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Abstract

Regression methods are essential to any data analysis which attempts to de-
scribe the relationship between a response variable and any number of predictor
variables. Frequently, situations involving discrete variables arise. For example,
in a medical setting, an outcome might be presence/absence of disease. Logistic
regression analysis extends the techniques of multiple regression analysis to re-
search situations in which the outcome variable is categorical, that is, taking on
two or more possible values. In this paper, the risk factors for a disease of the
eye (retinopathy of prematurity) are identified using logistic regression analysis.

1 Introduction

In clinical situations, the status of a patient is assessed by the presence or absence
of a disease. There are many factors to consider which may or may not correlate
with the incidence of the disease. There have been numerous retrospective med-
ical research studies published each year that review past medical records and
charts of former patients to help determine some of the risk factors (or causing
agents) of diseases that are of interest. Finding the risk factors and the potential
risk factors can help prevent the development of the disease. All of the diseases
and nearly all of the risk factors considered are categorical variables (variables
taking on two or more possible values). Hosmer and Lemeshow, two prominent
statisticians, state that “the logistic regression model has become the standard
method of analysis in this situation.”1

Like any other model building technique, the goal of the logistic regression
analysis is “to find the best fitting and most parsimonious, yet biologically rea-
sonable model to describe the relationship between an outcome (dependent or re-
sponse variable) and a set of independent (predictor or explanatory) variables.”2

1Hosmer, D. W.; Lemeshow, S. (1989). Applied Logistic Regression, New York: Wiley.
2Hosmer, op. cit.
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This statement motivates the purpose of this project: to identify risk factors for a
specific disease of the eye using the statistical tool of logistic regression analysis.

2 The Disease

The disease of the eye that is studied in this paper is retinopathy of prematurity
(ROP). ROP is a disease of the eye affecting primarily premature infants and
is the leading cause of blindness in newborn infants. Low birth weight and low
gestational age neonates are most susceptible to ROP. It is a vasoproliferative
disorder of immature blood vessels in the developing eye of newborn infants.
That is, the blood vessels in the eye stop growing outward in the retina and
form a circular ridge of conglomerated blood vessels. A clearly defined ridge is
considered Stage I ROP. As the disease progresses into Stage II and Stage III, the
ridge proliferates and pushes the retina outward. Untreated Stage III ROP, can
eventually result in a retinal detachment (blindness), which is Stage IV ROP.

3 The Data

The data used in this project was obtained from a medical retrospective research
project, done by the author, at Northwest Texas Hospital in Amarillo, Texas.
Since the project is retrospective, the data was collected from the medical records
storage room at the hospital. The project was approved by the Institutional
Review Board (IRB) of Texas Tech School of Medicine. The research project
analyzed the incidence of the disease, retinopathy of prematurity (ROP).

The study included 300 subjects3 from which data of 29 different risk factors4

was collected. (The 300 subjects included in the study were all those admitted to
the hospital from January 1995 through May 2000 fitting certain screening crite-
ria). All 29 of the proposed risk factors are discrete or categorical variables, some
dichotomous (yes/no) and others containing up to 5 possibilities. For example,
one of the risk factors looked at was whether or not the neonate had necrotizing
enterocolitis (NEC), which is classified into 4 grades or stages of development.
If they did, the worst grade of NEC attained during the course of their hospital
stay was recorded. For this particular predictor variable, we see that there are 5
possible outcomes: no NEC, Grade I, Grade II, Grade III, or Grade IV. Given
the categorical nature of these predictor variables, we see that logistic regression
analysis is suitable to model the data.

3Note: Of the 300 eligible subjects, only 252 will be included in the statistical model since
48 of the subjects expired.

4See Appendix for a brief description of the risk factors used in this study.
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4 The Model

In setting up the logistic regression model, we must first establish the fundamen-
tal model for any multiple regression analysis. It is assumed that the outcome
variable is a linear combination of a set of predictors. For outcome variable Y ,
and a set of n predictor variables, X1, X2, ..., Xn, we have the following:

Y = β0 + β1X1 + β2X2 + ...+ βnXn + ε = β0 +
n∑
j=1

βjXj + ε

where β0 is the expected value of Y when the X’s are set to 0, βj is the regres-
sion coefficient for each corresponding predictor variable, Xj, and ε is the error
of the prediction. Note that Y − ε = Y ′ represents the expected value of Y,
E(Y |X1, X2, ..., Xn). This is also known as the conditional mean.

This multivariate model is useful when the response variable is continuous,
but is not appropriate for dichotomous response variables, as is the case when Y
is presence(1)/absence(0) of ROP. As it is, the previous model would not produce
values restricted to 1 or 0 as we desire. Many uninterpretable values between 0
and 1 and greater than 1 could be obtained. To prevent this from happening, we
resort to the model of the logistic distribution.

The logistic regression model indirectly models the response variable based on
probabilities associated with the values of Y . We will use π(x) to represent the
probability that Y=1, which is the presence of ROP.3 Similarly, we will define 1-
π(x) to be the probability that Y=0, which is absence of ROP. These probabilities
are written in the following form:

π(x) = P (Y = 1|X1, X2, ..., Xn)

1− π(x) = P (Y = 0|X1, X2, ..., Xn)

In Equation (1) we use the model for the natural logarithm of the odds (log-
odds) to favor Y = 1.

ln
P (Y = 1|X1, X2, ..., Xn)

1− P (Y = 1|X1, X2, ..., Xn)
= ln

π(x)

1− π(x)
= β0 +

n∑
j=1

βjXj (1)

Using the inverse of the logit transformation of Equation (1) we arrive at the
following:

P (Y = 1|X1, X2, ..., Xn) =
eβ0+

∑n

j=1
βjXj

1 + eβ0+
∑n

j=1
βjXj

=
1

1 + e−(β0+
∑n

j=1
βjXj)

.

3Note that the x in the expression, π(x), is a vector representing the set of the independent
predictor variables, X1, X2, ...,Xn.
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Thus we have constructed a logistic regression model that bounds the conditional
mean between 0 and 1.

Now, we will fit the logistic regression model to the data. First, we must
establish a technique for estimating the parameters. The method of parameter
estimation is maximum likelihood. We will construct the likelihood function,
which expresses the probability of the observed data as a function of the unknown
parameters. Then, we will obtain the likelihood estimators of these parameters
which maximize the likelihood function. In the process, we will have selected the
estimators which predict the observed data most closely.

For a set of observations in the data (xi, yi),
5 the contribution to the likelihood

function is π(xi), where yi = 1, and 1 − π(xi), where yi = 0.6 The following
equation results for the contribution (call it ζ(xi)) to the likelihood function for
the observation, (xi, yi):

ζ(xi) = π(xi)
yi [1− π(xi)

1−yi ].

This equation accounts for only one set of observations. The observations
are assumed to be independent of each other so we can multiply their likelihood
contributions to obtain the complete likelihood function. The result is given in
Equation (2):

l(B) =
n∏
i=1

ζ(xi) (2)

where B is the collection of parameters β0, β1, ..., βj and l(B) is the likelihood
function of B.

Maximum likelihood estimates (MLE’s) can be obtained by calculating the
B which maximizes l(B). However, to simplify the mathematics, we will take
the logarithm of Equation (2) before finding the value B which maximizes the
likelihood function. As shown in Equation (3), L(B) denotes the log likelihood
expression.

L(B) = ln [l(B)] =
n∑
i=1

yi ln [π(xi)] + (1− yi) ln [1− π(xi)] (3)

We employ the techniques of calculus to determine the value of B that maxi-
mizes L(B). This is done by differentiating Equation (3) with respect to β0, β1, ..., βj
and setting the resulting derivatives equal to zero. These equations are called like-
lihood equations, and there are j + 1 such equations. They are of the following
form:

5Note that xi is still a vector of the predictor variables, X1,X2, ...,Xn for the ith subject.
6The expression π(xi) denotes the value of π(x) evaluated at xi.
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n∑
i=1

[yi − π(xi)] = 0 7

for the intercept, β0, and

n∑
i=1

xik[yi − π(xi)] = 0 , for k = 1, 2, ..., j

for the predictor variables, β1, β2, ..., βj.
The solution to the likelihood equations is the maximum likelihood estimate

B̂. The solution can be solved for by using computer programs. In particular,
SAS will be used to perform the logistic regression analysis of the data for this
project and will calculate the maximum likelihood estimates. Therefore, the
remainder of this paper is devoted to the analysis of the logistic regression model
parameters estimated by SAS.

5 The Model with the Data

The following question posed by Hosmer and Lemeshow outlines the proposed
method of testing the significance of predictor variables included in the model:
“Does the model that includes the variable in question tell us more about the
outcome (or response) variable than does a model that does not include that
variable?”8 To do so, we will use the likelihood ratio test.

The likelihood ratio is given in the following equation:

D = −2 ln [l(B)]

This statistic, D, is known as the deviance. First, we want to determine the de-
viance of the model without any of the predictor variables (i.e. with the intercept
only), and then compare this value with that of the model consisting of differ-
ent combinations of variables. The deviance always decreases with the addition
of more variables, but the more it decreases, the more that particular predictor
variable is related to the response variable. As we add variables, we can evaluate
the p-value of the deviance, which tests for the significance of that particular
combination of predictor variables. A low p-value9 justifies the rejection of the
null hypothesis, which is that all of the beta coefficients are equal to zero (i.e.
the all of the predictor variables are independent of the response variable). The

7Note that rearranging this equation yields that the sum of the observed values of y is equal
to the sum of the predicted values.

8Hosmer, op. cit.
9Generally, we accept p-values as significant at the α = 0.05 level.
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rejection of the null hypothesis means that the variables included in the model
are significant.

The deviance for the model containing the intercept only is 316.483. We
compare this value to the deviance of the model containing different covariates.
The deviance for the model with only the risk factor intraventricular hemorrhage
(IVH) is 302.630 with p less than 0.0001. Alone, this predictor variable appears
to explain a significant component of presence of ROP. The deviance for the
model with only duration of mechanical ventilation is 245.223 with p less than
0.0001. We see that the univariate model for duration of mechanical ventilation
predicts ROP better than does the one for IVH. The deviance for the model
with only hypertension in the mother is 316.011 with p = 0.4923. The difference
between the deviance of the intercept only and this risk factor, 0.472, indicates
that hypertension in the mother is a poor predictor variable for the presence of
ROP. Also, judging by the p-value, we can conclude that the model is better
without this covariate.

Other univariate models that yield low deviances (less than 280) are the ones
with weight, gestational age, O2 dependence at 28 days, O2 dependence at 60
days, postnatal steroids, and number of blood tranfusions. The univariate mod-
els that yield high deviances (greater than 314), are the ones containing Apgar
score less than 7 at one minute, vaginal birth, breast feeding, gender, and age of
mother. Computing deviances for univariate models is not completely reliable.
It does not take into account how the predictor variables will interact with each
other. It is suspected that some variables, when modeled with others, will be-
come stronger predictors and some weaker. However, it provides a starting place
to get general ideas about the predictor variables. We will take this information
into consideration when we are trying to determine which of the factors affect
the presence of ROP.

We now have an idea which of the risk factors are good predictors and which
are not, but we don’t yet know how the variables interact with each other. Back-
wards regression is the method we will use to find the overall best model. That
is, we will run a model in SAS containing all of the predictor variables and then
analyze the p-values of the predictor variables to determine which of them should
be removed. We will also note the deviance of the model, along with its associ-
ated p-value, everytime variables are removed in order to further determine the
significance of a given combination of independent variables.

The initial deviance of the complete model (with all of the predictor variables)
is 145.722 with p less than 0.0001. This is the lowest attainable deviance, since all
of the variables are included, but most of the predictor variables don’t seem to be
affecting the presence of ROP. The p-values of the predictor variables range from
0.0033 to 0.9988. To refine the model, we remove several of the factors exhibiting
the highest p-values then reevaluate the model. The resulting deviance never
seems to be affected too adversely with the removal of one or two variables (that
is, of course, the variables with the highest p-values), and the p-values of the
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remaining factors seem to get lower and more significant.
We repeat the removal process until we get to the point where the remaining

predictor variables are all significant at the α = 0.05 level. Gestational age, dura-
tion of mechanical ventilation, multiple gestation, and Therapeutic Intervention
Scoring System (TISS score) greater than 20 are the remaining risk factors. Still,
some significant factors may have been missed, since they were removed in a cer-
tain order. We must check to see if there are any risk factors or combinations of
risk factors that can be added back in with siginficant p-values without altering
the deviance much. The risk factor, other surgeries, can be added in with a sig-
inficant p-value, lowering the deviance by 4.5. Therefore, we will add this factor
to the model. No other risk factor or combination of risk factors can be added
to the model and still be significant. However, there are a couple of them that
come very close.

The predictor variable, surfactant, has a p-value of 0.0774 and decreases the
deviance by 3.4. There has been lots of research done on the effects of surfactant
on premature infants. The medical literature confirms that use of surfactant has
a positive correlation with the incidence of ROP.10 Therefore, we will include
surfactant in the model. The risk factor breast milk has a p-value of 0.1148
while changing the devaince by 2.7 when added into the model with the other six
factors. There have been no studies confirming that breast milk relates to the
incidence of ROP, so we do not feel inclined to include it in the model.

The model including the following risk factors: Gestational age, duration
of mechanical ventilation, multiple gestation, TISS score greater than 20, other
surgeries, and surfactant is the overall best model. The deviance, p-values, and
coefficient estimates can be observed from SAS.

6 Conclusion

The overall best logistic regression model for this set of data emphasizes the
risk factors that correlate the most with the incidence of ROP. These factors
are clincally important because they alert the physicians to the neonates most
likely to contract ROP and help them assess the condition of the patient. It is
interesting to note that the overall best logistic regression model does not include
the risk factor weight. Most of the past research studies of ROP include weight
as one of the primary predictors. The logistic regression model shows that weight
correlates extremely well with ROP by itself, but not when other variables are
included in the model. This is because weight is related to gestational age. If we
replace gestational age with weight in the model, then we see that it is almost
significant. But, when we place gestational age back in the model, then weight

10See, for example, Walther F. J.; et. al. One-year follow-up of 66 premature infants weighing
500-699 grams treated with a single dose of synthetic surfactant or air placebo at birth: results
of a double-blind trial. J. Pediatr. 1995; 126(pt 2):13-19.
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becomes an insignificant predictor. Gestational age is a much better predictor
than weight. This is due to the fact that weight takes into consideration the
size of the neonate’s parents whereas gestational age takes only the severity of
prematurity into account.

It is noteworthy that multiple gestation correlates to the incidence of ROP.
No one has ever found this correlation before, and there is no obvious reason why
this factor correlates well when other variables are in the model, but is a poor
indicator when it is alone. Another interesting finding is the potential correlation
of breast milk with the incidence of ROP. This predictor variable was almost
included in the model. Breast milk might be a strong predictor, but this research
project did not take into account how much breast milk the infant received. It
includes infants that received breast milk only once in the same category with
those who received it throughout their entire hospital stay. Medical research has
shown the potential protective effects of breast milk on premature infants11, but
has never been studied with the incidence of ROP before. Further investigation
on the protective effects of breast milk with the incidence of ROP is suggested.

11Johnson L.; et. al. Does breast milk-taurine protect against retinopathy of prematurity.
Pediatr Res. 1985; 19(pt 2):347A.
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7 Appendix

Risk factors for Retinopathy of Prematurity (ROP).
Risk Factor (Number of Categories) Description
Weight (5) weight of the infant at birth
Gestational Age (5) number of gestation months before birth
O2 for 28 days (2) whether the neonate required

oxygen for 28 days or more
Mechanical Ventilation (3) whether the infant was ever on the mechanical

ventilator
O2 dependent at 60 days (2) if the infant was dependent on oxygen

after the first 60 days of life
Steroids (3) whether the infant received steroids throughout

hospital stay
Surfactant (2) whether the infant received artificial surfactant

throughout hospital stay
IVH (2) if the infant contracted an intraventricular

hemorrhage
Other Surgeries (2) if the neonate had any surgery other than the

standard ones
HCT less than 43 at birth (2) whether the infants hematocrit level was less

than 43 at birth
Number of blood tranfusions (4) how many blood transfusions the neonate

received
Multiple Gestation (2) whether the infant was single
Apgar score less than 7 at 1 minute (2) if the infant’s Apgar score was less

than 7 one minute after birth
Apgar score less than 7 at 5 minutes (2) if the infant’s Apgar score was less

than 7 five minutes after birth
Positive blood culture (2) if an episode of sepsis was confirmed in the infant
Bacterial culture (2) if the blood infection was bacterial (contingent

on positive blood culture)
Fungal culture (2) if the blood infection was fungal (contingent

on positive blood culture)
Vaginal birth (2) whether the delivery was vaginal or c-section
TPN (3) whether the neonate received total parenteral

nutrition
Hypertension in mother (2) if the mother experienced hypertension

during delivery
NEC (5) if the infant contracted necrotizing enterocolitis
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Risk Factor Description
Race (4) the race of the infant
Breast milk (2) whether human breast milk was received

during the hospital stay
TISS score (2) whether the infant attained a TISS

(Therapeutic Intervention Scoring System) score
greater than 20

Gender (2) the gender of the infant
Max pO2 greater than 80 torr. (2) if the neonate acquired a maximum

pO2 level greater than 80 torr.
O2 saturation greater than 95% (2) if the neonate attained an O2

saturation level greater than 95%
Age of mother (3) the age of the infant’s mother at delivery
Prenatal Care (2) if the infant’s mother received

prenatal care
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