
Mathematical Analysis of a Cell Cycle Model

Kevin DeHoff

December 4, 2003

Abstract

We present an ab initio mathematical analysis of the model presented by DeHoff and Obeyesekere [3],

including a summary of the model itself and the biological significance of its solution. To determine the

worthiness of its solutions, an analysis of the Runge-Kutta class of numerical methods is presented, along

with the derivation of a third-order method. The model was tested for the existence and uniqueness of

solutions, as well as for the existence of equilibrium solutions, which were not found. The “natural responses”

of each member of the system were also determined and documented by removing all other influences and

finding the solution curve. We present a series of directions in which this project could move in the future.

Finally, we found that the model itself is mathematically and biologically sound, and that the Runge-Kutta

class of numerical methods is a standard numerical technique used in a variety of different applications.

Background and Model Design

In [3], a model was designed to simulate the concentrations of different proteins in the nucleus of a cell going

through the G2-M phase transition of the cell cycle. During this transition, the DNA of the cell is completing

its replication and the cell itself is preparing divide. In this model, yi, i ∈ {1, . . . , 12} are known proteins

that play a crucial role in this transition. During the transition, each protein interacts with other proteins.

Proteins interact with each other in a variety of ways. Some act by increasing or decreasing the natural

production rate of other proteins. Other pairs of proteins join to form different complexes, thereby decreasing

the levels of both proteins involved. Proteins transform to different states through a process known as

phosphorylation. These phosphorylated proteins were considered to be new proteins.

Our goal was to model the activity of each of the different proteins, and for simplicity, can be thought of

as the concentration of the protein in the nucleus. However, since proteins are constantly moving throughout

the cell, this becomes an open system1. As time passes, one of five things happens to the proteins.

1. A certain amount of the protein is produced.

2. A certain amount of the protein moves out of the nucleus.

3. A certain amount of the protein moves into the nucleus.

4. A certain amount of protein is degraded (destroyed).

5. A certain amount of protein is phosphorylated to become a different protein.

With these interactions and movements in mind, a system of autonomous ordinary differential equations was

created to track each protein. [3]

In this system, only two protein levels are biologically important. y5 is a collection of proteins that kill

the cell. If these proteins reach a threshold level, the cell dies and the simulation is over. y7 is the trigger

into the M-phase and cell division. If the concentration of y7 reaches a certain level, everything “resets”,

with the levels of proteins returning to their initial concentrations2 and the cycle continues. Otherwise, the

cell cycle stops, and the cell is considered to be arrested.

The notation used in the model is as follows:

• yi is the level of protein i.

1An open system is any chemical system where particles and energy can enter or leave the system.
2The intial concentration being referred to here is the concentration at the beginning of the cell cycle, not the beginning of

the simulation, as it takes time for the simulation to settle into a pure cyclic solution.

1

• fi is a constant representing the natural formation rate of protein i.

• ei is a constant representing the natural degredation rate of protein i (generally proportional to itself)

• ai,j is a constant representing the activation rate of protein i on protein j (increases production of

protein j dependent on the level of protein i.) If the subscript contains an e, then the degradation of

j is increased dependent on the level of protein j. Although this is mathematically equivalent to the

inhibition of the formation rate of the same protein, it is more correct for the biological and chemical

description of the process.

• xii,j is a constant representing the inhibition of some reaction involving protein j by protein i. Inhibi-

tions are always dependent on the level of protein i.

• pi,j , qi,j are constants used to describe the phosphorylation of proteins3.

• ri,j is a constant representing the a transformation rate that involves protein i and protein j combining

to create an entirely different protein. This is different from the phosphorylation reaction in which a

single protein is altered. The resulting proteins are considered to be sinks, and their only fate is to be

degraded. Therefore, their resulting levels are unimportant and hence ignored.

• STIM is a function representing an external damage stimulus. Its parameters are α, the intial amount

of stimulus applied and β, the half-life of the stimulus.

• severe is a constant which determines a cutoff for the severity of the damage stimulus. For damage

levels above a certain severity, the cell is modeled to die. Otherwise, the cell arrests and is repaired.

For example, the equation for y′

9 is

dy9

dt
=

f9

1 + xi6,9y6
− e9y9y7.

In this equation, f9 is the natural formation rate of protein 9, while the inhibiting term xi6,9 slows the

formation relative to the amount of y6. Additionally, e9 is the natural degradation of y9, which depends on

both y9 and y7.

The entire model is seen below.

dy1

dt
= f1(1 + a2,1y2) −

r1,2y1y2

1 + y13xib,r1,2
− e1y1 (1)

3This phosphorylation is described by Michaelis-Menten enzyme kinetics

2

dy2

dt
= f2

1 + ab,2y
5
13

severe5 + y5
13

−
r1,2y1y2

1 + y13xib,r1,2
−

p2,3y2

q2,3 + y2
(1 + a2,3y2)(a7,3y7 + a3,3y3) − e2y2 (2)

dy3

dt
=

p2,3y2

q2,3 + y2
(1 + a2,3y2)(a7,3y7 + a3,3y3) − e2y3 (3)

dy5

dt
= f5(1 + a4,5y

2
4) − e5y5 (4)

dy6

dt
= f6(1 + a2,6y2) − e6y6(1 + a5,e6y5) (5)

dy7

dt
=

f7

1 + xi6,7y6
−

p7,8y7

q7,8 + y7
+

p8,7y8y11

q8,7 + y8 + y11
− e7y

2
7 (6)

dy8

dt
=

p7,8y7

q7,8 + y7
−

p8,7y8y11

q8,7 + y8 + y11
− e7y7y8 (7)

dy9

dt
=

f9

1 + xi6,9y6
− e9y7y9 (8)

dy10

dt
= f10 +

p11,10y11y12

q11,10 + y11 + y12
− y9

p7,11y7y10

q7,11 + y7 + y11
− e10y10 (9)

dy11

dt
= −

p11,10y11y12

q11,10 + y11 + y12
+ y9

p7,11y7y10

q7,11 + y7 + y11
− e11y11 (10)

dy12

dt
= f12(1 + a2,12y2) − e12y12(1 + a5,e12y5) (11)

dy13

dt
= as,bSTIM − xi6,by6 (12)

STIM = βe−αt (13)

Due to the nonlinearity of the model, it is impossible to use standard techniques to find solution curves

and characterize the system. However, models are of no use if we cannot see the solutions they produce,

and we turn to numerical techniques to obtain solution estimates. The algorithm used was a 6 − 7 order

Runge-Kutta obtained from the IMSL libraries produced by Visual Numerics. To get an idea of how these

libraries worked, we study the Runge-Kutta algorithms, including a derivation of a third order Runge-Kutta

system based on information from [1] and [5].

Numerical Methods

The general idea behind numerical methods is to estimate what the solution to an unintegrable function is

for any given point in time. These processes work by examining the current point in the solution. Since the

slope of the solution at that point is known, it is used in some way to forecast what the next point in the

solution is going to be. However, due to the very nature of the algorithms, there is always some inherent

error. Each numerical method has an item known as the step size. In general, as the step size get closer

to zero, the algorithm becomes more and more accurate. However, each decrease in step size includes an

3

increase in computational time and an increase in the amount of data output by the algorithm. We know

that for small step sizes, the maximum error in the algorithm is bounded by a polynomial in the size of the

step. There are two functions which are often used in dealing with error.

• O
(

g(x)
)

: We say that f(x) is O
(

g(x)
)

if and only if for all x, f(x) ≤ λg(x), where λ is independent of

x. This is the same as saying f(x) is O
(

g(x)
)

if and only if

lim
x→∞

f(x)

g(x)
≤ λ.

Note that if λ is a constant and f(x) and g(x) are polynomials, then deg f(x) = deg g(x).

• o
(

g(x)
)

: o
(

g(x)
)

is a similar idea. However, we say that f(x) is o
(

g(x)
)

if and only if

lim
x→0

f(x)

g(x)
= 0.

In this case, f(x) decays faster than g(x) and it is easy to show that deg f(x) > deg g(x) for two

nonzero polynomials.

We define a numerical solution to be order p if its error is O(hp+1) for a given step size h.

Consider the differential equation y′ = f(x, y) with initial value y′(x0) = y0. Given the initial value






x̂

ŷ






, theories of numerical analysis presented in [1] assume that the solution to y′ can be written as







xn+1

yn+1






=







xn

yn






+ ∆xΦ













x

y

∆x













. (14)

In the simplest of cases, Euler’s Method, the function Φ in (14) is simply f(x). Euler’s Method tends to

accrue error quickly, because it is a first order method, i.e. the error is O
(

h2
)

. The easiest way to reduce the

error of these methods is to increase their order. For example, for an order one approximation, we know that

the highest possible error is accumulating proportional to the square of the step size h with each step. So,

assuming a step size of 0.5 units, the order after the first five steps could be as high as 1.25. However, if an

order two approximation is used, the maximum error accumulates proportional to the cube of h with each

step. So after five steps with an order two approximation, the maximum error could only be 0.625—half of

the maximum error of the order one approximation.

4

The desire is to find a method that is of a sufficiently high order to give believable results without making

them computationally infeasible. Euler’s Method uses the slope at the current value and a uniform step size

to determine the next value. It is possible, however, to approximate future slopes, and take a weighted

average of these slopes. This weighted average could then be used as the slope in Euler’s Method. This

approach to increasing the order of the approximation has yielded a class of algorithms commonly known as

the Runge-Kutta methods. The most well known and widely used version of these methods is known as the

“Standard Runge-Kutta” method, which is the weighted average of the current slope and three forecasted

slopes. The Standard Runge-Kutta method is order four, due to the method of its derivation. To give an

example of how this works, we will derive a third order Runge-Kutta method, rather than a corresponding

order four technique4. The basis for the derivation of a Runge-Kutta method as set forth by [1] and [5] is

to set the Taylor expansion of a generalized function equal to another approximation of the same solution

with a known order. Before we begin the derivation, we will prove the following theorem.

Theorem 1 The nth degree Taylor expansion of f(x) is order n for any rational function f(x).

Proof Let Tn(x) be the nth degree Taylor expansion of f(x). We know that this can be written as

Tn(x) = f(x0) + f ′(x0)(x − x0) + · · · +
1

n!
f (n)(x0)(x − x0)

n,

so that f(x) = Tn(x) + ε(x), where ε(x) is the error in the Taylor expansion. Because we know that εn(x)

is the remaining terms of the Taylor expansion, it is possible to write

εn(x) =
1

(n + 1)!
f (n+1)(x0)(x − x0)

n+1 + · · · .

If we can show that there must be some k between the arbitrary x0 and x so that

εn(x) =
1

(n + 1)!
f (n+1)(k)(x − x0)

n+1, (15)

we can begin to get an upper bound on εnx. Assume without loss of generality that x < x0. Because (15) is

a continuous function, we know that it must attain its maximum and minimum over the compact set [x, x0].

Let u be that maximum and v be that minimum. Hence we know that

1

n!
fn+1(v)|x − x0|

n ≤
1

n!
fn+1(x̂)|x − x0|

n ≤
1

n!
fn+1(u)|x − x0|

n

4The derivation of the fourth order and higher methods require an advanced knowledge of graph theory [1, 5]

5

for some x̂ ∈ [x, x0]. However, we want |x−x0|
n+1, so we will integrate the above equation over the interval

[x, x0]. This gives us

∫ x0

x

1

n!
fn+1(v)|x̂ − x|ndx̂ ≤

∫ x0

x

1

n!
fn+1(x̂)|x̂ − x|ndx̂ ≤

∫ x0

x

1

n!
fn+1(u)|x̂ − x|ndx̂.

We can pull out the constant term 1
n! and the function evaluations to yeild

fn+1(v)

∫ x0

x

1

n!
|x̂ − x|ndx̂ ≤

1

n!

∫ x0

x

fn+1(x̂)|x̂ − x|ndx̂ ≤ fn+1(u)

∫ x0

x

1

n!
|x̂ − x|ndx̂.

But we know that

∫ x0

x

1

n!
|x̂ − x|ndx̂ =

1

(n + 1)!
|x̂ − x|n+1

∣

∣

∣

∣

∣

x0

x

=
1

(n + 1)!
|x − x0|

n+1

and
∫ x0

x

1

n!
f (n+1)(x̂)|x̂ − x|ndx̂ =

1

(n + 1)!
f (n+1)(x0)|x − x0|

n+1 = ε(x).

Hence we have that

1

n + 1
f (n+1)(v)|x − x0|

n+1 ≤ εn(x) ≤
1

(n + 1)!
f (n+1)(u)|x − x0|

n+1.

However, because we know that εn(x̂) is continuous over [x, x0], we know that by the Intermediate Value

Theorem there must be some k to make (15) hold.

Now, to show that εn(x) is O
(

hn+1
)

, we need to show that for h = |x−x0|, εn(x) ≤ λ∗hn+1. Because we

know that f (n+1)(x̂) attains its maximum over [x, x0], we know that
∣

∣f (n+1)(x̂)
∣

∣λ for some λ. This implies

that |εn(x)| ≤ λ
(n+1)!h

n+1. So let λ∗ = λ
(n+1)! . For sufficiently small h, we know that

|εn(x)| ≤ λ∗hn+1,

which implies that

|εn(x)|

hn+1
≤ λ∗,

so εn(x) must be O
(

hn+1
)

, and by definition has order n. �

6

Derivation of a Third Order Runga Kutta Method

The Runge-Kutta methods use a weighted average of the current and forecasted slopes to determine the step

direction Φ. Since we can’t use normal integration to figure out the integral, our other option is to try and

write it as a finite sum. To do this, we turn to the ideas of Gaussian quadrature laid out in [5]. Let η be a

nonnegative function in the interval (a, b) so that

0 <

∫ b

a

η(φ)dφ < ∞,

∣

∣

∣

∣

∣

∫ b

a

φjη(φ)dφ

∣

∣

∣

∣

∣

< ∞, j ∈ N.

Then for some function f ,
∫ b

a

f(φ)η(φ)dφ ≈

v
∑

j=1

ωjf(θj)

for some combination of ωs and θs. To use this for a single variable system y′ = f







x

y






, we integrate f

from xn to xn+1 = xn + ∆x. So

y(xn+1) = y(xn) +

∫ xn+1

xn

f







φ

y(φ)






dφ = y(xn) + ∆x

∫ 1

0

f







xn + φ∆x

y(xn + φ∆x)






dφ.

We can now turn to quadrature and replace the integral of f







xn + φ∆x

y(xn + φ∆x)






with a sum to get

y(xn+1) = y(xn) + ∆x

v
∑

j=1

ωjf







xn + ζj∆x

y(xn + ζj∆x)






.

However, because the values of y(xn + ζjh) are unknown for any j > 1, we must approximate them. If we

let the ith approximation of







ζj∆x

y(xn + ζjh)






be denoted θi, then we have created an iterative process to

find the next point in the estimate of the solution. Hence we have that for (14)

Φ













x

y

∆x













=

m
∑

j=1

ωmkm,

7

where

k1 = f(x̂ + θ1∆x), k2 = f(x̂ + θ2∆x), k3 = f(x̂ + θ3∆x),

where

θ1 =







0

0






, θi =







ζi

γi,1k1 + · · · + γm,m−1km−1






, and x̂ =







xn

yn







where each ζj , and γj,i are arbitrary constants. Now, to derive a third order Runge-Kutta method, (as is

stated in [1] and [5]) we need the Taylor expansion of the method to be equal to the Taylor expansion of

the true solution, up to the (∆x)4 term of the solution’s Taylor expansion at the point x + ∆x. For the

following equations, let T n
f be the nth order Taylor expansion of f . So, if we expand the solution about the

point x + ∆x, we find the following:

T 3
y (x̂ + ∆x) = y(x) + ∆xf(x) +

1

2
∆xT∇f(x)∆x +

1

6

∑

i

∆xi(∆xT∇2
i f(x)∆x) + O

(

(∆x̂)4
)

.

However, for a simple one-dimensional system, the Hessian of f can be calculated, and, substituting h for

∆x, the Taylor expansion becomes

T 3
y (x + h) = y + hf







x

y






+

1

2
h2







∂

∂x
f







x

y






+ f







x

y







∂

∂y
f







x

y













+
1

6
h3

(

∂2

∂x2
f







x

y






+ 2f







x

y







∂2

∂x∂y
f







x

y






+ f







x

y







2

∂2

∂y2
f







x

y







+
∂

∂x
f







x

y







∂

∂y
f







x

y






+ f







x

y













∂

∂y
f







x

y













2
)

+ O
(

h4
)

Similarly, we can expand the forecasting terms of the Runge-Kutta by the Taylor formula, and find that

each of the three terms k1, k2, and k3 expand into their own polynomials.

T 2
k1

(x + ∆x) = f(x̂ + θ1∆x) = f(x̂)

T 2
k2

(x + ∆x) = f(x̂ + θ2∆x) = f(x̂) + ∇f(x̂)(T 1
θ2

∆x) +
1

2
(T 1

θ2
∆x)T∇2f(x̂)(T 1

θ2
∆x) + O

(

(∆x)3
)

= f(x̂) + ∆x∇f(x̂)(T 1
θ2

) +
1

2
(∆x)2(T 1

θ2
)T∇2f(x̂)(T 1

θ2
) + O

(

(∆x)3
)

T 2
k3

(x + ∆x) = f(x̂ + θ3∆x) = f(x̂) + ∇f(x̂)(T 0
θ3

∆x) +
1

2
(T 0

θ3
∆x)T∇2f(x̂)(T 0

θ3
∆x) + O

(

(∆x)3
)

8

= f(x̂) + ∆x∇f(x̂)(T 0
θ3

) +
1

2
(∆x)2(T 0

θ3
)T∇2f(x̂)(T 0

θ3
) + O

(

(∆x)3
)

where each θi is a vector of weights ζ and γ defined as above. Once again, for a simple one-dimensional

system, we can substitute in h for ∆x, and the appropriate weights for the elements of θ2 and θ3, we find

that k1, k2, and k3 are actually as follows. Note that In these equations, f







x

y






has been simplified to

merely f , and the expansion point of the taylor polynomials is understood to be (x + h).

T 2
k1

= f (16)

T 2
k2

= f + h

(

∂f

∂x
,
∂f

∂y

)







T 1
ζ2

T 1
γ2,1k1






+

1

2
h2







T 1
ζ2

T 1
γ2,1k1







T 





∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2













T 1
ζ2

T 1
γ2,1k1






+ O

(

h3
)

= f + h

(

∂f

∂x
,
∂f

∂y

)







ζ2

γ2,1T
1
k1






+

1

2
h2







ζ2

γ2,1T
1
k1







T 





∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2













ζ2

γ2,1T
1
k1






+ O

(

h3
)

= f + h

(

∂f

∂x
,
∂f

∂y

)







ζ2

γ2,1f






+

1

2
h2







ζ2

γ2,1f







T 





∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2













ζ2

γ2,1f






+ O

(

h3
)

= f + h

(

ζ2
∂f

∂x
+ γ2,1f

∂f

∂y

)

+ h2

(

1

2
ζ2
2

∂2f

∂x2
+ ζ2γ2,1f

∂2f

∂x∂y
+

1

2
γ2
2,1f

2 ∂f

∂y

)

+ O
(

h3
)

(17)

T 2
k3

= f + h

(

∂f

∂x
,
∂f

∂y

)







T 1
ζ3

T 1
γ3,1k1+γ3,2k2







+
1

2
h2







T 1
ζ3

T 1
γ3,1k1+γ3,2k2







T 





∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2













T 1
ζ3

T 1
γ3,1k1+γ3,2k2







T

+ O
(

h3
)

= f + h

(

∂f

∂x
,
∂f

∂y

)







ζ3

γ3,1T
1
k1

+ γ3,2T
1
k2







+
1

2
h2







ζ3

γ3,1T
1
k1

+ γ3,2T
1
k2







T 





∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2













ζ3

γ3,1T
1
k1

+ γ3,2T
1
k2







T

+ O
(

h3
)

= f + h

(

∂f

∂x
,
∂f

∂y

)









ζ3

γ3,1f + γ3,2

(

f + h
(

ζ2
∂f
∂x

+ γ2,1f
∂f
∂y

)

+ O
(

h2
)

)









9

+
1

2
h2







ζ3

γ3,1f + γ3,2 (f + O(h))







T 





∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2













ζ3

γ3,1f + γ3,2 (f + O(h))







T

+ O
(

h3
)

= f + h

(

ζ3
∂f

∂x
+ (γ3,1 + γ3,2)f

∂f

∂y

)

+ h2

(

1

2
ζ2
3

∂2f

∂x2
+ ζ3(γ3,1 + γ3,2)f

∂2f

∂x∂y

+
1

2
(γ3,1 + γ3,2)

2f2 ∂2f

∂y2
+ γ3,2

(

ζ2
∂f

∂x
+ γ2,1f

∂f

∂y

)

)

+ O
(

h3
)

. (18)

Note that these equations are for a general derivation of a 3rd order Runge-Kutta method in one variable,

and that the numbered equations match those found in [1]. Now, we can use these values in the function for

Φ in the Runge-Kutta algorithm, and we find that

Ty(x+h) = y + h (ω1Tk1
+ ω2Tk2

+ ω3Tk3
) ,

and if we set the coefficients equal to each other, we find that we only have to solve a simple system of

equations.

ω1 + ω2 + ω3 = 1, (19)

ζ2ω2 + ζ3ω3 =
1

2
, (20)

γ2,1ω2 + (γ3,1 + γ3,2)ω3 =
1

2
, (21)

1

2
ζ2
2ω2 +

1

2
ζ2
3ω3 =

1

6
, (22)

ζ2γ2,1ω2 + ζ3(γ3,1 + γ3,2)ω3 =
1

3
, (23)

1

2
γ2,1ω2 +

1

2
(γ3,1 + γ3, 2)2ω3 =

1

6
, (24)

ζ2γ3,2ω3 =
1

6
, (25)

γ2,1γ3,2ω3 =
1

6
. (26)

From equations 25 and 26, we can immediately see that ζ2 = γ2,1. By substituting ζ2 for γ2,1 throughout

the system, we can then see that from 20 and 21 that ζ3 = γ3,1 + γ3,2. Now, by making these substitutions

in equations 23 and 24, we find that

ζ2ω2 + ζ2
3ω3 = ζ2

2ω2 + ζ2
3ω3.

10

Hence we have that ζ2 = ζ2
2 = 1. Notice that ζ2 6= 0 due to (25). This leaves us in a system of four equations.

ω1 + ω2 + ω3 = 1 (27)

ω2 + ζ3ω3 =
1

2
(28)

ω2 + ζ2
3ω3 =

1

3
(29)

γ3,2ω3 =
1

6
(30)

If we now examine equations 20 and 21, we find that we can solve each for ω2 and set them equal, giving

1

2
− ζ3ω3 =

1

3
− ζ2

3ω3.

We can solve for ζ3, and using the quadratic equation gives us

ζ3 =
ω3 ±

√

ω2
3 − 2

3ω3

2ω3
.

For these to be real solutions, we know that ω2
3 ≥ 2

3ω3, so ω3 ≥ 2
3 . For simplicity, let ω3 = 2

3 . Putting this

back into the second system yeilds values of 1
2 and 1

4 for ζ3 and γ3,2 respectively. We can then substitute

these into the original system to find that the remaining parameters.

Parameter Value

α2 1

α3
1
2

γ2,1 1

γ3,1
1
4

γ3,2
1
4

ω1
1
6

ω2
1
6

ω3
2
3

Using these, we find that we have an overall 3rd degree Runge-Kutta formula of

yi+1 = yi +
1

6
k1 +

1

6
k2 +

2

3
k3,

11

where

k1 = f(xi, yi),

k2 = f(xi + h, yi + hk1),

k3 = f

(

xi +
1

2
h, yi +

1

4
hk1 +

1

4
hk2

)

.

Existence and Uniqueness

Based on the Existence and Uniqueness Theorem for differential equations [2], we know that each equation

has its own solution in the first quadrant. Because the system is made up of rational functions with strictly

positive coefficients, we know that they must be defined over the entire first quadrant, axes not included.

Because we start at time t = 0, the ordinate (y-axis) is included, and because the denominators of the

rational functions are modeled to always contain a constant term, it is never possible for the system to be

undefined. Therefore, we know that the system is not only continuous, but its partial derivative with respect

to each yi is also continuous over the entire first quadrant. Hence we have that a solution curve exists within

the first quadrant and that the solution is unique.

Natural Responses

If we examine the solution for yi assuming that all other variables are zero, the natural response of yi, then

we find that one of four things can happen.

1. The natural response of yi is a constant differential equation. The obvious solution to this is a linear

function with slope fi and y-intercept yi0 . This reponse occurs only for y7, as its degredation term is

dependent on both the levels of y7 and y8.

yi(t) = fit + yi0

2. The natural response of yi is a quadratic differential equation. The solution curve for this type of

differential equation is a hyperbolic tangent multiplied by a constant. This response only occurs for

12

y8, as its degredation term is dependent on the square of its own level.

yi(t) = tanh
(

t
√

eifi

)

√

fi

ei

3. The natural response of yi is for the level to drop to zero or for nothing to happen, given by a linear or

constant zero differential equation. These are cases where the formation terms are dependent on the

concentrations of other proteins, so none is made. If there is none already present, then none is made.

If there is some present, then it will be degraded.

yi(t) = 0 or yi(t) = y0e
−eit

4. The natural response of yi is given by an affine differential equation. The solution curves for these

proteins rises or falls exponentially to an equilibrium given by the ratio between their formation and

degredation rates.

yi(t) = −
yi0

ei

e
−eit +

fi

ei

Equilibrium Solutions

It has been shown in the Poincaré-Bendixson Theorem [4] that in a two-dimensional system, each solution

is going to fall into one of three classes.

(a) The solution is an equilibrium point.

(b) The solution collapses to or spirals out from an equilibrium point.

(c) The solution falls into a periodic orbit around an equilibrium point.

However, in any system with more than two dimensions, it has been proven that there is no similar theorem.

Hence, we must turn to algebraic or numerical techniques to determine equilibrium solutions for the system,

if any exist. Using Maple 9, we attempted to find an exact solution to the system, with the parameter

values set to those for which the model gives the expected qualitative results. However, after 12 days and 4

hours Maple was unable to find such a solution. Failing this, we tried the numerical algorithms of the GNU

Octave software package. Using this package, 100, 000 different initial values within the expected range of the

variables were determined, and the relative zeros for these starting values were numerically determined. As

13

these zeros were found, Octave screened them for strictly positive values. Over the entire range of 100, 000

different initial values, no feasible roots were found. This implies that the system is continuously changing,

and never reaches equilibrium, which is a biologically sound idea. If the cell ever reached equilibrium, it

would simply cease growing and changing. However, due to both external and internal influences, cells are

always growing and always changing.

Solution Curves and Biological Significance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

y1

t

(a) MDM2 (y1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200

y2

t

(b) p53 (y2)

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200

y6

t

(c) p21 (y6)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200

y1
2

t

(d) 14-3-3 (y12)

Figure 1: Cell Arrest proteins

The two primary groups of proteins responsible for the viability of any given cell are the protein involved

in the cell arrest pathway and the protein involved in the cell cycle engine. The idea behind the cell cycle

14

engine is to allow enough time for the DNA to completely replicate before the cell begins division. If this

does not happen, then at least one of the two daughter cells will inherit an incomplete copy of the DNA

and die. With this in mind, there are several things that can go wrong during the duplication of DNA.

The primary downfall is the constant bombardment of each cell by high-intensity radiation. Although this

radiation is for the most part minimal, it can still cause damage to the genomic structure which must be

fixed. Depending on the severity of the damage, the cell cycle may be temporarily arrested, or the cell may

simply kill itself.

The proteins featured in Figure 1 are the primary cell cycle arrest proteins. Their function is to recognize

damage to the genome and respond accordingly,temporarily halting the cell cycle so the damage can be

repaired. The solution for the most important protein in this pathway, p53 (y2), is shown as Figure 1(b).

p53 is the beginning of the entire pathway. As is shown in Figure 4(c), as the levels of p53 rise, it triggers an

increase in the levels of p21 (y6) and 14-3-3 (y12). As these increase, they slow down the production of cyclin

A-K1 (y9), the solution graph of which is shown in Figure 2(a), and MPF (y7), the solution graph of which

is shown in Figure 2(b). As the concentration of 14-3-3 increases, it prevents the activation of CDC25c (y10

inactive and y11 active) , as is shown in Figure 3(d). This indirectly slows down the positive feedback loop

to activate MPF, which is shown in Figure 3(c).

The main proteins in the cell cycle engine are feature in Figure 2. The central protein in this interaction,

and in the entire system is MPF. At concentrations of cyclin A-K1 lower than a threshold, the concentration

of MPF is at a minimum. However, once cyclin A-K1 crosses that threshold, it overcomes the damping effect

of 14-3-3 and activates CDC25c. This in turn causes pMPF to become MPF, which activates more CDC25c,

which creates a positive feedback loop, as shown in Figure 3(c). This feedback loop and rapid activation can

be seen as the sharp peaks in the solution graphs of MPF and CDC25c (Figures 2(b) and 3(b) respectively).

Part of what allows this to happen is the buildup of an inventory of p-MPF (phosphorylated and inactive

MPF, y8). As the feedback loop occurs, the concentration of MPF must quickly spike—much more quickly

than new MPF can be produced. At the same time however, MPF is responsible for resetting the model

to the beginning of the next cell cycle. So, as MPF rises, it causes an increase in the degredation rates of

cyclin A-K1 and itself, forcing them back to the starting levels. Withouth the cyclin A and the MPF to keep

it activated, the CDC25c is rapidly inactivated, as can be seen in the solution curve of the inactive form

(Figure 3(a)).

Despite the efforts to repair genomic damage, it is not uncommon for cells to suffer enormous amounts

of damage and kill themselves. Although it is not yet clear exactly what mechanism starts this suicidal

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200

y9

t

(a) Cyclin A-K1 (y9)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200

y7

t

(b) MPF (y7)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200

y8

t

(c) pMPF (y8)

0

1

2

3

4

1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y7

Y8

Y
9

(d) Total interaction

Figure 2: Cell cycle Engine

pathway, several key players have been located, and included in this model. The first is a special form of

p53, known as p53+ (y3). It is believed that on severe radiation-based genomic damage, p53 is turned into

p53+, which then goes on to activate the cell death pathway. Also included in our model is the evidence that

MPF may have a role in the conversion of p53 to p53+. Due to the way this is modeled, a sharp increase

in the level of p53+ can be seen at the end of each cell cycle, as is evidenced in Figure 4(a). In the model,

the only role given to p53+ is to activate a group of proteins known as the caspases (y5). The caspases

themselves do all of the “dirty work,” breaking down the machinery inside the cell, and eventually breaking

open the protective membrane. Due to the increase in p53+, we noticed that the concentration of caspases

16

also increased at the time of cell division, although not by a large enough amount to destroy the cell on their

own. This increase can be seen in Figure 4(b).

The above facts were taken from [3] and references therein.

Conclusion

From the data discussed here, the model presented by DeHoff and Obeyesekere [3] is mathematically and

biologically sound. The most interesting aspect of this model mathematically is the distinct lack of equilib-

rium solutions. However, this is is biologically sound concept, as it does not make sense for a cell ever to be

at complete equilibrium. This is currently a highly simplified model, and could be expanded in the future to

include more of the cell cycle. Additionally, more simulations should be run to determine bifurcation points

for each of the parameters as well as a characterization of the effects introducing damage would have on the

system. This characterization would compromise studying the effects different values for α and β in equation

13 have on the qualitative results of the model.

Acknowledgements

I would like to thank Dr. Obeyesekere for her mentorship during the formulation and initial testing of this

model. Additionally, I would like to thank Dr. Holder, Dr. Ponomarenko, and Dr. Elyadi for being members

of this committee.

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

y1
0

t

(a) CDC25c - inactive (y10)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200
y1

1

t

(b) CDC25c - active (y11)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

y10
y7

y1
1

(c) MPF, CDC25c active and inactive

0.8

1

1.2

1.4

1.6

00.10.20.30.40.50.60.70.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Y11
Y10

Y
12

(d) 14-3-3 and CDC25c active and inactive

Figure 3: MPF positive feedback loop

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

y3

t

(a) p53+ (y3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

y5

t

(b) Caspases (y5)

0

0.5

1

1.5

1.5
1.6

1.7
1.8

1.9
2

2.1
2.2

2.3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Y2
Y6

Y
12

(c) p53, p21, 14-3-3

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

 0 0.2 0.4 0.6 0.8 1 1.2

y1

y2

(d) MDM2 and p53

Figure 4: Apoptotic proteins and other interactions

19

Bibliography

[1] Ivo Babuska, Milan Práger, and Emil Vitásek. Numerical Processes in Differential Equations. Interscience

Publishers, 1966.

[2] Paul Blanchard, Robert L. Devaney, and Glen R. Hall. Differential Equations, Second Edition.

Brooks/Cole, 2002.

[3] Kevin DeHoff and Mandri Obeyesekere. p53 dependent apoptosis model. Unknown, Unpublished.

[4] Po-Fang Hsieh and Yatsutaka Sibuya. Basic Theory of Ordinary Differential Equations. Springer-Verlag,

1999.

[5] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge University

Press, 1996.

20

