While image primitive polynomials in Z[x] factor uniquely in Int(S,Z), the same cannot be
said for those in Int(S,Z). For example, let f(x) = x(x−2)(x−4)

3 and g(x) = (x+1)(x+2)
2 be polynomials in

Int(Z). Since

d(Z, f) = gcd(f(0), f(1), f(2), f(3)) = gcd(0, 1, 0,−1) = 1

and

d(Z, g) = gcd(f(0), f(1), f(2)) = gcd(1, 3, 6) = 1,

we have that both f(x) and g(x) are image primitive on Z. Let h(x) = f(x)g(x). Since

d(Z, h) = gcd(h(0), h(1), h(2), h(3), h(4), h(5)) = gcd(0, 3, 0,−10, 0, 105) = 1,

we have h(x) is image primitive over Z. However,

h(x) =
x(x− 2)(x− 4)

3
· (x+ 1)(x+ 2)

2
=
x(x− 2)(x+ 2)

3
· (x+ 1)(x− 4)

2

yields a non-unique factorisation in Int(Z).

Theorem 4.3. Let f(x) = f ′(x)
z ∈ Int(Z), where z ∈ Z and f ′(x) is primitive in Z[x]. f(x) factors uniquely

in Int(Z) if the following hold:

(1) deg(f(x)) = p, where p is a prime integer

(2) p | d(Z, f ′)

(3) p 6 | d(Z, f)

Proof Assume that (1-3) hold. If f(x) is irreducible in Int(Z), the claim is trivial. So assume that f(x) is
reducible in Int(Z). By (1), z ≤ p!, and by (2) and (3), p | z, so pβ = z for some β ∈ Z. Thus, f(x) = f ′(x)

pβ .

By (3), say d(Z, f) = r = pe11 p
e2
2 · · · perr , where p 6 |r, and f(x) = (pe11 p

e2
2 · · · perr ) f ′(x)

pβ(pe11 p
e2
2 ···p

er
r ) . Now, either

f ′(x)

pβ(pe11 p
e2
2 ···p

er
r ) is irreducible in Int(Z) or can be factored into irreducibles. In either case,

f(x) = (pe11 p
e2
2 · · · perr )

f ′(x)
pβ (pe11 p

e2
2 · · · p

er
r )

(4.1)

yields a factorisation into irreducibles in Int(Z).

Suppose that f(x) = f1(x)f2(x) · · · fj(x), where fi(x) is irreducible in Int(Z) for every i, so

f(x) =
f ′(x)
pβ

= qc11 · · · qcnn
f ′1(x)

d(Z, f ′1)
· · ·

f ′j(x)
d(Z, f ′j)

, (4.2)
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where each qi is a prime integer, 1 ≤ deg(f ′i(x)) ≤ p and f ′i(x) is primitive in Z[x] for every i. Since f ′(x),
f ′1(x), . . . , f ′j(x) are primitive in Z[x], unique factorisation in Z[x] implies that p | d(Z, f ′i) for some i.

Now suppose that 1 ≤ deg(f ′i(x)) < p for some i. Then f ′i(x) divides f ′(x) in Z[x] and
deg(f ′1(x) · · · f ′i−1(x)f ′i+1(x) · · · f ′j(x)) < p. Then, p 6 | d(Z, f ′i) and p 6 | d(Z, f ′1 · · · f ′i−1f

′
i+1 · · · f ′j) implying

that p 6 | d(Z, f ′1) · · ·d(Z, f ′i−1)d(Z, f ′i+1) · · ·d(Z, f ′j). Thus, p 6 | d(Z, f ′1) · · ·d(Z, f ′i) · · ·d(Z, f ′j), a contradic-
tion.

Thus, j = 1 and Equation (4.2) is of the form

f(x) =
f ′(x)
pβ

= qc11 · · · qcnn
f ′1(x)

d(Z, f ′1)
. (4.3)

Since f ′1(x)

d(Z,f ′1)
is image primitive in Z, it follows that

qc11 · · · qcnn = d(Z, f) = pe11 · · · perr .

Moreover, the primitive condition in Z[x] implies that f ′(x) = f ′1(x). Thus, the factorisation given in (4.3)
is of the form

f(x) = pe11 · · · perr
f ′(x)

d(Z, f ′)
(4.4)

= pe11 · · · perr
f ′(x)

pβpe11 · · · p
er
r
. (4.5)

Hence, the factorisation in (4.1) is actually an irreducible factorisation in Int(Z) and is obviously unique.

�

We consider a very interesting and well-known set of integer-valued polynomials named the Fermat polyno-
mials (see [1]). If p is any positive prime in Z, let

Fp(x) =
xp − x
p

.

Fermat’s Little Theorem implies that Fp(x) ∈ Int(Z) for all positive primes p in Z. Chapman et. al. [1]
showed that if Fp(x) factors non-trivially in Int(Z), then at least one factor must be a non-unit in Z. In
fact, it is shown in [1] that one possible irreducible factorisation of Fp(x) is

 ∏
q∈Tp−{p}

q

 · xp − x(∏
q∈Tp q

) (4.6)

where

Tp = {q | q ≥ 2 is prime and q − 1 divides p− 1}.
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Corollary 4.4. For every prime p, Fp(x) = xp−x
p factors uniquely in Int(Z). Moreover, its unique irre-

ducible factorsiation is given by (4.6).

Proof Clearly Fp(x) satisfies conditions (1), (2) and (3) of Theorem 4.3, and hence has a unique factorisation
in Int(Z). The factorisation given in (4.6) follows from Corollary 2.9 in [1].

�

Example 4.5. Consider F53(x) ∈ Int(Z). In this case, T53 = {2, 3, 5, 53}, and the unique irreducible
factorisation of F53(x) in Int(Z) is

F53(x) = (2 · 3 · 5)
x53 − x

2 · 3 · 5 · 53
.

Let p ≥ 2 be a prime integer and Bp(X) denote the usual pth Binomial Polynomial

Bp(X) =
X(X − 1) · · · (X − p+ 1)

p!
.

The following theorem is contained in a private communicate we obtained from Bullington [3]. Using the
techniques and tools we have developed, we obtain a much more concise proof.

Theorem 4.6. For each k ≥ 1, Bkp (X) factors uniquely in Int(Z).

Proof Let k > 0 be given. Notice

Bkp (X) =
Xk(X − 1)k · · · (X − p+ 1)k

(p!)k
,

and since Bp(X) is irreducible, d (Z, Bp(X)) = 1 and d
(
Z, Bkp (X)

)
= (d(Z, Bp(X)))k = 1k = 1. Assume

that

Bkp (X) = f1(X)f2(X) · · · fr(X),

where fi(X) is irreducible in Int(Z) for each i. Since d
(
Z, Bkp (X)

)
= 1, deg(fi(X)) > 1 for each i.

By the unique factorisation of Q[X],

fj(X) =
Xα

(j)
1 (X − 1)α

(j)
2 · · · (X − p+ 1)α

(j)
p

d
(
Z, Xα

(j)
1 (X − 1)α

(j)
2 · · · (X − p+ 1)α

(j)
p

) ,
where 0 ≤ α(j)

i ≤ k for each i, j. Recalling that Bp(p) =
(
p
p

)
= 1,

Bkp (p) = f1(p)f2(p) · · · fr(p) = 1
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implies that

fj(p) =
pα

(j)
1 (p− 1)α

(j)
2 · · · (1)α

(j)
p

d
(
Z, Xα

(j)
1 (X − 1)α

(j)
2 · · · (X − p+ 1)α

(j)
p

) = ±1.

Hence, d
(
Z,Xα

(j)
1 (X − 1)α

(j)
2 · · · (X − p+ 1)α

(j)
p

)
= ±1pα

(j)
1 (p− 1)α

(j)
2 · · · (1)α

(j)
p for every j. So

fj(X) = ±X
α

(j)
1 (X − 1)α

(j)
2 · · · (X − p+ 1)α

(j)
p

pα
(j)
1 (p− 1)α

(j)
2 · · · (1)α

(j)
p

for every 1 ≤ j ≤ r. The set P = {0, . . . , p−1} form a complete set of residues modulo the prime p, so every
integer z is congruent to exactly one member of P. So, for example, if z ≡ p− 4 (mod p), p will divide the
(X − p+ 4) term in the numerator of fj(X) evaluated at X = z.

We claim that α(j)
1 = α

(j)
2 = . . . = α

(j)
p−1 = α

(j)
p for every j. Notice that upon justifying the claim, the proof

will be complete, for the irreducibility of each fj(X) implies that α(j)
1 = α

(j)
2 = . . . = α

(j)
p−1 = α

(j)
p = 1 so

each fj(X) = Bp(X) and r = k.

Assume that α(j)
1 > α

(j)
m for some 2 ≤ m ≤ p. Then fj(p+m−1) 6∈ Z. To see this, notice that p+m−1 ≡ m−1

(mod p) in P uniquely, and

fj(p+m− 1) =
(p+m− 1)α

(j)
1 · · · (p)α(j)

m · · · (m)α
(j)
p

pα
(j)
1 · · · (p−m+ 1)α

(j)
m · · · (1)α

(j)
p

. (4.7)

pα
(j)
m is the only multiple of p in the numerator of fj(p+m−1) in Equation (4.7), because p+m−1 < p+p.

However, we have pα
(j)
1 in the numerator of fj(p + m − 1) in Equation (4.7), and since α

(j)
1 > α

(j)
m by

assumption, fj(p+m− 1) 6∈ Z. Since j was arbitrary, we conclude that α(j)
1 ≤ α

(j)
m for each 1 ≤ j ≤ r and

1 ≤ m ≤ p.

Now, assume that α(j)
1 < α

(j)
m for some 2 ≤ m ≤ p. We write

Bkp (X) = fj(X)g(X)

=
(
Xα

(j)
1 (X−1)α

(j)
2 ···(X−p+1)α

(j)
p

pα
(j)
1 (p−1)α

(j)
2 ···(1)α

(j)
p

)
·
(
Xk−α

(j)
1 (X−1)k−α

(j)
2 ···(X−p+1)k−α

(j)
p

pk−α
(j)
1 (p−1)k−α

(j)
2 ···(1)k−α

(j)
p

)
.

Since α(j)
1 < α

(j)
m , k−α(j)

1 > k−α(j)
m , and this implies that g(p+m−1) 6∈ Z by the previous argument. Hence,

α
(j)
1 ≥ α

(j)
m for each m, j. Combining the two inequalities yields α(j)

1 = . . . = α
(j)
p for each j completing the

claim.

Finally, it is clear that fj(X) irreducible in Int(Z) implies that α(j)
1 = . . . = α

(j)
p = 1 for every j, and so

fj(X) = Bp(X) and r = k, as desired.

�

It may be tempting at this moment to conjecture that if f(x) is irreducible in Int(Z), then (f(x))k factors
uniquely in Int(Z). However, this is not the case.

Example 4.7. Let f(x) = x2 + 10x + 15. Applying Eisenstein’s Criterion for reducibility in Z[x], we
see that f(x) is irreducible in Z[x] and d(Z, f) = 1. Similarly, g(x) = 5x2 + 14x + 84 is irreducible
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in Z[x] and d(Z, g) = 1. Now, let h(x) = g(x)f(x). Since d(Z, h) = gcd(h(0), h(1), h(2), h(3), h(4)) =
gcd(1260, 2678, 5148, 9234, 15620) = 2, we have p(x) = h(x)

d(Z,h)
= f(x)g(x)

2 is irreducible in Int(Z). However,

one can verify as above that d(Z, f2g) = 4, so

p2(x) =
f(x)g(x)

2
· f(x)g(x)

2
= g(x)

f2(x)g(x)
4

is a non-unique factorisation in Int(Z).



24 CHAPTER 5. ELASTICITY IN INT(S,Z)

Chapter 5

Elasticity in Int(S,Z)

Definition 5.1 (See [6]). A set M with binary operation ? is a monoid if

(1) ∀a, b, c ∈M , a ? (b ? c) = (a ? b) ? c.

(2) ∃ e ∈M such that e ? a = a ? e = a for every a ∈M .

M satisfies the group axioms of closure, associativity, possesses an identity element, but may fail to possess
inverses. In general terms, if D is an integral domain and

D∗ = D\{0},

then D∗ is a monoid under multiplication.

All monoids throughout the remainder of this work are commutative (i.e., a ? b = b ? a for every a, b ∈M).

Definition 5.2 (See [6]). Those elements of a ring which possess both a left and a right inverse are said
to be units of the ring.

Definition 5.3. In a commutative monoid M , x is irreducible if and only if whenever x = yz then y or z
is a unit in M (with x, y, z ∈M).

Example 5.4. Let N0 = {0, 1, . . . }. Then N0, together with the operation + is an additive monoid.

Definition 5.5. Let S ⊂ N0 be a submonoid of N0. We call S a numerical monoid generated by
z1, z2, . . . , zk if:

S =< z1, z2, . . . , zk >= {x1z1 + x2z2 + . . .+ xkzk | xi ∈ N0}.

The irreducible elements of S are those in the minimal generating set of a numerical monoid.
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Example 5.6. Consider the numerical monoid generated by 3, 5 and 7:

S =< 3, 5, 7 >= {0, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . . }.

Note that we do not have unique factorisation in S:

15 = 3 + 3 + 3 + 3 + 3
= 5 + 5 + 5
= 3 + 5 + 7

Definition 5.7. Consider an element n in a monoid S. We define the set of Lengths of factorisations
of n into irreducibles, L(n), as follows:

L(n) = {m | ∃ α1, α2, . . . , αm irreducible in S, with n = α1 + α2 + . . .+ αm}.

Note that these αi are not necessarily unique. In the context of Example 5.6, L(15) = {3, 5}. For ease of
notation, if S is a monoid, then let S• denote the set of nonunits of S.

Definition 5.8. The elasticity of n, denoted ρ(n), for some element n in a monoid S, is defined as follows:

ρ(n) =
maxL(n)
minL(n)

.

Calling once again upon Example 5.6, we see that ρ(15) = 5
3 . Observe that the elasticity of elements within

monoids is a local character. We may extend this local character to a global character for S by setting:

ρ(S) = sup{ρ(n) | n ∈ S•}.

Definition 5.9. The set of elasticities of nonunits in S, denoted R(S), is given as follows:

R(S) = {ρ(x) | x ∈ S•}.

Chapman et. al. [4] concluded the following about the global character of elasticity for numerical monoids:

Theorem 5.10 (See [4], Thm. 2.1). Let S =< a1, . . . , at > be a numerical monoid with t > 1, where
a1 < a2 < . . . < at is a minimal set of generators for S. Then ρ(S) = at

a1
.

The following definition of full elasticity was also established by Chapman et. al.,:

Definition 5.11 (See [4], Defn 1.2). Let M be a commutative cancellative monoid1. If ρ(M) <∞, then
M is fully elastic if

1A monoid (M, ∗) is cancellative if for all a, b, c ∈M , a ∗ b = a ∗ c always implies that b = c and b ∗ a = c ∗ a always implies
that b = c.
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R(M) = Q ∩ [1, ρ(M)].

If ρ(M) =∞, then M is fully elastic if

R(M) = Q ∩ [1,∞).

We say that an integral domain D is fully elastic if its multiplicative monoid D∗ is fully elastic.

Chapman et. al., showed that any numerical monoid S which requires more than one generator is not fully
elastic [4, Thm 2.2]. Furthermore, in this same reference, it is shown that if D is a ring of integers in finite
extension of Q with class number pk, where p is a prime, then D is fully elastic [4, Cor 3.10].

Proposition 5.12. Let S ⊆ Z with |S| =∞.

(1) The elasticity of Int(S,Z) is infinite (i.e., ρ(Int(S,Z)) =∞).

(2) For every f(x) ∈ Int(S,Z) with f(x) 6= ±1 or 0, 1 ≤ ρ(f(x)) <∞.

Proof For (1), see Proposition 1.7 of [1].

For (2), any irreducible polynomial p(x) ∈ Int(S,Z), has ρ(p(x)) = 1. What remains to be shown is that
maxL(p(x)) <∞ for every polynomial p(x) in Int(S,Z). Let p(x) be a polynomial in Int(S,Z) of degree m,
and let p(x) be reducible. Then

p(x) = (z1 · · · zk)p1(x) · · · pt(x),

where each zi is a prime integer and each pj(x) is an irreducible member of Int(S,Z) of degree greater than
or equal to 1. So maxL(p(x)) ≥ k + t. For maxL(p(x)) = ∞ to be true, either deg(p(x)) = ∞ or k = ∞
or both deg(p(x)) = ∞ and k = ∞ simultaneously. We know that the degree of p(x) is defined as some
finite number m; hence, deg(p(x)) < ∞. If k = ∞, we would have that some positive integer could be
written as an infinite product of primes, which contradicts the Fundamental Theorem of Arithmetic. Hence,
maxL(p(x)) <∞ for every polynomial p(x) in Int(S,Z), and ρ(p(x)) = maxL(p(x))

minL(p(x)) <∞.

�

Consider fp(X):

fp(X) =
(X − i1)(X − i2) · · · (X − ip−1)(X − ip)

p
, (5.1)

where I = {i1, i2, . . . , ip−1, ip} form a complete set of residues modulo the prime p and fail to form a complete
set of residues modulo every prime q < p. To see that fp(X) is irreducible over Int(Z), apply Theorem 3.3,
and let g(x) and h(x) ∈ Z[X] be such that 1 ≤ deg(g(x)), deg(h(x)) < p and

g(X)h(X) = (X − i1)(X − i2) · · · (X − ip−1)(X − ip).

By the construction of I, deg(h(x)) < p implies d(Z, h) = 1, and a similar argument implies d(Z, g) = 1.
Hence, for every such g(x) and h(x), we have d(Z, g(x)h(x)) = p > d(Z, g(x))d(Z, h(x)) = 1, implying fp(X)
is irreducible in Int(Z).
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From Equation (5.1), let us denote fp(X) = hp(X)
p , so that hp(X) = (X − i1)(X − i2) · · · (X − ip−1)(X − ip)

is monic in Z[X].

Lemma 5.13. In Int(Z), L
(
hkp(X)

)
= {2j + (k − j)p : 0 ≤ j ≤ k}.

Proof Let hp(X) be as above. We induct on k. Suppose that k = 1. Then

hp(X) = (X − i1)(X − i2) · · · (X − ip) = p

(
(X − i1)(X − i2) · · · (X − ip)

p

)
,

so that p, 2 ∈ L
(
h1
p(X)

)
. Assume that hp(X) = g(X)

g1

h(X)
h1

, where g(X), h(X) ∈ Z[x] are such that

deg(g(X)),deg(h(X)) < p, g1, h1 ∈ Z, and g(X)
g1

, h(X)
h1
∈ Int(Z). Since deg(g(X)),deg(h(X)) < p, by

our construction of I, d(Z, g) = 1 = d(Z, h). Hence g1 = ±1 = h1, and we have exhausted all factorisations
of hp(X). Then, L

(
h1
p(X)

)
= {2, p} and the claim holds for the base case.

Suppose that the claim holds for every k ≤ n. Then, by assumption,

L
(
hnp (X)

)
= {np, (n− 1)p+ 2, . . . , p+ 2(n− 1), 2n} . (5.2)

Consider hn+1
p (X):

hn+1
p (X) = hnp (X) · hp(X)

=
(
hnp (X)

)
[(X − i1) · · · (X − ip)] (5.3)

=
(
hnp (X)

) [
p

(
(X − i1) · · · (X − ip)

p

)]
. (5.4)

Combining Equations (5.3) and (5.4), we see that for every z ∈ L
(
hnp (X)

)
, both z + p and z + 2 ∈

L
(
hn+1
p (X)

)
. Hence, {2j+ (n+ 1− j)p : 0 ≤ j ≤ n+ 1} ⊆ L(hn+1

p (X)). To complete the proof, we must
show that L(hn+1

p (X)) ⊆ {2j + (n+ 1− j)p : 0 ≤ j ≤ n+ 1}.
Suppose that

hn+1
p (X) = αg(X), (5.5)

where g(X) ∈ Int(Z) and α ∈ Z. Then α | d(Z, hn+1
p ) = pn+1. We have two cases to consider.

Case 1 : α > 1. Then α = pr, some r (1 ≤ r ≤ n+ 1). Notice that we may write g(X) = g′(X)
g̃ , where g′(X)

is primitive in Z[X] and g̃ ∈ Z. Then

hn+1
p (X) = pr

g′(X)
g̃

. (5.6)

By unique factorisation in Z[x], we have g′(X) = (X − i1)n+1 · · · (X − ip)n+1, and by our choice of the
congruence system I, we have g̃ = ps, some s (1 ≤ s ≤ n+ 1). We rewrite Equation (5.6) so that

hn+1
p (X) =

prg′(X)
ps

,
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and since hn+1
p (X) is monic in Z[X], we have r = s and hence

hn+1
p (X) = pr

g′(X)
pr

= pr
(X − i1)n+1 · · · (X − ip)n+1

pr
, (5.7)

where 1 ≤ r ≤ n + 1. Since we consider lengths of factorisations of hn+1
p (X) as products of irreducibles in

Int(Z), we rewrite Equation (5.7):

hn+1
p (X) = pr

(
(X − i1)r · · · (X − ip)r

pr

)
(X − i1)n+1−r · · · (X − ip)n+1−r

= pr (fp(X))r (X − i1)n+1−r · · · (X − ip)n+1−r.

We have constructed the above set of factorisations in the only ways possible given the constraints of I, and
the length of such a factorisation is 2r + (n+ 1− r)p ∈ {2j + (n+ 1− j) : 0 ≤ j ≤ n+ 1}.
Case 2 : α = 1. Then

hn+1
p (X) =

g1(X)
z1

· · · gm(X)
zm

,

where gj(X) is primitive in Z[X] for each j. Then the product g1(X) · · · gm(X) is also primitive in Z[X], so
it must be that (z1 · · · zm) = ±1. This factorisation is just a factorisation in Z[X], with length (regardless
of the value of m, for L(hn+1

p (X)) concerns factorisations into irreducibles), of

(n+ 1)p ∈ {2j + (n+ 1− j) : 0 ≤ j ≤ n+ 1}.

Hence, L
(
hn+1
p (X)

)
⊆ {2j + (n+ 1− j) : 0 ≤ j ≤ n+ 1}, and the induction is complete.

�

Lemma 5.14. In Int(Z), L
(
hkp(X)fsp (X)

)
= {2j + (k− j)p+ s : 0 ≤ j ≤ k}, for natural numbers k and

s.

Proof Let hp(X) and fp(X) be as prescribed. Having Lemma 5.13, we induct on s.

Suppose s = 1. Then

hkp(X)fp(X) = (X − i1)k · · · (X − ip)k
(

(X − i1) · · · (X − ip)
p

)
.

Recall that L(hkp(X)) = {2j + (k − j)p : 0 ≤ j ≤ k}. Since fp(X) is irreducible in Int(Z), we know that
for every factorisation of hkp(X), we may add 1 to its length, so that {2j + (k − j)p + 1 0 ≤ j ≤ k} ⊆
L(hkp(X)fp(X)). We must show that L(hkp(X)fp(X)) ⊆ {2j + (k − j)p+ 1 0 ≤ j ≤ k}. Suppose that

hkp(X)fp(X) = αg1(X)g2(X) · · · gm(X), (5.8)

where gj(X) is irreducible in Int(S,Z) and α ∈ Z. By Lemma 3.1, we have gj(X) = g′j(X)

d(Z,g′j)
for each j, where

g′j(X) is primitive in Z[X]. Then α | d(Z, hkp(X)fp(X)) = pk. We consider two cases.
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Case 1a: α = 1. Then

hkp(X)fp(X) =
g′1(X)

d(Z, g′1)
· · · g

′
m(X)

d(Z, gm)
,

and the product g′1(X) · · · g′m(X) is primitive in Z[X]. By the unique factorisation in Q[X],
d(Z, g′1) · · ·d(Z, g′m) = p, implying that d(Z, g′j) = p for some j and that d(Z, g′i) = ±1 for each i 6= j.
Moreover, g′1(X) · · · g′m(X) = (X − i1)k+1 · · · (X − ip)k+1. By construction of I, d(Z, g′j) = p and
g′j(X)

d(Z,g′j)
irreducible in Int(Z) implies that g′j(X)

d(Z,g′j)
= fp(X). Hence, the length of such a factorisation is

pk + 1 ∈ {2j + (k − j)p+ 1 0 ≤ j ≤ k}.
Case 1b: α > 1. Then α = pr, some r (1 ≤ r ≤ k), and

hkp(X)fp(X) = pr
g′1(X)

d(Z, g′1)
· · · g

′
m(X)

d(Z, gm)
. (5.9)

By unique factorisation in Q[X], we have that g′1(X) · · · g′m(X) = (X − i1)k+1 · · · (X − ip)k+1, and by our
choice of I, we have d(Z, g′i) | pk+1, for each i. Hence, d(Z, g′i) = pαi , where 0 ≤ αi ≤ k + 1. We rewrite
Equation (5.9):

hkp(X)fp(X) = pr
g′1(X)
pα1

· · · g
′
m(X)
pαm

, (5.10)

and for gi(X) to be integer-valued over Z, we rewrite Equation (5.10):

hkp(X)fp(X) = pr
(

(X − i1)α1 · · · (X − ip)α1

pα1

)
· · ·
(

(X − i1)αm · · · (X − ip)αm
pαm

)
. (5.11)

Notice that this is the only way to write Equation (5.10) as a product of irreducibles in Int(Z) given our
construction of I. For ease of representation, we condense Equation (5.11):

hkp(X)fp(X) = pr
(

(X − i1)r · · · (X − ip)r

pr

)(
(X − i1)1 · · · (X − ip)1

p

)
((X − i1) · · · (X − ip))k−r ,

and the length of such a factorisation is 2r + (k − r)p + 1 ∈ {2j + (k − j)p + 1 0 ≤ j ≤ k}. Hence,
L(hkp(X)fp(X)) ⊆ {2j + (k − j)p+ 1 0 ≤ j ≤ k}, and the hypothesis holds for the base case.

Suppose that the claim holds for every s ≤ n. Then

L(hkp(X)fnp (X)) = {2j + (k − j)p+ n : 0 ≤ j ≤ k}.

Consider hkp(X)fn+1
p (X):

hkp(X)fn+1
p (X) =

(
hkp(X)fnp (X)

)
fp(X)

= hkp(X)fnp (X)
(

(X−i1)···(X−ip)
p

)
.
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Hence, for every z ∈ L(hkp(X)fnp (X)), z + 1 ∈ L(hkp(X)fn+1
p (X)). Thus,

{2j + (k − j)p+ (n+ 1) : 0 ≤ j ≤ k} ⊆ L(hkp(X)fn+1
p (X)). As in the base case, we need to show that

L(hkp(X)fn+1
p (X)) ⊆ {2j + (k − j)p+ (n+ 1) : 0 ≤ j ≤ k}.

As above, suppose that

hkp(X)fn+1
p (X) = αg1(X) · · · gm(X), (5.12)

where gi(X) is irreducible in Int(Z) and α ∈ Z. By Lemma 3.1, we have gj(X) = g′j(X)

d(Z,g′j)
for each j, where

g′j(X) is primitive in Z[X]. Then α | d(Z, hkp(X)fn+1
p (X)) = pk. We consider two cases.

Case 2a: α = 1. Then

hkp(X)fn+1
p (X) =

g′1(X)
d(Z, g′1)

· · · g
′
m(X)

d(Z, g′m)
, (5.13)

and the product g′1(X) · · · g′m(X) is primitive in Z[X]. By the unique factorisation of Q[X],
d(Z, g′1) · · ·d(Z, g′m) = pn+1, implying that d(Z, g′j) = pβ (0 ≤ β ≤ n+ 1). Further,
g′i(X) = (X − i1)b1 · · · (X − ip)bp for 0 ≤ bj ≤ k + n+ 1, by unique factorisation in Z[X]. Then

g′j(X)
d(Z, g′j)

=
(X − i1)b1 · · · (X − ip)bp

pβ

irreducible in Int(Z) implies that, given our construction of I, either g′j(X)

d(Z,g′j)
= fp(X)

(with b1 = . . . = bp = β = 1), or g′j(X) is irreducible in Z[X] with d(Z, g′j) = 1. But such a factorisation can
be reduced to

hkp(X)fn+1
p (X) = (X − i1)k · · · (X − ip)k

(
(X − i1) · · · (X − ip)

p

)n+1

,

whose length is pk + n+ 1 ∈ {2j + (k − j)p+ (n+ 1) : 0 ≤ j ≤ k}.
Case 2b: α > 1. Then α = pr, some r (1 ≤ r ≤ k). In Equation (5.12), have

hkp(X)fn+1
p (X) = pr

g′1(X)
d(Z, g′1)

· · · g
′
m(X)

d(Z, g′m)
. (5.14)

By the unique factorisation of Q[X], we have (g′1(X)) · · · (g′m(X)) = (X − i1)k+n+1 · · · (X − ip)k+n+1, and
by our choice of I, we have d(Z, g′i) | pk+n+1 for each i. Hence, d(Z, g′i) = pαi , where 0 ≤ αi ≤ k+ n+ 1 for
each i. We rewrite Equation (5.14):

hkp(X)fn+1
p (X) = pr

g′1(X)
pα1

· · · g
′
m(X)
pαm

, (5.15)

and for gi(X) to be integer-valued over Z, and given our choice of I, we rewrite Equation (5.15):
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hkp(X)fn+1
p (X) = pr

(
(X − i1)α1 · · · (X − im)α1

pα1

)
· · ·
(

(X − i1)αm · · · (X − im)αm

pαm

)
, (5.16)

Notice that this is the only way to write Equation (5.15) as a product of irreducibles given our construction
of I. For ease of representation, we condense Equation (5.16):

hkp(X)fn+1
p (X) = pr

(
(X − i1)r · · · (X − im)r

pr

)
· · ·
(

(X − i1) · · · (X − ip)
p

)n+1

(X − i1)k−r · · · (X − ip)k−r,

and the length of such a factorisation is 2r + p(k − r) + n+ 1 ∈ {2j + (k − j)p+ (n+ 1) : 0 ≤ j ≤ k}.
Hence, L(hkp(X)fn+1

p (X)) ⊆ {2j + (k − j)p+ (n+ 1) : 0 ≤ j ≤ k}, and the induction is complete.

�

Corollary 5.15. In Int(Z), for all primes p and k, s ∈ N,

ρ(hkp(X)fsp (X)) =
kp+ s

2k + s
.

Lemma 5.16. Every rational number larger than 1, written in lowest terms, can be written in the form
kp+s
2k+s , for k > s ≥ 0 ∈ Z and p > 2 a prime integer.

Proof Let t > u ≥ 2 be given, so that gcd(t, u) = 1. We wish to show that there are integers k > s ≥ 0,
and a prime integer p for which we can write

kp+ s

2k + s
=
t

u
.

Set k = t− u and s = up− 2t, and choose p so that s ≥ 0. In this case,

kp+ s

2k + s
=

(t− u)p+ up− 2t
(t− u)2 + up− 2t

=
tp− 2t
up− 2u

=
t(p− 2)
u(p− 2)

=
t

u
,

since p > 2.

�

Theorem 5.17. Int(Z) is fully elastic.
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Proof For every q ∈ Q larger than 1, we may write q = t
u , where gcd(t, u) = 1. Further, by Lemma 5.16,

there are integers k > s ≥ 0 and a prime p > 2 for which q = t
u = kp+s

2k+s . For such k, s and p,

ρ
(
hkp(X)fsp (X)

)
=
kp+ s

2k + s
=
t

u
,

by Lemma 5.14. Hence, ∀q ∈ Q larger than 1, there is an f(X) ∈ Int(Z) for which ρ(f(X)) = q.

�

We now proceed to show (analogously) that Int(S,Z) is fully elastic for every S ⊆ Z, |S| =∞.

Definition 5.18. Let S ⊆ Z and p a prime integer. Define

CRSS(p) = {m1, . . . ,mr} with the properties that

• mj ≡ mi (mod p)⇒ j = i, and

• s ≡ mj (mod p) for every s ∈ S and some 1 ≤ j ≤ r.

Lemma 5.19. Let S ⊆ Z with |S| =∞. For every m ∈ N, there is a prime p ∈ Z for which |CRSS(p)| ≥ m.

Proof Let m > 0 be given, and suppose that |CRSS(p)| < m for every prime p ∈ Z. Since S ⊆ Z, S is
countable and so we may list the members of S: {si}∞i=1.

Either

i infinitely many si ≤ 0, or

ii infinitely many si ≥ 0.

Without loss, suppose that S is such that (ii) holds. We may order the positive {si}∞i=1 such that

s1 ≤ s2 ≤ · · · ≤ sm ≤ sm+1 ≤ · · ·

Choose a prime q > sm. Then there are at least m (mutually incongruent) elements of S less than q, so
|CRSS(q)| ≥ m, a contradiction.

�

Lemma 5.20. For every n ∈ N there is an irreducible polynomial p(x) ∈ Int(S,Z) of degree ≥ n which is a
product of linear factors in Q[x].

Proof Let n ∈ N be given. We construct an irreducible polynomial p(x) ∈ Int(S,Z) such that deg(f) ≥ n.
By Lemma 5.19, there is a prime p such that |CRSS(p)| = j ≥ m. Let

CRSS(p) = {a1, . . . , aj}.

Then f(x) = (x−a1)···(x−aj)
p ∈ Int(S,Z), since for every x ∈ S, x ≡ ai (mod p) (some 1 ≤ i ≤ j). Let

{b1, . . . , bj} be such that
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b1 ≡ a1 (mod p)
...

bj ≡ aj (mod p)

and {b1, . . . , bj} does not form (or contain) any CRSS(q) for any other prime q. (This is possible by the
Chinese Remainder Theorem). Let

g(x) =
(x− b1) · · · (x− bj)

p
.

Then d(S, g) = 1, and since any proper subset of {b1, . . . , bj} does not constitute CRSS(p), l(x)
p 6∈ Int(S,Z)

for any l(x) that properly divides (x−b1) · · · (x−bj) in Z[x]. Hence, applying Theorem 3.3, g(x) is irreducible
in Int(S,Z).

�

Theorem 5.21. Let q = t
u ∈ Q, t > u ≥ 2 ∈ N be given. Then there is a polynomial f(x) ∈ Int(S,Z) for

which ρ(f(x)) = t
u . Equivalently, Int(S,Z) is fully elastic for S ⊆ Z, |S| =∞.

Proof Let q = t
u be given as above. Set k = t − u, s = up − 2t, and choose the prime p large enough so

that s ≥ 0. Then, as in Lemma 5.16, kp+s
2k+s = t

u .

Notice that for any choice of p′ ∈ N, p′ > p, and k = t− u, s = up′ − 2t, we will still have kp′+s
2k+s = t

u .

So by Lemma 5.19, find a prime p′ > p such that |CRSS(p′)| = j > p. As in the constructive proof of
Lemma 5.20, let

gp′(x) =
(x− b1) · · · (x− bj)

p′
,

where I = {b1, . . . , bj} forms a CRSS(p′) and fails to form a CRSS(q) for primes q 6= p′. Notice that by
our choice of p′, j > p. Then gp′(x) is irreducible in Int(S,Z). Set hp′(x) = (x − b1) · · · (x − bj), and
fp′(x) = (x−b1)···(x−bj)

p′ . It is then straightforward to verify that if one replaces hp(x) and fp(x) with hp′(x)
and fp′(x), respectively, in Lemmas 5.13 and 5.14, we have the following results:

L(hkp′(x)) = {2i+ (k − i)j : 0 ≤ i ≤ k}

and

L(hkp′(x)fsp′(x)) = {2i+ (k − i)j + s : 0 ≤ i ≤ k}

since no steps in the proof of either of the Lemmas 5.13 or 5.14 were specific to Int(Z). Moreover, one may
freely replace d(Z, f) with d(S, f) when necessary as they behave identically in such a context.

Hence, we conclude that

ρ(hkp′(x)fsp′(x)) =
kj + s

2k + s
.
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Recalling our initial analysis and choice of p′ so that j > p, we have

ρ(hkp′(x)fsp′(x)) =
t

u
.

�
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