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Abstract

Over the past decade the functional imaging community has produced a wealth
of experimental data in an ongoing attempt to understand the complex relationship
between function and anatomy in the human brain. While methods for doing so were
only beginning to emerge in the early 90s, they have been under constant refinement
and improvement since then, such that today functional imaging studies and their
results are widely accepted. With the acquisition of so much data, however, the need
has arisen to be able to legitimately compare results across numerous studies. Inherent
dissimilarities between any two experimental designs as well as the qualitative nature
of most of today’s comparison schemes have made this a difficult task. Here we discuss
the two most widely employed imaging modalities, functional magnetic resonance
imaging (fMRI) and positron emission tomography (PET), as well as a new approach
for conducting comparison studies, or meta-analyses, know as the activation likelihood
estimate (ALE) meta-analysis. A two-dimensional analogue to the ALE analysis is
constructed to illustrate certain flaws inherent in the model, as well as to propose a
possible means for correcting them.

1 Functional Magnetic Resonance Imaging (fMRI)

Magnetic resonance techniques that allow for the creation of anatomical, or mor-
phological, images have been under development since 1973. MRI is a non-invasive
procedure that can produce images with a spatial resolution of less than one mil-
limeter with exquisite soft-tissue discrimination. It is for these reasons that MRI has
become the modality of choice for radiologists in the investigations of nearly all brain
abnormalities and injuries. However, at one point MR physicists realized that if the
technology could be made sensitive to changes in blood flow, it might be possible
to utilize magnetic resonance principles when mapping human brain function (1).
Ogawa (2) and Turner (3) independently showed in the early 1990’s that MR images
could be made sensitive to the level of oxygenation in cerebral blood. Sensitivity
to cerebral blood oxygenation level is an indirect measure of localized brain activ-
ity. This finding led to the development of the field of functional magnetic resonance
imaging (fMRI) research.



Although the relationships between neural activity, cellular metabolism, and changes
in blood flow are still not fully understood, there is a basic chain of events that is
known to take place during neuronal activation (1):

1. A need arises for the brain to perform a task.

2. Neuronal activity increases in certain areas of brain gray matter.
3. Metabolic activity is increased in these areas.

4. The rates of oxygen usage in these areas are increased.

5. Blood flow increases in the arterioles and capillaries of the electrically active
tissue.

6. Capillaries experiencing increased blood flow dilate by 5-10%.
7. Oxygen supply to active tissue begins to exceed demand.
8. Oxygen in the venous pool decreases.

9. If neuronal activity persists, vascular and metabolic changes reach equilibrium
in 1-3 minutes.

10. When neuronal activity returns to baseline, blood flow returns to baseline.

MR images are affected by these vascular changes. Hemoglobin, the pigment re-
sponsible for transporting oxygen from the lungs to the tissues, has magnetic proper-
ties that depend on its state of oxygenation, which is regulated by the partial pressure
of oxygen in the blood. Oxygenated hemoglobin is a diamagnetic molecule like water
and cellular tissue, but deoxyhemoglobin is more paramagnetic than tissue and pro-
duces a stronger MR effect. A susceptibility difference is caused between the blood
vessel wall and its surrounding tissue due to the presence of deoxyhemoglobin. If an
appropriate imaging sequence is selected that takes advantage of these differences in
magnetic properties, then the changes in oxygen levels may be large enough to affect
MR image intensity, and deoxyhemoglobin functions as an endogenous contrast agent
(1).

The goal of fMRI is to detect the MR signal change that occurs during neuronal
activity. This is referred to as the blood oxygen level-dependent (BOLD) contrast.
In an fMRI experiment, the brain is repeatedly imaged while the subject is presented
with some stimulus or required to perform some task. This experiment is character-
ized by the scanning sequence, the design paradigm of the stimulus, and the method
of analysis of the data.
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Figure 1: A sample of nine voxels time courses collected during an fMRI scan.

To study changes in oxygen levels in the blood due to some task activation, typ-
ically 150 whole brain images are acquired in one scan. For a repetition time of two
seconds, this would require a scan length of five minutes. According to the scan pro-
tocol, 64 by 64 voxels are imaged in one slice. Each voxel measures 3.75 millimeters
by 3.75 millimeters by 7 millimeters. Thus if 150 whole brain images are collected,
then each voxel will possess a time series of 150 points that consists of the informa-
tion of the changes that occurred at that particular voxel during the scan time. After
masking out the voxels that are outside the brain, there are approximately 15,000
voxels that compose an fMRI data set, each with a time series of 150 points.

The next stage in an fMRI experiment is to analyze the data to determine the
areas that were active during the task performed. In the sample voxel time courses
in Figure 1, a simple finger tapping task was performed. This is the most common
paradigm design seen in fMRI, called the block design, in which regular epochs of
stimulus and rest are produced. It is important to choose the correct stimulus to
obtain activation in the areas desired. Some areas are more easily activated than oth-
ers. For example, the motor cortex is easily activated, but areas involved in memory
are a little more difficult to elicit. In the task in this example, self-paced finger-to-
thumb tapping is executed with alternating hands by the patient in a block format
as shown in Figure 2. Verbal cues are given at the start of each block consisting of
the words “Left”, ”Right” or “Rest”. Each block lasts twenty seconds, and 134 whole
brain images are acquired during the scan. A good experiment requires complete



patient understanding, no movement, and concentration; however, compliance with
task instructions is often difficult to ascertain.
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Figure 2: Timing diagram of the finger tapping task.

In the early days of fMRI, MR scientists created maps of brain activity by sub-
tracting baseline (resting) images from active (tapping) images. However, small signal
variations in either the baseline or active images introduced a great amount of noise in
the resultant difference image. In addition, there was no way to separate background
noise from the true activation signal in this technique. Later, statistical methods
were introduced to determine which voxels are significantly active and subsequently
create a functional map that displays the results of these analyses (4, 5). Much of the
current research in fMRI involves developing and improving these statistical methods
to most accurately detect the areas of activation in an fMRI data set.

When determining which voxels are active in an fMRI data set, the first step is
to determine the stimulus function of the task performed. In the finger tapping task,
there is a stimulus function for the right hand and another function for the left hand.
This function is shown in Figure 3 for the right hand in the finger tapping task.
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Figure 3: Stimulus function for the right hand in the finger tapping task.



This function is composed of zeros for resting data points and ones for active
data points. The hemodynamic response to neural activity is somewhat slower than
electrical signaling, and has been modeled by physiological experiments on the brain
(4). The hemodynamic response function (HRF) is shown in Figure 4.
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Figure 4: The hemodynamic response function
(HRF).
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Figure 5: Reference function for the right hand in
the finger tapping task.

To obtain a model of the idealized hemodynamic response of the brain to a specific
task performed, the stimulus function of the task is convolved with the hemodynamic



Figure 6: Axial Figure 7: Coronal  Figure 8: Sagittal

response function. The resulting function is referred to as the reference function of
the task performed (Figure 5).

It is then necessary to quantitatively compare the reference function with all other
voxel time series in the brain. To achieve this, a test statistic, such as the t-statistic
or the correlation coefficient, is computed at each voxel that represents how closely
the particular voxel time course agrees with the idealized response of the reference
function (4, 5). This statistic is assigned a color intensity value according to the
strength of the statistic, to create a functional map, as shown in Figures 6 through 9.

Once the values of the test statistic have been determined for all voxels according
to the chosen statistical test, it is necessary to determine the level of significance of
this function map. Thus, after applying a threshold such that only the voxels that are
significantly active are visible, the functional maps are overlaid onto high-resolution
anatomical images (4). The anatomical images are acquired during the same scan
session as the functional scan. Figure 10 displays the results of the activation of the
right hand during the finger tapping task (p<0.05). In order to implement voxel-based
analysis of imaging data, analyzed data from different subjects must originate from
identical locations. Spatial transformations are therefore applied that “warp” the
images such that they conform to some standard brain. Reporting areas of activation
as coordinates in reference to this standard space not only provides a conventional
means of reporting results, but also greatly facilitates inter-subject as well as inter-
study comparison of results (6).

Development of fMRI as a method of localizing brain activity is important for
many reasons. This modality offers the neuroscience community a non-invasive
method for understanding the functional organization of the normal brain and allows
us to learn more about neuropathology. In addition, fMRI is useful in assessing the
effects of brain injury and helps aid in pre-surgical mapping in brain tumor patients.



Figure 9: Color intensity scale for statistical maps.

In pre-surgical mapping studies, a tumor might displace the functional tissue. The
goal is then to reduce the removal of healthy tissue in order to avoid post-operative
disorder, and also to maximize the resection of abnormal growth. Further research
is necessary to determine the limits of the power of fMRI as a tool in functional
neuroimaging.

2 Positron Emission Tomography (PET)

In a typical PET scanning experiment, a radioactive tracer, usually O radiolabeled
water is administered intravenously or by C**Q, inhalation. Emitted positrons collide
with electrons, resulting in the production of a pair of 511Kev gamma rays traveling
in opposite directions. The gamma rays have the same energy and arrive at oppositely
placed detectors simultaneously. After recording the simultaneous arrival of gamma
rays, and correcting for scattered radiation and attenuation, one is left with an image
of a cross section of the distribution of radioactivity in the brain (7). By taking a
series of images over time, one acquires a time series of activity in all parts of the
brain, which can be compared to models of the tracer kinetics to create functional
images of regional cerebral blood flow. As in the case of fMRI, thresholds are applied
and the results overlaid onto a high-resolution anatomical scan of the subject. Several



Figure 10: Functional maps overlaid onto anatomical images for the right hand in the
finger tapping task for axial (a) coronal (b), and sagittal (c) slices

examples of these resultant images are shown below in Figure 11. These particular
images were acquired from stuttering subjects during a speech production task. As is
the case with fMRI, PET studies traditionally report areas of activation in the form
of x-y-z coordinates referenced to a standard brain space.
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Figure 11: Functional maps overlaid onto anatomical images for a speech production
task in stuttering subjects.



3 Meta-Analyses and the ALE Method

Meta-analysis is most generally defined as the post hoc combination of results from in-
dependently performed studies to better estimate a parameter of interest (8). Within
the functional neuroimaging domain, the widely accepted method of reporting results
in coordinate form has made functional imaging studies particularly well-suited for
this type of analysis. Meta-analyses are being performed in hopes of attaining a bet-
ter understanding of the spatial distribution of brain activations corresponding to the
performance of particular tasks. While various methods exist for achieving this end,
the ultimate success of any meta-analytic technique lies in its ability to objectively
correlate results from any number of similar, independent studies, to reveal those
regions of consistent activation. The ability to meaningfully combine data across
numerous studies is essential for the testing and reformulation of new hypotheses
regarding the functional anatomy of the brain.

The most common and conceptually straightforward method for combining data
across studies has been to compile relevant coordinates reported in similar experi-
ments onto a single table or map. The figure below represents such a compilation.
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Figure 12: Image displaying a compilation of data reported across 6 independent
functional imaging studies. The coordinates plotted are the results of Braille reading
> control experiments in blind subjects.

While there does appear to be a certain degree of overlap among the results re-



ported in the six studies used to generate the image, the apparent level of concordance
is largely subjective. While it may provide qualitative insight into the neural pro-
cesses at hand, visual inspection of a graph such as this is in no way an appropriate
means for rigorously determining the validity of any hypothesis.

An effective method for quantitatively determining significant consistency among
various studies is to represent the location of an activation focus as a probability
distribution centered about the reported coordinate, rather than as a strictly defined
point (9). Conceptually, this is a logical representation when one considers the vari-
ability in the localization of activation foci due to differences in image acquisition
parameters, analysis methods, and inter-subject anatomy that are inherent in the
comparison of any functional imaging studies. This particular technique for conduct-
ing meta-analyses was developed and first performed by Turkeltaub et al. in 2002
and is known as the activation likelihood estimate, or ALE, method (9).

The end result of an ALE meta-analysis is a statistical map in which each voxel is
indexed by a value, referred to as the ALE score, equal to the probability that at least
one activation focus from the reported data lies within that voxel. The probability
that an individual focus will lie within a particular voxel is determined using the
3-dimensional Gaussian distribution function:

)
e d/20'2

P= oo

where d corresponds to the distance between the center of the voxel and the activation
focus, and o is the standard deviation of the distribution. Since the value pactually
represents the probability that the individual focus lies at the center of a given voxel,
it is then multiplied by a constant factor to estimate the probability that the focus
lies within a voxel of particular volume. For each individual voxel, the union of these
values for every reported focus is the ALE value for that voxel.

To determine a significance threshold for the ALE values, the same analysis is
performed on n permutations of x randomly chosen coordinates, where n is typically
~1000 and z is equal to the number of reported foci. The result is a single histogram
representing the average number of voxels per permutation corresponding to each
ALE value calculated in the n permutations. The probability of obtaining ALE
values greater than a given threshold under the random distribution was calculated
as the fraction of the total voxels in the noise histogram greater than that threshold.
Thus the ALE value corresponding to a given threshold probability « for the random
distribution was that particular value with 100 * a% of the area under the noise
histogram to its right (9). ALE values in the statistical map lower than the threshold
are disregarded as statistically insignificant. The resultant image is a high-resolution
statistical map, quantitatively revealing those regions that have been consistently
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activated across multiple studies and similar experiments. Below are examples of
ALE maps generated for a Stroop task meta-analysis. Nineteen individual studies
contributed to a total of 205 foci.

Figure 13: ALE images obtained from a Stroop-task meta-analysis. In this task,
subjects view words of color names prsented in vrious ink colors and are instructed
to name the ink color in which a color name is presented.

Despite the apparent effectiveness of the ALE meta-analysis in extracting signifi-
cant overlap across similar studies, a number of flaws in the technique appear to be
present. Of particular interest is the following: in a validation study performed by
Turkeltaub et al. in 2002, the results of the ALE meta-analysis performed for a single
word reading task were compared to those obtained from a single fMRI study of the
same task. One consistent difference between the ALE and the fMRI statistical maps
is the tendency for maxima to be more centrally located in the meta-analysis (9).
This phenomenon is illustrated in the figure 14.

A possible explanation for the effect suggests that PET tends to detect activity
at the bottom or base of activated regions, thus resulting in a bias towards centrality
for reported maxima. This same tendency has not been proven to exist for the fMRI
signal. Thus it might seem feasible that the effect should remain, perhaps even become
more pronounced, in an ALE analysis including results from multiple PET studies.

A second possibility suggests that the effect is purely mathematical, resulting from
the particular nature of the ALE method. Consider, for example, a voxel located deep
within the brain volume. Clearly it is surrounded by a large number of candidate
voxels that could house published foci, which would in turn contribute large values to
its ALE score. A voxel located near the brain surface, on the other hand, is surrounded
by relatively fewer candidates and thus seems more likely to end up with the lower
ALE score between the two chosen voxels. Thus one might be left to conclude that
the probability of achieving high ALE scores increases with movement towards the
center of the brain volume (9), resulting in an inward shift of the maxima.
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Figure 14: Slices illustrating significant activation in both ALE and fMRI statistical
maps. Maxima in the ALE map appear shifted inward relative to those in the fMRI

As the ALE meta-analysis is still a fairly recently developed technique, the contri-
butions by each of the above possible explanations to the inward-drift effect have not
yet been evaluated. In this study further investigation was conducted employing both

12



a 2D brain model as well as a 2D ALE analysis analogue in an attempt to identify
and perhaps correct the most significant contributing factor.

2-Dimensional Analysis

To begin, a (53x37) matrix was constructed in MATLAB representing the below
image, which served as a 2D brain model.
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Figure 15: (53x37) zeros and ones matrix constructed in MATLAB to serve as a 2D
model of the brain.

Pixels within the brain area were represented as ones in the image matrix and
those not were represented as 0s. A function*! was written to calculate and store ALE

1* A separate command was employed for the random and simulated activity cases. They are
displayed in Appendices A & B respectively.
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scores for each pixel in the brain area using the 2D Gaussian distribution function:
o /20°

o

To simulate reported foci representing actual activation, 22 coordinates were selected
such that their distribution exhibited two definite clusters as well as scatter coordi-
nates, typically present when data from multiple studies are combined. The number
22 was chosen such that the ratio of reported foci/total pixels (voxels in the 3D case)
was approximately the same for the 2D and 3D cases. A 2D ALE statistical map was
then generated with ¢ = 10. The simulated foci as well as the corresponding ALE
map are displayed in Figure 16.
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Figure 16: (Left) 2D braind model plotted with 22 simulated activation foci. (Right)
ALE statistical map generated for foci shown on the left.

To determine a significance threshold, the process was repeated for 1000 permu-
tations of 22 random coordinates distributed uniformly throughout the brain area.
The average ALE score over the 1000 permutations was calculated for each pixel and
stored in a new matrix. The corresponding image is shown in Figure 17.

A histogram was then generated displaying the number of pixels achieving a given
ALE score for all scores achieved in the random permutations. Based on a chosen
a = .001, an ALE threshold of .0107 was calculated for the activity-simulated sta-
tistical map. It is worthy to note here that the highest score achieved over the 1000
permutations for any pixel within the brain area was .0113, compared to .0151 for
the activity map. The thresholded image displays both anterior and posterior peaks
and is shown in Figure 18.
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Figure 17: ALE statistical map representing the average ALE score achieved at each
pixel over 1000 permutations of 22 random foci each.

Figure 18: Thresholded counterpart to Figure 15. For a chosen o = .001 the calcu-
lated threshold was t = .0107.

To understand the purely mathematical contribution to the inward-drift effect, we
again turn our attention to the randomly generated statistical map. Over the 1000
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permutations, the highest average ALE scores were achieved by pixels in the center
of the image. The ALE score distribution is symmetric about the image origin, with
scores increasing smoothly with movement toward the center. Based on the random
distribution it is not unreasonable to suppose that this bias toward centrality led to
an inward-drift effect in the activity map. As a means for investigating this claim, we
wish to calculate for every pixel an adjusted ALE score, one that effectively flattens
the random distribution, such that the probability for achieving any given score is the
same for any pair of pixels within the brain area. Presumably, with the bias toward
centrality effectively removed, the distribution of this adjusted score in the activity
map will exhibit the same maxima, displaced outwardly from the image center.

The adjusted ALE score™ for each (i,j) pixel was calculated using the following
formula: .

adjustedALE(i, j) = m -p(3, 5),

where p is the 2D Gaussian distribution function and AV G(4, j) is the average ALE
score obtained by the particular (i,j) pixel over the initial 1000 random permutations.
This time employing the adjusted method, 1000 permutations were again performed
for sets of 22 random foci and the average scores for each pixel stored in a new matrix.
The resultant distribution is shown in Figure 19.

Clearly, this adjusted distribution displays the desired result, namely the removal
of any bias whatsoever based on location within the brain area.

Lastly, the adjusted analysis is performed on the activity data set. The statistical
map was thresholded as before, resulting in the image shown in Figure 20.

4 Discussion

Qualitative inspection of Figures 17 & 19 certainly indicates an outward shift in the
location of maxima in the adjusted statistical map relative to the unadjusted result.
Inspection of the max values of both image matrices verifies that a shift has occurred
in either of the two peaks. In (i,j) notation:

e Anterior peak: shift from approximately (46,20) to approximately (51,21)
e Posterior peak: shift from approximately (10,24) to approximately (5,26).

Thus, based on the results of our 2D model we are left to conclude that there is
a definite bias toward centrality present in the original ALE analysis, leading to an
inward shift of maxima in the ALE statistical map.

2+ See Appendices A & B for a word about the random and group commands in MATLAB.
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Figure 19: Adjusted ALE statistical map displaying the average score achieved at
each pixel over 1000 random permutations of 22 foci each. The adjusted calculations
have removed any bias in ALE score based on location within the brain area.

A preliminary model solution is to adjust the ALE calculation such that the
adjusted ALE score at any pixel for a given focus is the 2D Gaussian probability
divided by the average ALE score obtained at that pixel over 1000 permutations of
x random foci; x corresponding to the number of reported coordinates. This is not
the whole story, however, as visual inspection of Figure 18 prompts one important
question: why does the thresholded adjusted result occupy so much more area than
that which was obtained by the original ALE analysis? One might suggest that the
threshold value for the adjusted map should be scaled so that it ends up at a higher
value, resulting in peaks of approximately the same area for both maps. There is no
basis for doing so, however, considering that the process by which the threshold values
are calculated ensures that the value is tailored to the analysis method by way of the
random permutations. That is to say, if the threshold needed to be higher, the random
permutations would have said so. Thus the problem becomes that the adjusted ALE
scores are too high. One can only be certain that the coefficient multiplying p in
the adjusted analysis is proportional to the reciprocal of the random average at each
pixel. A possible suggestion worth investigating is whether or not the coefficient could
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Figure 20: Thresholded statistical map for the adjusted ALE calculations applied
to the simulated activity foci. The threshold value was approximately ¢ ~ 0.67 for
a = .001.

also be proportional to some difference between the adjusted and original scores. Of
course, if this were the case, the nature of the general shift between the statistical
maps would have to be considered. In any case, a positive characteristic of the nature
of the solution is that a 3D analogue would be simple to construct; multiplying by
some constant in three dimensions is just as straightforward as it is in two.

An additional topic requiring further attention is the value of ¢. In this study, o =
10 was calculated as a rough approximation to range divided by 4, where the range
is the max minus the smallest value the distance d can take on in the p calculation.
While integer changes in the value exhibit very pronounced consequences right away,
the effects of subtly varying ¢ in the decimal range should be further investigated.

Finally, what of the PET effect? While there is no way, based on this study, to
either validate or discount the notion of the modality’s contribution to the inward
drift effect, we can say with certainty that the ALE model itself contributes a very
large bias toward centrality, resulting in a noticeable inward shift of ALE maxima.
A possible means for determining at least a qualitative feel for the PET contribution
would be to produce an adjusted ALE map for the ALE data represented in Figure
12, where the adjusted calculation multiplies p at each voxel by the reciprocal of
the average ALE score obtained at that voxel over the random permutations used to
calculate the threshold. A comparison of the statistical maps obtained from the ALE,
adjusted ALE, and fMRI analyses could then be inspected to determine what fraction
of the shift exhibited in Figure 12 is accounted for by just the ALE procedure.
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5 Conclusion

In summary, a 2D model was constructed to illustrate a flaw in the ALE meta-analysis
method, namely, a bias towards centrality in the calculation of maxima, resulting in
an inward shift of those maxima in the ALE statistical map. Results of this study
indicate that there is a definite bias of purely mathematical origin present, resulting
in an inward shift. The exact degree to which the actual effect can be attributed to
a flaw in the model is yet to be determined. A solution to correcting the problem,
once fully realized, will likely lend itself to easy implementation to both the 2D and
3D cases. At this point it seems probable that the solution will involve adjusting the
ALE score at each voxel by some factor proportional to the reciprocal of the average
ALE value attained at that voxel over some number of random permutations. The
role o plays in effecting the final ALE statistical map, as well as the possible PET
contribution to the inward drift are topics requiring further research.
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Appendix A

Below is the MATLAB command used to perform the ALE analysis on random
sets of foci:

% Richard Castillo

function [ALEmap] = ALE3(03,sigma,n) % (image, stdeviation, # of random
coords)

ProbDenominator = (2*pi)*((sigma)“2); % Denominator in probability calcula-
tion

ExpDenominator = 2*((sigma) “2); % Denominator in probability exponential

ALEmap = zeros(53,37); % Bin for storing union of probabilities

Rx = -17 4+ (17 + 17)*rand(n,1); % Random #s from which random x-coord is
chosen

Ry = -24 + (24 + 24)*rand(n,1); % Random #s from which random y-coord is
chosen

%%%% Begin with random coordinate (a,b), where a=Rx(k,1) and b=Ry(k,1),

%%%% and calculate a p value for each individual pixel (i,j) in the image.

for k = 1:n

rj = round(Rx(k,1));

ri = round(Ry(k,1));

index = 03(ri+27,rj+20);

if (index==1) % if the random coordinate (a,b) lies within the oval image,

% continue with p calculation

for i = 3:51

for j = 3:36

% First calculate distance between current oval element and

% current random coordinate. The geometric image origin is at

% j=19.5, i=26.5

d=sqrt((j-19.5-j)* (j-19.5-1] )+ (i-26.5-1i)* (i-26.5-1i));

% Now compute the probability value and store in ALEmap

p=03(i,j)*exp((-1)*(d"2)/ExpDenominator)/ProbDenominator;

ALEmap(i,j)=ALEmap(i,j)+p*(1-ALEmap(i,j));

end

end

else % If the current random coordinate lies outside the oval image,

% set the probability equal to 0.

p=0;

end

end

The adjusted random code mimics this with the exception that:

adjustedp = Rec(i,j)*p;

20



ALEmap(i,j)=ALEmap(i,j)+adjustedp™(1-ALEmap(i,j));
replaces the bold type above.
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Appendix B

Below is the MATLAB command used to perform the ALE analysis on activity-
simulating sets of foci:

% Richard Castillo

function [ALEmap] = ALE3Group(03,sigma,n,GroupX,GroupY) % (image, stde-
viation, # of coords,x coord,y coord)

ProbDenominator = (2*pi)*((sigma)“2); % Denominator in probability calcula-
tion

ExpDenominator = 2*((sigma)”2) % Denominator in probability exponential

ALEmap = zeros(53,37); % Bin for storing union of probabilities

%%%% Begin with coordinate (a,b), where a=Rx(k,1) and b=Ry(k,1),

%%%% and calculate a p value for each individual pixel (i,j) in the image.

for k = 1:n

rj = (GroupX(k,1));

ri = (GroupY(k,1));

index = 03(ri+27,rj+20);

if (index==1) % if the coordinate (a,b) lies within the oval image,

% continue with p calculation

fori = 3:51

for j = 3:36

% First calculate distance between current oval element and

% current coordinate. The geometric image origin is at

% j=19.5, i=26.5

d=sqrt((j-19.5-rj)*(j-19.5-rj)+(i-26.5-r1) *(i-26.5-r1) );

% Now compute the probability value and store in ALEmap

p=03(i,j)*exp((-1)*(d"2)/ExpDenominator)/ProbDenominator;

ALEmap(i,j)=ALEmap(i,j)+p*(1-ALEmap(i,j));

end

end

else % If the current coordinate lies outside the oval image,

% set the probability equal to 0.

p=0;

end

end

The adjusted group code mimics this with the exception that:

adjustedp = Rec(i,j)*p;

ALEmap(i,j)=ALEmap(i,j)+adjustedp*(1-ALEmap(i,j));

replaces the bold type above.
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