
The Minimum Letter Flip Problem for Haplotyping a Single

Individual

John Louie, Lena Sherbakov

Department of Mathematics

Trinity University

San Antonio, TX 78212.

July 30, 2004

Abstract

When haplotyping a single individual, DNA is replicated, broken into smaller frag-

ments, and then sequenced by a machine. The minimum letter flip problem is one

approach to correcting errors that arise in shotgun sequencing. We refer to the min-

imum letter flip problem as stated in other texts as CGMLF . CGMLF changes a

minimal number of single nucleotide polymorphisms (SNPs) to create a feasible SNP

matrix. Since finding partitions that have this property is especially difficult, we re-

late CGMLF to several 2-median problem formulations. Our major result is that the

CGMLF is equivalent to a non-polynomial 2-median problem formulation. We de-

velop algorithms used to solve the 2-median problems and discuss their complexity. In

conclusion, we develop inequality relations for our problem formulations based on min-

imum number of flips and prove that CGMLF is bounded from above in polynomial

time.

1

2

1 Introduction

With numerous opportunities arising in the wake of the human genome project, the ability

to accurately reconstruct an individual DNA sequence is becoming increasingly important.

The benefits of this extend beyond forensic applications into drug design and many other

medical and related fields. In this paper, we investigate ways to correct errors that natu-

rally occur during DNA sequencing.

When a DNA strand is sequenced, a string of A’s, T’s, G’s, and C’s is generated. The

letter representations from the sequencer coincide with the nucleotides Adenine, Thymine,

Guanine, and Cytosine that form the DNA molecule. A sequencer is not capable of han-

dling an entire strand of DNA, and therefore, a process known as shotgun sequencing is

used. The long DNA strand is replicated several times and these copies are divided into

random fragments of about 1,000 to 30,000 individual nucleotides [3]. The sequencing

fragments are then aligned to reconstruct the original genomic sequence.

Humans are diploid organisms with pairs of chromosomes: one paternal and one ma-

ternal. Aligning the DNA fragments from the sequencer is difficult since most of the

fragments from both donations are nearly identical. Geneticists consider a Single Nu-

cleotide Polymorphism, or SNP, to make distinctions between the two parental strands.

SNPs (pronounced “snips”) are single nucleotide differences where we observe a statisti-

cally increased level of variability [3]. A SNP can be either homozygous (same on both

chromosomes) or heterozygous (different nucleotides) in a diploid organism.

1.1 Haplotyping a Single Individual

A haplotype is a set of polymorphisms in a region that tend to be inherited together be-

cause of their proximity on the genome. When haplotyping an individual, we are trying to

obtain a coherent pair of parental SNP haplotypes. This process is complicated by errors

that arise as misread SNPs or skipped data, as well as from another organism inadver-

tently contaminating multiple fragments [3]. Several methods to correct these errors are

suggested, ranging from the minimum fragment removal (MFR), minimum SNP removal

(MSR), and the problem we investigate, the minimum letter flip (MLF) problem citeJ.

A standard way to organize the data is to create a SNP matrix, where each row denotes

a fragment and each column denotes a SNP location. Since diploid organisms can only

have two alleles at each SNP, we say that a SNP is either an A or B. A SNP may also be

labeled as a − in the instances where the sequencer could not call a position with enough

3

SNP

1 2 3 4

1 A - - B

Fragments 2 B A B -

3 - A A -

4 B B A -

5 A A - A

6 - - B A

Table 1: SNP Matrix

certainty. A m× n SNP matrix is defined over the set of fragments {1, ..., m} and the set

of SNPs {1, ..., n}. An example of a SNP matrix is found in Table 1.

A fragment hi is in conflict with hj if at any SNP location p, hi
p and hj

p differ, with the

case of a − being handled differently depending on the problem. The MFR determines

the minimum number of fragments to remove in order to create a resulting SNP matrix

that is feasible, meaning that the fragments can be divided into two disjoint sets where

the fragments within each set are conflict free. To illustrate the definition of feasibility,

construct a conflict graph from the fragments in Table 1. See Figure 1.

Figure 1(a) shows the conflict graph of Table 1. An edge between vertices means that

their is a conflict between the two fragments. To make this graph feasible, the MFR

problem removes nodes from this graph until the resulting subgraph is bipartite. The

partitioning of the SNP matrix in Table 1 is shown in Figure 1(b). In this case, removing

fragment 1 and 4 creates a bipartite graph, with the first collection of fragments containing

fragments 3 and 5 and the second collection consisting of fragments 2 and 6 (Figure 1(c)).

The two parental chromosomes and their copies are represented by the two disjoint sets.

The MFR approach is commonly used in situations where a contaminant may be present

and entire fragments need to be removed to correct the data.

The MSR problem removes the minimum number of SNPs to create a feasible matrix.

Instead of removing rows of the SNP matrix, the MSR problem removes columns from

the original matrix. This would be the process to use when only eliminating sequencing

errors is appropriate. Using the SNP matrix from Table 1, removing columns 1 and 2, for

example, would create a feasible solution.

The problem we investigate is the MLF problem. Given a SNP matrix, we want to flip

4

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

	 	
	 	
	 	

� �
� �
� �

1

2

4

3

5

Remove

6
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

4

3

21

6

5
2

6

3

5

a) Conflict Graph c) Bipartite Graphb) Partitioning

Figure 1: Conflict and Bipartite Graphs

(change) the minimum number of letters to create a resulting feasible matrix. To better

understand the algorithms discussed in this paper, an understanding of Big-O notation is

essential. We say that a function f(n) is O(g(n)) if there exists constants c and k such

that for all n > k, f(n) ≤ c(g(n)). For example, consider the case where f(n) = 2n and

g(n) = n. We would say f(n) is O(g(n)) because we can let c = 3 and k = 0, since for

all n < 0, 2n is ≤ 3(g(n)) or 3n. Big-O can compare two polynomial functions by their

highest-order term, since all other terms of either function can be disregarded due to the

constant c term. In this paper, Big-O notation is used to describe the number of iterations

an algorithm requires to generate a solution.

The following section details each of the different problem formulations we use to

approach the MLF problem. We explain how they relate and how each provides insight into

our goal of flipping the minimal number of letters to create a feasible solution. Subsequent

sections discuss algorithms used to solve our problem formulations, big-O results, and

relations between different problem statements based on minimum number of flips. We

conclude the paper by stating a few open problems and areas of future work.

2 Notation and Problem Statements

The minimum letter flip problem is defined to be the smallest number of flips necessary to

create a resulting feasible matrix. Since a feasible matrix implies the creation of a conflict

graph, we refer to this original problem statement as the CGMLF . The CG stands for

conflict graph, and we say that the CG(H) is the conflict graph of the elements in a set

5

H. We formally define the CGMLF as follows:

Definition 2.1. The CGMLF problem is a relabelling problem that transforms H → Ĥ 3
CG(Ĥ) is bipartite and z(H, Ĥ) is as small as possible.

A relabelling of an hi ∈ H to an ĥi is used when a flip may or may not have changed

the representation of a fragment hi. The z(H, Ĥ) in the definition is the number of total

flips required to create the feasible partition set Ĥ from the set H. Since the CGMLF

is a partioning problem, an easier problem to approach is the 2-median problem, which

chooses medians before creating partitions. We discuss the 2-median approaches to this

problem next.

2.1 P-median Problem

We address the CGMLF problem by relating it to the well-known p-median problem.

The p-median problem is stated as follows[1]:

Locate p facilities in a network so that the sum of the distances

between every client in the network and its nearest facility is

minimized.

By recognizing what is meant by a facility, network, client, and distance from the defini-

tion above, we will rewrite this p-median problem in a way that helps us understand the

MLF problem. In this case, the p facilities are the two optimal haplotypes from a set of

fragments and the distance between clients is specific to the problem formulation.

First, given our definition of a SNP and a fragment, we take m fragments with n SNP

entries in {A,B,−} and construct a m× n SNP matrix. The set of fragments in the SNP

matrix is,

H={h1, h2, ..., hm}.

(Note: We use a superscript to denote a specific fragment and a subscript for a specific

SNP location on that fragment.) We then assign each

(
m

2

)
possible pairs of fragments

a distance. The first formula for a distance measure is a Hamming distance defined as the

number of SNP locations at which hi and hj vary with no penalty paid for going from a

− to a letter or from a letter to a −. This distance is defined as,

d(hi, hj) =
n∑

p=1
d(hi

p, h
j
p), where d(hi

p, h
j
p) =





1, if hi
p = A, hj

p = B

1, if hi
p = B, hj

p = A

0, otherwise.

6

We will call this distance the d-distance. As an example, the d-distance between the frag-

ment ABB−B and −BAA− is 1 (from the third SNP location). Notice that B and −, A

and −, and − and − are not considered conflicting SNPs.

It is of interest to note that the d-distance would not be considered a metric space

because the triangular inequality does not always hold. Consider the three fragments

h1 = AB, h2 = A−, and h3 = AA. The distance from h1 to h2 is 0 and the distance from

h2 to h3 is 0 as well. From h1 to h3, however, the distance is 1. This results in a contradic-

tion to the triangular inequality, that informally is defined to be d(x, y)+d(y, z) ≥ d(x, z).

The second formulation of a distance measure is

l(hi, hj) =
n∑

p=1
l(hi

p, h
j
p), where l(hi

p, h
j
p) =





1, if hi
p = A, hj

p = B

1, if hi
p = B, hj

p = A

1, if hi
p ∈ {A,B}, hj

p = −
0, otherwise.

We call this distance the l-distance. As an example, l(hi, hj) with hi = ABB − B and

hj = −BAA− is 3 (from the first, third, and last locations). However, l(hj , hi) is only 2

(from the third and last). Notice that there is no penalty for turning a − into either an A

or B with this distance measure. Taking an A or B and changing it into a − is penalized

because we are changing a known SNP into an unknown.

This distance measure is also not a metric space. From the preceding example, we can

see that the symmetry rule fails for all cases. That is, l(x, y) may not equal l(y, x).

These formulas apply to fragments outside of H as well. In many of the problem, we

need to know the distance between any possible pair of fragments. We will define

Sn= {(s1, s2, ..., sn): si ∈ {A,B,−}} = {A,B,−}n.

This is simply the set of all possible fragments (not necessarily in H) with n SNPs. Some

important relations on Sn are defined below:

si = sj iff sk
i = sk

j , ∀k.

si⊂
∼

sj iff sk
i = sk

j or sk
i = − ∀k.

An example of the relation ⊂
∼

is the following:

Consider hi= ABBA−, hj= A−B−−, and hk= AB−AA.

We say that hj⊂
∼

hi, but hk is not ⊂
∼

hi because the last SNP in

hk is defined.

7

Another important set to define is,

Sn
′= {(s1, s2, ..., sn): si ∈ {A, B}} = {A,B}n.

This is the set of all fragments with n SNPs, where each SNP is either an A or B.

After assigning a distance between all fragments, we look for a pair of fragments,

(γi, γj), that represent one solution to the 2-median problem. Alternatively, we think

of (γi, γj) as parent haplotypes. Because we only consider the 2-median problem, we

denote (γi, γj) as (γ1, γ2) which may not necessarily be unique due to equivalent 2-median

solutions. Note that this notation does not imply that γ1 is the first fragment in H. After

having located (γ1, γ2), each hi is then assigned to the nearest median. The nearest median

from a fragment hi is the median γi ∈ {γ1, γ2} of minimal distance away. In addition, Γγ1

is the set of all fragments whose nearest median is γi. With these new definitions, we now

reformulate the p-median problem as follows:

Definition 2.2. General P-Median Problem on a Complete Graph:

Let KV be the complete graph on the nodes of V , and U ⊆ V . Let E(U, V) = {(vi, vj) :

vi ∈ U , vj ∈ V } , where each edge is assigned a weight wi,j The general p-median problem

is to find M= {γi : i ∈ I, |I| = p} ⊂ V and P={Γγi
: i ∈ I} such that:

1)
⋃

i Γ
i = U.

2) Γγi ⋂
Γγj

= ∅.
3)

∑
wi,j

i∈I
j∈Γk3γi∈Γk

minimized over all M and P.

The five following problem formulations are all 2-median problems. To better under-

stand the acronyms, when a ′ follows a title, we are referring to a 2-median problem where

only fragments within H, the original set of fragments, are considered as possible medians.

A problem without the ′ allows a median to be from the set Sn. The MLF and MLF ′

use the d-distance and the DMLF and DMLF ′ use the l-distance. The RMLF considers

medians selected from Sn
′ and uses the d-distance.

Definition 2.3. MLF ′ is the 2-median problem on (KH = (H,E(H, H))) with wi,j =

d(vi, vj).

The MLF ′ problem locates the two medians from the given set of haplotypes H us-

ing the d-distance. Fundamentally, the MLF ′ selects two fragments that combine to

have the least number of conflicts with the remaining fragments. The problem is on

(KH = (H, E(H, H))), which means the medians are located over the edge set of the

complete graph on the fragments in H.

8

SNP

1 2 3 4 5 6 7

1 A B A A - - -

Fragments 2 B A B B - - -

3 - B A - B A -

4 - - B B B B -

5 - - - B A B B

6 - - - A B B A

7 - - - - A B A

8 - - - - B A A

Table 2: SNP Matrix

Looking at Table 2, the MLF ′ would return fragments 1 and 2 as the medians of this

SNP matrix. These are the only two fragments within the set that are zero distance away

from their assigned fragments.

Definition 2.4. MLF is the 2-median problem on (Sn, E(H, Sn)) with wi,j = d(vi, vj).

This problem is similar to the MLF ′ problem except that it allows a median to be

outside of the given set H. While still using the d-distance, the MLF will find two medi-

ans that minimize the distance from all the fragments in H to the medians found in Sn.

The problem is on (Sn, E(H,Sn)), which means the medians are located over the edge set

from all fragments in H to the fragments in Sn. Recall that Sn is all possible fragments

of n SNPs, so H ⊆ Sn.

Using Table 2 as an example, the MLF could return fragments 1 and 2 as medians,

but it is easy to see that the MLF could also return a fragment of all −’s and any fragment

from the set H and it would still have a total distance of zero. Due to this property, the

MLF will trivially return the all − fragment with a flip count of zero.

Definition 2.5. DMLF ′ is the 2-median problem on (KH = (H, E(H, H))) with wi,j =

l(vi, vj).

The DMLF ′ is similar to the MLF ′, but the l-distance is used to determine the edge

weight rather than the d-distance. The two medians are located within the given haplo-

type set H.

In Table 2, the DMLF ′ would return fragments 3 and 4 as the medians with 11 flips

required to make it conflict-free. While this flip count may seem high, most of the flips

9

are acquired when a known SNP is relabelled as a − in order to be conflict-free with its

median. The l-distance, as a reminder, penalizes changing a known SNP into an unknown.

Definition 2.6. DMLF is the 2-median problem on (Sn, E(H, Sn)) with wi,j = l(vi, vj).

The DMLF is locating the two medians from the set Sn and uses the l-distance. This

allows DMLF to search for the two parent haplotypes from the entire set of possible

fragments, and uses the more biologically relevant distance formula as well.

Looking at Table 2, the DMLF would return the fragments {ABAAABAA,BABBBABB}
as the medians with one required flip. This flip occurs when we relabel the 7th fragment

on the fifth SNP location from an A to a B.

Definition 2.7. RMLF : 2-median problem on (KSn, E(H, Sn
′)) with wi,j = d(vi, vj).

The RMLF locates the two medians from the set Sn
′, so we are restricting the medians

to be complete fragments where each SNP is either A or B. This is the most biologically

useful problem formulation because it locates two complete parent haplotypes without

ambiguities. We often use the RMLF as a comparison to the other problem solutions

because we know it returns a completed haplotype while the others may not.

In what follows, we take a closer look at these problem formulations and the algorithms

used to solve them. We discuss the strengths and weaknesses of each 2-median problem

and relate them to our true problem formulation, the CGMLF .

3 MLF′ Algorithm

The algorithm presented here determines both the minimal number of flips and a {γ1, γ2}
that solves the MLF ′ problem.

10

ALGORITHM 1

Step 0: Set min = ∞.

Step 1: Arbitrarily number the fragments 1 through m.

Step 2: – for (a = 1,m)

∗ for (b = a + 1,m)

∗ flip count=0

· for (c = 1, n)

· if d(a, c) < d(b, c) add d(a, c) to flip count

· else add d(b, c) to flip count

· end

∗ set d(Γa, Γb) = flip count

∗ if d(Γa, Γb) < min

· set γi = a

· set γj = b

· set min = d(Γa, Γb)

∗ end

– end.

This algorithm enumerates through each of the

(
m

2

)
possible fragment pairs in search

of the optimal pair that minimizes the assigned distance. If the reader is not familiar

with enumerative algorithms on networks and graphs, we recommend the following book

cited in the bibliography [2]. We prove that our algorithm produces an optimal solution to

MLF ′. Notice that in the algorithm, a,b, and c are fragments vi, vj , We next show that

it is optimal for each fragment to be assigned to its nearest median. Then we show that

the algorithm produces the same {γ1, γ2} we set out to find in our problem description.

Lemma 3.1. Let v1 and v2 be vertices of the connected graph g = (V, E). Then, the near-

est vertex assignment (partition) minimizes the total distance of assigning V to {v1, v2}.

Proof. Let wi,j be the distance between vi and vj . Let {V 1, V 2} be the nearest vertex

partition and {V̂ 1, V̂ 2} be an arbitrary partition of V. We can say that

(V 1\V̂ 1)
⋃

(V 2\V̂ 2) = (V̂ 1\V 1)
⋃

(V̂ 2\V 2) (1)

11

because

(V 1\V̂ 1)
⋃

(V 2\V̂ 2) = (V 1
⋂

V̂ 2)
⋃

(V 2
⋂

V̂ 1) (2)

= (V̂ 2
⋂

V 1)
⋃

(V̂ 1
⋂

V 2) (3)

= (V̂ 2\V 2)
⋃

(V̂ 1\V 1). (4)

Then we can say

∑

k∈V 1\V̂ 1

w1,k +
∑

k∈V 2\V̂ 2

w2,k ≤
∑

k∈V̂ 1\V 1

w1,k +
∑

k∈V̂ 2\V 2

w2,k. (5)

Furthermore

∑

k∈V 1

w1,k +
∑

k∈V 2

w2,k =
∑

k∈V 1
⋂

V̂ 1

w1,k +
∑

k∈V 1\V̂ 1

w1,k +
∑

k∈V 2
⋂

V̂ 2

w2,k +
∑

k∈V 2\V̂ 2

w2,k (6)

≤
∑

k∈V 1
⋂

V̂ 1

w1,k +
∑

k∈V̂ 1\V 1

w1,k +
∑

k∈V 2
⋂

V̂ 2

w2,k +
∑

k∈V̂ 2\V 2

w2,k.(7)

Hence, {V 1, V 2} minimizes the distance of assigning V to {v1, v2}.

Lemma 3.1 states that any partition besides the nearest vertex partition does not need

to be considered because it is not an optimal assignment. This allows us to focus on

finding the medians rather than the partition sets because we have shown that the nearest

vertex partition is optimal.

From here we can make several claims about the performance of Algorithm 1.

Theorem 3.1. Algorithm 1 generates an optimal pair of medians in polynomial time.

Proof. Let Algorithm 1 terminate with {γ1, γ2}. Suppose that {v1, v2} is a set of medians.

From Lemma 3.1 we know that the minimum assignment of V to {v1, v2} is the nearest

vertex assignment. However, the nearest vertex assignment of {γ1, γ2} has an assignment

distance no greater than the nearest vertex assignment distance of assigning V to {v1, v2}.
Hence, {γ1, γ2} is an optimal assignment.

The fact that the algorithm is polynomial follows because the three for loops require O(m3)

iterations, with each iteration requiring a minimum distance between two vertices. Since

this distance is accomplished by Dijkstra’s Algorithm (O(m2)), the result is O(m5) on a

connected non-complete graph.

Corollary 3.1. Algorithm 1 generates an optimal pair of medians in O(m3) for a complete

graph.

12

Proof. From Theorem 3.1, we can solve a 2-median problem on a connected graph in

O(m5). Considering that Dijkstra’s Algorithm is used to make a connected graph com-

plete, it is not required for an existing complete graph. In this case, we do not need the

m2 iterations of Dijkstra’s Algorithm, therefore Algorithm 1 is O(m3).

We can extend these previous results to the general p-median problem where p is

independent of the number of vertices. The following theorem states that we can solve an

unconnected graph of m vertices in polynomial time where p is known.

Theorem 3.2. The p-median problem on a non-complete, connected graph is polynomial

with complexity O(mp+2).

Proof. Step 1: As was seen from the proof of Theorem ??, to create each subset of frag-

ments of size p (p-tuples),

(
m

p

)
= m!

(m−p)!p! = m(m−1)...(m−p+1)
p! = mp−amp−1+bmp−2−...

p!

possible combinations exist on n fragments. For our purposes, the denominator and the

values of a and b do not matter because they are integers and do not affect Big O analy-

sis. Since mp is the greatest power polynomial, we can disregard the others that follow.

Therefore,

(
m

p

)
is solved in mp.

Step 2: The inner loop uses Dijkstra’s algorithm to find the shortest path between every

pair of vertices. This completes the connected graph by assigning the distance between

any two non-adjacent vertices to be the shortest path between them. Dijkstra’s algorithm

is known to be O(m2).

Step 3: To find the nearest median of each vertex, all n vertices must individually go

through the current p-medians to find the minimum assignment. Hence this is done in

pm.

Altogether, this yields a complexity of pmp(m2), which is O(mp+2).

Now that we have shown that the MLF ′ problem is solvable in polynomial time, we

attempt to reconstruct the parent haplotypes from the {γ1, γ2} that Algorithm 1 returns.

As is seen in the upcoming section, many concerns surface about the optimality of the

solution Algorithm 1 returns.

3.1 Complications

Even though Algorithm 1 successfully finds {γ1, γ2} in the set of fragments, we cannot

infer the unique parent haplotypes, h∗1 and h∗2, after performing the necessary number of

flips Algorithm 1 returns. When we say unique parent haplotype, we mean that there are

no −’s in any SNP location in either h∗1 or h∗2, and there is no more than one possible

h∗1 and h∗2 for a γ1 and γ2 returned. To see why we still cannot infer h∗1 and h∗2 after

13

we solve the MLF ′ , we first need to introduce more notation.

After running Algorithm 1, we use the flip count returned to alter the given fragments

so that the new fragments are zero distance away from their respective median. Here we

need to introduce the notation Γ̂γ1
and Γ̂γ2

. This notation is necessary because {Γγ1
,Γγ1}

only denotes the set of fragments assigned to {γ1, γ2}; no SNPs have been changed to

ensure that all fragments in Γγ1
are zero distance away from γ1. Γ̂γ1

is the set of al-

tered fragments in Γγ1
after flipping has occurred. Γ̂γ2

is defined similarly. Consider the

following example:

Given: γ1= −−ABA

Γγ1
= {−−ABA, ABBBA, BBABB}

flip count≥ 2.

Γ̂γ1
= {−−ABA, ABABA, BBABA}

Notice that not all of the fragments Γγ1 ⊂
∼

γ1. However, each element in Γ̂γ1 ⊂
∼

γ1. More-

over, the flip count that Algorithm 1 returns indicates that this is the number of SNPs

that have to be changed so that each element in Γ̂γ1 ⊂
∼

γ1 and each element in Γ̂γ2 ⊂
∼

γ2.

It is important to understand that Γ̂γ1
does not repartition the fragments, it is simply the

set of fragments that have been corrected (flipped).

After determining Γ̂γ1
and Γ̂γ2

, we use a technique called overlapping in an attempt

to find h∗1 and h∗2. Overlapping means that after we have our γ1 we try to fill in any

−’s by looking at Γ̂γ1
. This is a reasonable procedure because none of the known SNP

locations in γ1 can be changed since all fragments in Γ̂γ1 ⊂
∼

γ1. Moreover, filling in the

−’s is precisely what we wish to attain since, by definition, h∗1 has no SNP location that

are −’s. However, by considering the following example, we state the following fact:

Fact: After using the number of flips Algorithm 1 returns to produce {Γ̂γ1
, Γ̂γ2} and

overlapping the fragments, we cannot infer the complete parent haplotypes, h∗1 and h∗2.

Example 3.1. Consider the following matrix,

A B - -

B B A -

- A B A

- - A B

For this matrix, Algorithm 1 would return that {γ1, γ2} = {−ABA, −−AB} with the num-

ber of flips required equal to 0. In this matrix Γγ1
= {−ABA} and Γγ2

= {AB−−,BBA−,−−AA}.

14

Since the flip count = 0, {Γγ1
,Γγ1}= {Γ̂γ1

, Γ̂γ1}. In this case, overlapping completes the −
in the second SNP in γ2, but does not complete the − in the first SNP position in γ2. h∗2

could either be BBAB or ABAB. However, the definition of h∗2 is that it has to be unique

for a given γ2. For this reason, we say that we cannot infer the complete parent haplotypes,

h∗1 and h∗2, after performing the necessary number of flips Algorithm 1 returns.

Since we cannot directly infer h∗1 and h∗2 from MLF ′, our original intuition was

that it might be possible to use the number of flips that Algorithm 1 returns, construct

{Γ̂γ1
, Γ̂γ2}, overlap the fragments, and remove the −’s in {γ1, γ2}) such that {γ1, γ2} ⊂

∼
RMLF . Here is an example:

Consider the matrix from Example 3.1. To find a set of optimal

solutions, RMLF , we look through the set of 24 completely re-

solved fragments {A,B}4. Since we have already noticed that it

is impossible to infer h∗1 and h∗2 in 0 flips, we note that one opti-

mal solution to RMLF is {AABA, ABAA} since it only requires

one flip (changing the first SNP in the second fragment to an

A). Our {γ1, γ2} = {−ABA,−−AA} that Algorithm 1 returned

is indeed ⊂
∼

of this optimal solution RMLF={AABA, ABAA}.
Note that there exists other optimal solutions to RMLF , but all

that is required is to show that our {γ1, γ2} ⊂
∼

of one of them.

However, contrary to our initial conjecture, we have shown by counterexample the follow-

ing fact:

Fact:The {γ1, γ2} that Algorithm 1 returns is not always a subset of RMLF .

Example 3.2. Case 1: One such case occurs when hi⊂
∼

hj for some i, j ∈ H. Below is a

matrix with fragments that have the relation ⊂
∼

whose {γ1, γ2} is not a ⊂
∼

of RMLF .

B - A A

A A A -

- B A A

A - A -

* - - B B

* - - A A,

where the * fragments indicate the {γ1, γ2} that Algorithm 1 returns. Based on Algorithm

1, the assignments in this matrix would be Γγ1
= {−−BB} and Γγ2

= {−−AA, B−AA,

AAA−, −BAA, A−A−} with flip count equal 0. Again, this implies that {Γγ1
,Γγ1}=

{Γ̂γ1
, Γ̂γ1}. However, to infer a h∗1 and a h∗2 using overlaps, it would take a minimum

15

of 2 flips to make h∗1 and h∗2 (where one such solution would be {h∗1,h∗2} = {AABA,

AAAA}). However, suppose we let RMLF={AAAA, BBAA} and make the following as-

signments, Γγ1
= {−−BB, AAA−, A−A−} and Γγ2

= {−−AA, B−AA, −BAA}. It would

only require flipping the third SNP in the fifth fragment to an A and overlap the rest with

no penalty to get RMLF= {AAAA, BBAA}. However, this optimal solution RMLF=

{AAAA, BBAA}, which only takes one flip, is not a ⊂
∼

of {γ1, γ2}={−−BB,−−AA} re-

turned by Algorithm 1.

Case 2: The second case in which Algorithm 1 fails to give a {γ1, γ2} that is ⊂
∼

of

RMLF is the following:

* A A - - - - - - -

B B B B B A - - - -

- B A A A A A - - -

- - B B B B B - - -

- - - A A A A A B -

- - - - - B B B B B

* - - - - - - - - A A

Here, {γ1, γ2}={AA−−−−−−−,−−−−−−−AA}, and the flip count Algorithm 1 returns

is 0. Producing a h∗1 and a h∗2 by overlapping Γ̂γ1
and Γ̂γ2

requires 4 flips. However,

suppose we let RMLF={BBBBBBBBB,AAAAAAAAA}. It only takes 3 flips to construct

RMLF from H, and {γ1, γ2} is not a subset of this RMLF .

What is apparent from the previous examples is that the MLF ′ is not the exact

problem we wish to approach. The biggest flaw in the MLF ′ problem is that it does not

produce a bipartite graph. This is a problem because in the actual problem statement

(CGMLF), a bipartite graph is required. What follows is an example that illustrates why

MLF ′ does not produce a bipartite graph:

Example 3.3. Consider the following simple SNP matrix:

A B - -

B B A -

- A B A

- - A B

γ1=−ABA, γ2=−−AB.

Γ̂γ1
= {−ABA}. Γ̂γ2

={AB−−,BBA−,−−AB}.
flip count = 0.

The problem is that the partition Γ̂γ2
is not bipartite because even though AB−− and

16

BBA− are zero distance away from their median −−AB, they are not zero distance away

from each other (ie, there is an edge between two members of the same partition.) Hence

MLF ′ does not always produce a bipartite graph.

Since we now understand that MLF ′ does not solve the CGMLF , we consider DMLF

and DMLF ′. In the following sections, we discuss an algorithm, results, and how DMLF

and DMLF ′ relate to CGMLF .

4 DMLF′ Algorithm and DMLF Results

To reintroduce DMLF ′, it is similar to the MLF ′ problem formulation with the exception

that it uses the l-distance measure instead of the d-distance. The DMLF that we discuss

in this section is similar to the DMLF ′, except that we are not restricted to search

for medians that are inside our given set of fragments, H. The following is an optimal

algorithm to solve DMLF ′. The subsection that proceeds Algorithm 2 discusses some

crucial properties and results for the DMLF and the DMLF ′.

4.1 Optimal DMLF′ Algorithm

The algorithm presented here determines both the minimal number of flips and a {γi, γj}
that solves the DMLF ′ problem.

17

ALGORITHM 2

Step 0: Set min = ∞.

Step 1: Arbitrarily number the fragments 1 through m.

Step 2: – for (a = 1, m)

∗ for (b = 1, m)

∗ flip count=0

· for (c = 1, n)

· if l(a, c) < l(b, c) add l(a, c) to flip count

· else add l(b, c) to flip count

· end

∗ set l(Γa, Γb) = flip count

∗ if l(Γa, Γb) < min

· set γi = a

· set γj = b

· set min = l(Γa, Γb)

∗ end

– end.

Algorithm 2 finds the directed distance for each of the 2×
(

m

2

)
possible fragment pairs.

There are two times the possible combinations because we have a distinction between

(vi, vj) and (vj , vi) since their distances may not be the same. Algorithm 1, on the other

hand, always considers (vi, vj) and (vj , vi) to be equal. The process is similar to Algorithm

1, but with an extended range in the second for loop (to get a distance for both l(vi, vj)

and l(vj , vi)) and the use of the l-distance to determine the weight.

4.2 Results

Due to the similarity of Algorithm 1 to Algorithm 2, the proofs of Lemma 3.1 and Theorem

3.1 (which deal with the optimality of the Algorithm 1) can easily be extended to apply

to Algorithm 2. For this reason, the optimality argument for Algorithm 2 is omitted from

this text and is left as an exercise to the reader.

Similar to the previous section on MLF ′, the following is a proof that DMLF ′ is polyno-

18

mial.

Theorem 4.1. Algorithm 2 is O(m3).

Proof. To show that the Algorithm 2 is O(m3), we consider that it enumerates through

each possible pair of fragments. To create each pair of fragments, there are 2×
(

m

2

)
=2×

(m2−m)
2 =(m2 − m) possible combinations of m fragments. Each of these pairs is then

compared against all other fragments in H to find each minimum distance assignment,

which requires 2m steps. This results in an algorithm that is O(2m3 − 2m2), which is

O(m3).

Now that we know that DMLF ′ is polynomial, we consider the complexity of DMLF .

By Theorem 4.2, we see that DMLF is solved in exponential time.

Theorem 4.2. DMLF is O(33n)

Proof. Recall from Theorem 4.1, that we can solve the 2-median porblem over m fragments

in O(m3). Since DMLF can choose medians from any Sn={A,B,−}n, we have m = 3n

fragments to select from. This implies that DMLF is solved in O((3n)3)=O(33n).

Although DMLF is not polynomial, we can test the solution in a polynomial number of

steps. Generating the 3n possibilities for fragments is what makes DMLF non-polynomial;

however, simply testing the 2-median solution is done in polynomial time. This implies

that DMLF is NP-complete.

Although we have shown the enumerative algorithm and explained the l-distance for

DMLF ′ and DMLF , it is not immediately obvious what solving these problems accom-

plishes. Because DMLF will have an important role in the upcoming section, the rest

of this section is devoted to an informal explanation of exactly how DMLF ′ and DMLF

work.

When DMLF ′ and DMLF select medians, they will inherently prefer a non − SNP to a

−. The following is an explanation of why:

19

Consider a fragment hi=AB− that is assigned to some median.

This median could be −−−, in which case the distance from

hi to the median is 2. In other words, there is no benefit of

having all − as a median; Algorithm 2 never picks this solution.

Now suppose that the median is AB−, which is a good solution

since the distance is zero. However, ABA and ABB are equally

good solutions (flip count 0) and all SNP positions are filled.

Moreover, when the flip count for a letter is equal to the flip

count for a −, Algorithm 2 will choose the letter.

Once Algorithm 2 picks out a {γ1, γ2}, it assigns the fragments in H to their nearest median

to form {Γγ1
, Γγ2}. From the flip count Algorithm 2 returns, we then form {Γ̂γ1

, Γ̂γ2}.
Remember that {Γ̂γ1

, Γ̂γ2} denotes the altered sets of fragments in each partition (ĥi ∈ Γ̂γ1

iff hi ∈ Γγ1
, ĥj ∈ Γ̂γ2

iff hj ∈ Γγ2
) such that the distance between each fragment in a given

partition and its nearest median is zero. Because the Algorithm is using l-distance, it

is not possible to have a − in the kth SNP position of γ1 where there is no dash in the

kth SNP position of ĥi (since the distance from ĥi to γ1 would not be zero) for all SNP

positions k. Below is an example to illustrate this point:

Suppose γ1= AB−.

By definition of Γ̂γ1
, all fragments ĥi ∈ Γ̂γ1

must be zero distance

away from γ1.

Therefore, ĥi could not have a defined SNP in the third position

since l(ĥi, γ1) would not be zero.

Since no ĥi ∈ Γ̂γ1
can have a defined SNP position where γ1 is undefined, the following

property about DMLF ′ and DMLF falls out nicely:

Property 1: Given ĥi ∈ Γ̂γ1
, ĥi⊂

∼
γ1 ∀hi ∈ Γγ1

. Similarly, given ĥj ∈ Γ̂γ2
, ĥj⊂

∼
γ2

∀hj ∈ Γγ2
.

Another important observation about DMLF ′ and DMLF is how we build ĥ. Even

though we know that ĥi⊂
∼

γ1 ∀hi ∈ Γγ1
, there are several options for what ĥi could be. For

example, given γ1= AB−, and hi ∈ Γγ1
= BB−. Two possibilities for ĥi are −B− and

AB−. In this case l(hi, ĥi), where ĥi = −B−, is 1. Likewise, l(hi, ĥi), where ĥi = AB−, is

1. Since ĥi = AB− takes the same number of flips as ĥi = −B−, we will always construct

ĥi in such a way that we have as many defined SNP positions as possible; in this case we

would pick ĥi = AB−.

The reason we spend so much time explaining these facts and properties of DMLF is

20

because intuitively, by Property 1, DMLF will induce a bipartite graph (in which case it

can be compared to CGMLF .) The next section is devoted to precisely this idea.

5 CGMLF and DMLF

The DMLF problem is, with the exception of the RMLF , the most biologically relevant

of the 2-median problem formulations. As stated earlier, it uses the l-distance, which

forces the medians to have as many defined SNPs as possible in the medians. Since the

DMLF can locate the medians over all Sn, the two medians it selects are defined in every

location where possible, resulting in accurate parent haplotypes. In this section, we show

that solving DMLF , the problem of finding feasible partitions, is equivalent to solving

CGMLF .

To re-enforce our notation, when we refer to the 2-median problems (DMLF in this

case) we use {γ1, γ2} as our 2-median solutions. When we talk about the CG(H) problems

(CGMLF in this case), we use {sr, st} as the generated medians. In other words, {γ1, γ2}
are haplotypes the algorithm returns while {sr, st} are haplotypes that can be constructed

from the partitions of CGMLF . Similarly, {Γγ1
,Γγ2} and {Γ̂γ1

, Γ̂γ2} are used for the

2-median problems, while {H1,H2} and {Ĥ1, Ĥ2} are used for the CG(H) problems.

The following Lemma will allow us to generalize an important property of a feasible

partition. This lays the groundwork for showing that solving the DMLF is equivalent to

solving the CGMLF .

Lemma 5.1. CG(H) is bipartite ⇔ ∃ a partition of H, say {H1,H2}, 3 every SNP in a

partition set is either in {A,−}, {B,−}, or is all −’s.

Proof. Part 1: If CG(H) is bipartite ⇒ every SNP in a partition set is either in {A,−},
{B,−}, or just {−}.
By definition of a bipartite graph, ∀ hi, hj ∈ H i, where H i is any partition of CG(H), hi

does not conflict with hj . This means that hi
k does not conflict with hj

k ∀ k ∈ {1...n}.
Moreover, there is no k for which hi

k=A and hj
k=B. Therefore, every SNP in a partition

set is either in {A,−}, {B,−}, or {−}.
Part 2: If every SNP in a partition set is either in {A,−}, {B,−}, or just {−}, ⇒ CG(H)

is bipartite.

By definition of two SNPs being in conflict, if every SNP in a partition set is either in

{A,−}, {B,−}, or is just {−}, there does not exist a k, such that hi
k,hj

k ∈ H i conflict.

This implies that hi and hj do not conflict ∀ hi, hj ∈ H i. The same argument is applied to

21

SNP

1 2 3 4 5

1 A B A - -

Fragments 2 A - A - -

3 - B A - B

4 - - A - B

5 A B A - B

6 - B A - B

7 A B - - B

8 - B A - B

Table 3: An example of a feasible partition

any partition set H i. Since for all partition sets in H, there are no fragments that conflict

∀ hi, hj ∈ H i, CG(H) is bipartite.

Lemma 5.1 states that a feasible partition will look similar to the example in Table 3,

where each SNP column will consist of only {A,-}, {B,-}, or {-}. It is clear to see that

a B in a {A,-} column would conflict with the A SNPs and therefore is not biparitite,

and likewise for A in a {B,-} column. It is important to remember that some letters may

have been flipped in order to create the feasible partition. The following rule applies to

generating a parent haplotype using this existing property of feasible partitions. This rule

will be used to later show that the partitions from the CGMLF are equivalent to the

partitions of the DMLF .

Rule 1: Generating a parent haplotype from a partition of a bipartite collection of

haplotypes.

By definition of a bipartite subgraph, for i ∈ {1, 2}, we have that ∀ ĥk ∈ Ĥ i, ĥk ∈ {A,B}
or ĥk ∈ {A,B}. To generate a parent haplotype, we define s1 by:

sk
1 =





A, if ĥk ∈ {A,−} for all ĥ ∈ Ĥ1

B, if ĥk ∈ {B,−} for all ĥ ∈ Ĥ1

−, if ĥk ∈ {−} for all ĥ ∈ Ĥ1,

for k ∈ {1...n}. We define sk
2 in the same manner, where ĥ ∈ Ĥ2 instead of ĥ ∈ Ĥ1.

Looking at Table 3, applying Rule 1 to this partition would yield a parent haplotype

of {ABA−B}. Note that the only time a − will be returned by Rule 1 is when a column

consists only of ambiguous SNPs. This is unlikely biologically because it would mean

22

that the sequencer could not call with certainty a SNP from any fragment derived from a

parental donation. Now that we have two important concepts formulated, we show that

CGMLF is equivalent to DMLF .

Theorem 5.1. DMLF = CGMLF

Proof. There are two parts to this proof. First, we show that DMLF induces a bipartite

graph, which implies that z(DMLF) ≥ z(CGMLF). This follows because CGMLF finds

a bipartite graph with the minimum number of flips, and we cannot yet say that DMLF

produces this optimal bipartite graph. The second part of the proof (by contradiction)

shows that DMLF is optimal, implying that z(DMLF) = z(CGMLF).

Part 1: DMLF makes a bipartite graph.

From Property 1 of DMLF , we know that ĥi⊂
∼

γ1 ∀hi ∈ Γγ1
. By the definition of ⊂

∼
,

hi⊂
∼

γ1 iff hk
i = γk

1 or hk
i = −, ∀k. Since ĥi⊂

∼
γ1, any ĥk ∈ Γ̂γ1

is either in {A,−},
{B,−}, or just {−}. The same argument holds for all ĥj ∈ Γ̂γ2

. By Lemma 5.1, if

∃ a partition of H ({Γ̂γ1
, Γ̂γ2}) 3 every SNP partition set is either in {A,−}, {B,−}, or

{−}, then CG(H) is bipartite. Thus, DMLF is bipartite, and we say DMLF ≥ CGMLF .

Part 2: DMLF is the optimal bipartite graph.

Assume DMLF does not induce the optimal bipartite graph. Then, z(CGMLF) <

z(DMLF) for the same matrix H. Let {Ĥ1, Ĥ2} be a partition of CG(Ĥ) such that

d{H, Ĥ1
⋃

Ĥ2} = z(CGMLF). This notation comes from the definition of CGMLF ; the

distance from the set of fragments, H, to the two bipartite partitions (Ĥ1
⋃

Ĥ2) is precisely

what is meant by the flip count of CGMLF . Since the partitions make a bipartite graph,

the kth SNP for every ĥi ∈ Ĥ1 is either in {A,−} or {B,−} ∀k. Following Rule X, let

sk
1 =





A, if ĥk ∈ {A,−} for all ĥ ∈ Ĥ1

B, if ĥk ∈ {B,−} for all ĥ ∈ Ĥ1

−, if ĥk ∈ {−} for all ĥ ∈ Ĥ1.

By doing this, we have generated s1 from Ĥ1. Similarly generate s2 from Ĥ2.

From our initial statement that d{H, Ĥ1
⋃

Ĥ2} = z(CGMLF), we know that

z(CGMLF) =
∑

j

hi∈H

d(hi
j , ĥ

i
j) =

∑

j

hi∈H1

d(hi
j , ĥ

i
j)

⋃ ∑

j

hi∈H2

d(hi
j , ĥ

i
j). (8)

Since the partitions are bipartite by definition of CGMLF , Ĥ1
⋂

Ĥ2 = 0. We now write,

z(CGMLF) =
∑

j

hi∈H

d(hi
j , ĥ

i
j) =

∑

j

hi∈H1

d(hi
j , ĥ

i
j) +

∑

j

hi∈H2

d(hi
j , ĥ

i
j). (9)

23

Now that we know what z(CGMLF) is, we choose the same {s1, s2} that we just generated

as the medians with optimal flip count from CGMLF to be the {γ1, γ2} for DMLF . Note

that we are not saying that these {s1, s2} are the optimal haplotypes, {γ1, γ2}, that DMLF

would have produced on its own by running Algorithm 2. Moreover, we will show that

the flip count z(DMLF) using {s1, s2} as {γ1, γ2} is not greater than z(CGMLF), giving

us a contradiction. Since we have chosen {s1, s2} to be our {γ1, γ2}, DMLF will assign

each hi to its nearest median and ultimately partition H into bipartite {Γs1
, Γs2}. In other

words, hi takes some number of flips to become ĥi 3 ĥi⊂
∼

sr. This point is reiterated with

the following statement.

z(DMLF) =
∑

hi∈Γs1

wi,s1 +
∑

hi∈Γs2

wi,s2 = (10)

∑

j

hi∈Γs1

l(hi
j , ĥ

i
j) +

∑

j

hi∈Γs1

d(ĥi
j , sj

1) +
∑

j

hi∈Γs2

l(hi
j , ĥ

i
j) +

∑

j

hi∈Γs2

d(ĥi
j , sj

2). (11)

However, by definition of ĥk, any ĥk is conflict free of a parent haplotype, so
∑
j

hi∈Γs1

d(ĥi
j , sj

1)

and
∑
j

hi∈Γs2

d(ĥi
j , sj

2) are 0. Therefore,

z(DMLF) =
∑

j

hi∈Γs1

l(hi
j , ĥ

i
j) +

∑

j

hi∈Γs2

l(hi
j , ĥ

i
j). (12)

Next, recall that the set of fragments H and the medians {s1, s2} are the same in CGMLF

as in DMLF . This implies that {Γs1
, Γs2} in DMLF is the same as {H1,H2} in CGMLF .

Moreover, the most important step is to see that the distance l we are using for z(DMLF)

is equivalent to the d-distance for the following reason:

When we are counting the minimum number of flips from a given

hi ∈ H1 to a ĥi such that ĥi⊂
∼

sr, given any SNP position k ∈ hi,

we never go from an A to a − or a B to a −. The only reason to

change an A or B to a − at a given SNP position is if sr has a

− in that SNP position. However, by Rule 1, for sr to have had

a − in that SNP position, every hi ∈ H1 must have had a − in

that SNP position as well (in which case what we are trying to

turn into a − would have already been a −.) Since we would

never go from an A to a −, or from a B to a −, l-distance is

identical to d-distance.

24

For this reason, Equation 12 becomes:

z(DMLF) =
∑

j

hi∈H1

d(hi
j , ĥ

i
j) +

∑

j

hi∈H2

d(hi
j , ĥ

i
j). (13)

However, Equation 9, which gives z(CGMLF) is identical to Equation 13, which gives us

z(DMLF). This is a contradiction to our assumption that z(CGMLF) < z(DMLF).

Moreover, since we know from Part 1 of this proof that DMLF ≥ CGMLF , and

from Part 2 that z(DMLF) > z(CGMLF) is not true, we have proven that DMLF =

CGMLF .

This theorem states that solving CGMLF takes the same number of flips as solving

DMLF . This is an important result, because we have now related the original problem

of locating feasible partitions to a 2-median problem.

CGMLF = DMLF is a significant result because we have a lot of results in place

referring to DMLF . From the previous section, we shown that DMLF is non-polynomial,

which means we can equate CGMLF to a NP-complete problem. Since we have built the

relation between CGMLF and DMLF , in the following section we attempt to construct

relations between the remaining problem statements.

6 Chain of Inequalities

In this section, we explore the relationship between MLF , MLF ′, DMLF , DMLF ′ and

CGMLF in terms of which problem statement requires the minimum number of flips (z).

We say problem statement I is ≤ problem statement J if z(I) ≤ z(J). Before we can

create the string of inequalities, we need to consider the following two lemmas.

Lemma 6.1. Given a 2-median problem statement I and a 2-median problem statement

J , where the distance measure are identical but problem statement I finds medians in Sn

and J finds medians in H, then I ≤ J .

Proof. This lemma is true by the following optimization result: min{f(x) : x ∈ X} ≤
min{f(x) : x ∈ Y ⊆ X} because H ⊆ Sn.

Lemma 6.2. Given a 2-median problem statement I and a 2-median problem statement

J , where both I and J find medians from the same set but problem statement I uses

d-distance and J uses l-distance, then I ≤ J .

25

Proof. This lemma is true by the following optimization result: min{(c1)T x : x ∈ X} ≤
min{(c2)T x : x ∈ X}, where 0 ≤ c1 ≤ c2. In this case, c1 is obviously the d-distance, while

c2 is the l-distance.

With the help of these lemmas, we have the following theorem:

Theorem 6.1. MLF ≤ MLF ′ ≤ DMLF ′ and MLF ≤ DMLF = CGMLF ≤ DMLF ′.

Proof. 1)MLF ≤ MLF ′ ≤ DMLF ′.

MLF ≤ MLF ′ from Lemma 6.1 and MLF ′ ≤ DMLF ′ from Lemma 6.2. Thus, MLF ≤
MLF ′ ≤ DMLF ′.

2)MLF ≤ DMLF = CGMLF ≤ DMLF ′.

MLF ≤ DMLF from Lemma 6.2 and DMLF ≤ DMLF ′ from Lemma 6.1. In addition,

from Theorem 5.1, DMLF = CGMLF . Thus, MLF ≤ DMLF = CGMLF ≤ DMLF ′.

Therefore, MLF ≤ MLF ′ ≤ DMLF ′ and MLF ≤ DMLF = CGMLF ≤ DMLF ′.

It would be helpful if we could form a single system of inequalities, but first we need

to find a relation between MLF ′ and DMLF . The reason this is not easily done is the

following:

By Lemma 6.1, DMLF should be less than or equal to MLF ′.

However, by Lemma 6.2, MLF ′ should be less than or equal to

DMLF .

Our inability to find this relation prohibits us from saying that CGMLF is bounded

from below by a polynomial 2-median problem. However, since we have proven that

CGMLF ≤ DMLF ′ we can already say that CGMLF is bounded from above by a 2-

median problem in polynomial time.

In addition, we would like to fit RMLF in this system of inequalities, but we have not

yet explored this area. From Section 3, we know that RMLF does not always intersect

MLF ′; however, no additional results are proved in this paper. We conjecture that RMLF

is equivalent to DMLF and CGMLF in every case with the exception of when every SNP

in the SNP matrix is misread (which is not biologically probable). The following section

restates our main results and proposes areas of further research.

7 Conclusion and Future Work

There are several approaches available to minimize the number of letters flips to make a

SNP matrix feasible. We refer to the CGMLF as the problem of changing a minimal num-

ber of SNPs to create two feasible partitions of the SNP matrix. Since finding partitions

26

that have this property is especially difficult, we relate this problem to several 2-median

problem formulations. Our major result is that the CGMLF is equivalent to the DMLF ,

a 2-median problem using the l-distance over the complete set of fragments Sn. We can

bound the DMLF , which is O(33n), from above by the DMLF ′ in O(m3) time. We have

further shown that the minimal flip count to solve the MLF ≤ MLF ′ ≤ DMLF ′ and

that the MLF ≤ DMLF = CGMLF ≤ DMLF ′.

7.1 Future Work

In future work, we would form a single system of inequalities by combining the two existing

systems. We conjecture that the MLF ′ ≤ DMLF , but because they use different distance

formulas and search for medians over different sets, completing this inequality is currently

unavailable. This would lead us to complete the system of inequalities to say that MLF ≤
MLF ′ ≤ CGMLF = DMLF ≤ DMLF ′. If this conjecture is shown to be true, the

DMLF and CGMLF would then be bounded above and below by two polynomial time

problems. In the case where MLF ′ and DMLF ′ are equal, we would have the CGMLF

and DMLF flip counts.

Other future work would include investigating the type of sequencing errors that cause

the MLF ′ and DMLF ′ to fail when determining parent haplotypes. If we can deter-

mine what type of errors are anticipated from the sequencer, various techniques may be

developed that are more applicable to correct these expected errors.

With developments now made in the MFR, MSR and the MLF problems, combining

these error correcting techniques into an optimal approach is even more useful. Being

able to choose which fragments to remove, SNPs to remove, and letters to flip will provide

useful techniques for geneticists to apply when sequencing individuals.

8 Acknowledgements

The research has been done under the Research Experience for Undergraduates (REU)

program supported by the National Science Foundation. We would like to thank Dr. Allen

Holder for his help as our advisor.

27

References

[1] British Computer Society, “An Algorithm for 2- Median Problem on Two Dimensional

Meshes”, The Computer Journal,Volume 44, Number 2,(2001), pp.1.

[2] James R. Evans and Edward Minieka, “Optimization Algorithms For Networks and

Graphs.” Second Edition, Marcel Dekker Inc. (1992), pp. 387.

[3] Harvey J. Greenberg, William E. Hart, Giuseppe Lancia, “Opportunities for Combi-

natorial Optimization in Computational Biology”, preprint (2003).

