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Abstract. In this study we seek to characterize the recurrent dynamics of
the map

F (x, y) = (y, y2 + ax + c)

from R2to R2, for a ≥ 0, and c <
(1−a)2

4
. In §3 and §4 we define two regions

in the parameter space Λ = {(a, c)|a ≥ 0} that have no chain recurrent points
other than the fixed points. In §5 and §6 we explore the dynamics of the rest
of Λ to demonstrate that the dynamics in the regions defined in §3 and §4 are
unique in Λ. In §7, we conduct a survey of the dynamics of F for 0 < a < 1
and c = 0.

1. Introduction

The map

(1.1) T : (x, y) 7→ (1 + y − ax2, bx) a = 1.4, b = 0.3

presented by Hénon in 1978 as the simplest, smooth map that contains a strange
attractor sparked interest in the study of polynomial plane automorphisms. In
recent years, there has been a flurry of research activity concerning generalized
Hénon maps, which are defined as maps of the form

(1.2)
g : (x, y) 7→ (y, z) = (y, p(y)− δx);
δ = det Dg
[5]

whose importance is confirmed by Friedland and Milnor’s discovery that every pla-
nar polynomial automorphism is conjugate to a composition of generalized Hénon
transformations [5].

This study seeks to utilize the tools developed for planar polynomial automor-
phisms in C2by Bedford and Smilie [2][3], Friedland and Milnor[5], and Shafikov
and Wolf[9] to characterize the recurrent dynamics of a specific family of Hénon
maps in R2, given by the equation:

(1.3) F(a,c)(x, y) = (y, y2 + ax + c),

for a > 0. We pay particular attention to the families of functions F(a,c) for which

a > 0, a 6= 1 and −3(1−a)2

4 < c < (1−a)2

4 , where we prove that the only chain
recurrent (and hence nonwandering and periodic points) are the two fixed points,
and then show that these are the only regions that exhibit this behavior for a ≥ 0.
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2 XIAOLING L. ANG

In order to punctuate the surprisingly regular behavior of maps in this parameter
space, we characterize the recurrent dynamics of the case where c = 0 and 0 < a < 1.

2. Background Information

In this section we list the definitions and theorems necessary for our proofs.

2.1. Definitions.

Definition 2.1. [6] A map F : R2 → R2 is C1 if all of its first partial derivatives
exist and are continuous. F is C∞ if all of its mixed kth partial derivatives exist
and are continuous for all k.

Definition 2.2. [8] A function f : X → X from a metric space X to itself is called
a diffeomorphism provided it is

(1) one-to-one

(2) onto

(3) continuous

(4) its inverse F−1 : X → X is continuous.

Definition 2.3. [6] Let Fn(p) = p

(1) p is a sink or attracting periodic point if all of the eigenvalues of
DFn(p) are less than one in absolute value.

(2) p is a source or repelling periodic point if all of the eigenvalues of
DFn(p) are greater than one in absolute value.

(3) p is a saddle point otherwise, i.e., if some of the eigenvalues of DFn(p)
are larger and some are less than one in absolute value.

Definition 2.4. [8] For a map f : X → X a point p is called nonwandering
provided for every neighborhood U of p there is an integer n > 0 such that Fn(U)∩
U 6= ∅. Thus, there is a point q ∈ U with Fn(q) ∈ U . The set of all nonwandering
points for f is called the nonwandering set and is denoted by Ω(f).

Definition 2.5. [6]A closed region N ⊂ R2 is a trapping region for F if F (N)
is contained in the interior of N .

Definition 2.6. [3] The stable and unstable sets of a point p are defined as

W s(p) = {q : lim
n→∞

d(fn(p), fn(q)) = 0},
Wu(p) = {q : lim

n→−∞
d(fn(p), fn(q)) = 0}

Definition 2.7. [3] We can construct a conjugacy invariant, which we call the
dynamical degree, as follows:

d = d(f) = lim
n→∞

(deg fn)
1
n = lim

n→∞
(deg f ◦ · · · ◦ f)

1
n

Definition 2.8. [3]

K± = {q ∈ C2 : {f±n(q) : n = 1, 2, 3, . . .} is bounded},
J± = ∂K±

K = K+ ∩K−

J = J+ ∩ J−
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Definition 2.9. Let f : A → A and g : B → B be two maps. f and g are said to
be topologically conjugate if there exists a homeomorphism h : A → B such that
h ◦ f = g ◦ h. The homeomorphism h is called a topological conjugacy.

Mappings which are topologically conjugate are completely equivalent in terms
of their dynamics. [6]

Definition 2.10. [8] Let r ≥ 0 be an integer. Let f, g : R→ R be Cr functions and
J ⊂ R be an interval (usually closed and bounded. Define the Cr distance from
f to g by

dr,J(f, g) = sup{|f(x)− g(x)|, |f ′(x)− g′(x)|, · · · , |f (r)(x)− g(r)(x)| : x ∈ J}.
Definition 2.11. [6] Assume r ≥ 1. Let f : R→ R be a Cr function. A function
f is Cr structurally stable provided there exists an ε > 0 such that f is conjugate
to g on all of R whenever g : R → R is a Cr-function with dr,R(f, g) < ε. A
function f is said to be structurally stable provided it is C1 structurally stable.

Definition 2.12. [6] Let F be a diffeomorphism. A point c is chain recurrent
for F , if, for any ε > 0, there are points x = x0, x1, x2, . . . xk = x and positive
integers n1, . . . nk such that

|Fni(xi−1)− xi| < ε

for each i.

Definition 2.13. [1] Let f be a Cr diffeomorphism on a C∞ manifold M, with the
uniform Cr topology, 1 ≤ r ≤ ∞. Then f satisfies Axiom A if and only if:

(1) Ω(f) has hyperbolic structure, and
(2) The periodic points are dense in Ω(f).

2.2. Theorems.

Theorem 2.1. [6] Let F be a diffeomorphism in R2 Suppose F has a saddle point
at p, Then there exists ε > 0 and a smooth curve, i.e., a C1 curve

γ : (−ε, ε) → R2

such that
(1) γ(0) = p.
(2) γ′(t) 6= 0
(3) γ′(0) is an unstable eigenvector for DF (p).
(4) γis F−1invariant.
(5) F−nγ(t) → p as n →∞.
(6) If |F−n(q)− p| < ε for all n ≥ 0 then q = γ(t) for some t.

The curve γ is called the local unstable manifold at p. This implies that the
stable and unstable manifolds are smooth curves that emanate from the fixed or
periodic point.

Theorem 2.2. [3] Let f be a polynomial diffeomorphism of C2satisfying d(f) > 1.
Let p be a saddle point of f . Then J+ is the closure of the stable manifold W s(p)
and J− is the closure of the stable manifold W s(p) and J− is the closure of Wu(p).

Theorem 2.3. [3] when |det Df | < 1 the chain recurrent set of f is equal to the
set of bounded orbits (in forward and backwards time) not in punctured basins.
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Theorem 2.4. [5] If g is hyperbolic, then the periodic points are dense in J , i.e.

Per(g|J ) = J.

Theorem 2.5. [2] If g is a hyperbolic polynomial diffeomorphism of C2, then it
satisfies Axiom A.

Theorem 2.6. [9] Let f be a hyperbolic regular polynomial automorphism of Cn

and let p be a point in Cn. Then one of the following exclusive properties hold

(1) There exists q ∈ J such that |fk(p)− fk(q)| → 0 as k →∞;
(2) There exists an attracting periodic point α of f such that |fk(p)−fk(α)| → 0

as k →∞
(3) {fk(p) : k ∈ N} converges to ∞ as k →∞.

Theorem 2.7. [9] Let f be a hyperbolic regular polynomial automorphism of Cn

with |det Df | ≤ 1. Then

(1) W s(J) = J+;
(2) Wu(J) = J− \{α1, . . . , αm}, where the αi are the attracting periodic points

of f ;
(3) Ω(f) = J ∪ {α1, . . . , αm}.

Theorem 2.8. [9] Let f be a hyperbolic regular polynomial automorphism of Cn.
Then f is Axiom A.

Theorem 2.9. [2] If |detDg| = 1 then int K+ = int K− = int K. If |detDg| < 1
then int K− = ∅,If |detDg| > 1 then int K+ = ∅.
Theorem 2.10. [2] g : (x, y) 7→ (y, z) = (y, p(y)− ax)
there exists a constant R > 0 so that |y| > R implies that either |z| > |y| or |x| > |y|
or both.

3. Results for 0 < a < 1,−(1−a)2

4 < c < (1−a)2

4

Let P = {(a, c)|0 < a < 1, −3(1−a)2

4 < c < (1−a)2

4 } and let FP = {F(a,c)(x, y)|(a, c) ∈
P}. From here on we shall simply refer to F(a,c) as F .
Note that in FP ,

(3.1) DF(x, y) =
(

0 1
a 2y

)

So |det DF (x, y)| = |a| = a < 1.
In order to apply the theorems in §2, we must first understand the behavior of fixed
points of the maps in FP .
The eigenvalues at a point(x, y) are given by

(3.2) λ1 = y +
√

(y2 + a)
λ2 = y −

√
(y2 + a)

And if (xf , yf ) is a fixed point then

(3.3)
xf = yf

yf = y2
f + axf + c
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So
yf = y2

f + ayf + c

0 = y2
f + (a− 1)yf + c

⇒ xf = yf = (1−a)±
√

(1−a)2−4c

2

Denote the fixed points by (x+, y+), (x−, y−).

(3.4) x+ = y+ = (1−a)+
√

(1−a)2−4c

2

x− = y− = (1−a)−
√

(1−a)2−4c

2

Through computation, we show that the character of the fixed points is similar
for all maps in FP , which allows us apply the theorems in §2 in a systematic manner.

Lemma 3.1. If (1−a)2

4 > c > 0 then F has an attracting fixed point, t, and a fixed
saddle point p.

Proof. Since c > 0,
√

(1− a)2 − 4c < 1− a. Hence

0 < y+ = (1−a)+
√

(1−a)2−4c

2 < 2(1−a
2 < 1 and

y− = (1−a)−
√

(1−a)2−4c

2 > 0 yet

y− = (1−a)−
√

(1−a)2−4c

2 < 1−a
2 .

Suppose 0 < y ≤ 1. Then

(3.5)

y +
√

y2 + a ≤ 1
⇒

√
y2 + a ≤ 1− y

⇒ y2 + a ≤ 1− 2y + y2

⇒ y ≤ 1−a
2

and

(3.6)
y −

√
y2 + a ≥ 1

−
√

y2 + a ≥ 1− y > 0
⇒⇐

It follows from (3.6) that |λ2| < 1 for y+ and y−. If follows from (3.5) that
|λ1| > 1 for y+ and |λ1| < 1 for y−. So (x+, y+) is a sink, and (x−, y−) is a saddle
point.

¤

Lemma 3.2. If c < 0 then F has an attracting fixed point, t, and a fixed saddle
point, p, if and only if c > −3(1−a)2

4 .

Proof. Let y > 1
Then clearly |y +

√
y2 + a| = y +

√
y2 + a > y > 1. Consider |y −

√
y2 + a| ≥ 1.

Then

(3.7)

|y −
√

y2 + a| =
√

y2 + a− y > 1
⇒ y2 + a > 1 + 2y + y2

⇒ a− 1 > 2y
⇒ 0 > a−1

2 > y
⇒⇐
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Consider y < 0.
Suppose |y +

√
y2 + a| ≥ 1

Then

(3.8)

|y +
√

y2 + a| =
√

y2 + a− |y| < 1
⇒

√
y2 + a < 1 + |y|

⇒ y2 + a < 1 + 2|y|+ |y|2
⇒ a−1

2 < |y|
⇒ y > 1−a

2

Hence |y +
√

y2 + a| ≥ 1 for all y < 0. Suppose |y −
√

y2 + a| < 1 and 1 ≤ y < 0
Then

(3.9)

|y −
√

y2 + a| < 1√
y2 + a + |y| < 1√
y2 + a < 1− |y|

y2 + ax < 1− 2|y|+ |y|2
a− 1 < −2|y|
a−1
2 < y

It is clear that if c is negative, then y+ = (1−a)+
√

(1−a)2−4c

2 > 1−a
2 , which fulfils

the criteria of either (3.7) or (3.5) in Lemma 3.1.So (y+, y+) is a saddle point.

So we have to consider the behavior of y− = (1−a)−
√

(1−a)2−4c

2 . From (3.8) and
(3.9) we see that, in order for our parameter space to be connected, the following
must hold:

(3.10)

y≥ a−1
2

(1−a)−
√

(1−a)2−4c

2 ≥ a−1
2

−
√

(1− a)2 − 4c ≥ 2(a− 1)√
(1− a)2 − 4c ≤ 2(1− a)

(1− a)2 − 4c ≤ 4(1− a)2

c ≤ −3(1−a)2

4

So (y−, y−) is an attracting fixed point. ¤

Now that we’ve established the character of the fixed points and the non-existence
of points of period 2, we can consider how the map in C2 \ R2 interacts with the
map in R2.
Define ∆ = {(x, y) ∈ C2|fn(x, y) ∈ R2 for some n ∈ N.

Proposition 3.1. ∆ ∩ R2 = ∅.
Proof. Suppose ∆∩R2 6= ∅. Then there exists (x0, y0) ∈ U such that F (x0, y0) ∈ R2.
Then F 2(x, y) ∈ R2 since F (xr, yr) ∈ R2 ∀(xr, yr) ∈ R2.

(3.11)
F 2(x0, y0) = (x2, y2) = (y1, y

2
1 + x1 + c) = (y2

0 + ax0 + c, (y2
0 + ax0 + c)2 + ay0 + c)

Since y2
0 + ax0 + c is real, and (y2

0 + ax0 + c)2 + ay0 + c is real, it follows that
(y2

0 + ax0 + c)2 + c is real, ay0 is real, which implies that y0 is real.
But since y0 is real, y2

0 +c is also real, so x0 must be real. So (x0, y0) /∈ U . ⇒⇐ ¤
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This permits us to consider only points initially in R2when studying the dynamics
of the system, which is particularly useful when considering the stable and unstable
manifolds of a saddle point.

Lemma 3.3. There are no points of period 2 for F (x, y) ∈ FP .

Proof. If there are periodic points of period 2 then they must satisfy the following
system of equations:

(3.12)
x = y2 + ax + c
y = (y2 + ax + c)2 + ay + c

So,

(3.13)
y = x2 + ay + c

y = x2+c
1−a

Substituting for y,

(3.14)

x =
(

x2+c
1−a

)2

+ ax + c

(1− a)2x = (x2 + c)2 + (1− a)2ax + c
0 = x4 + 2cx2 − (1− a)3x + c((1− a)2 + c)
0 = (x2 + (1− a)x + ((1− a)2 + c)(x2 − (1− a)x + c)

Since the equation 0 = x2 − (1 − a)x + c corresponds to the fixed points, if there
are points of period 2 they must satisfy the equation

(3.15) x2 + (1− a)x + ((1− a)2 + c) = 0

But consider the discriminant to (3.15):

(3.16)
(1− a)2 − 4(1)[(1− a)2 + c] ≥ 0
−3(1− a)2 − 4c ≥ 0
−3(1−a)2

4 ≥ c

Which implies that F (x, y) /∈ FP . ⇒⇐
¤

Theorem 3.1. The two fixed points, t, an attracting point, and p, a saddle point,
are the only periodic points for F in R2.

Proof. d(f) = lim
n→∞

(2n)
1
n = 2.

By Theorem 2.2, J+ = W s
C2(p) and J− = Wu

C2(p). By definition, if a point is in
Wu
C2(p)∩R2 then it must attract to p under backwards iteration, so Wu

C2(p)∩R2 =
Wu
R2(p).

Assume ν is a periodic point. By Theorem 2.9, since |det Df | = a < 1, int K− = ∅.
Because the orbit of a periodic point must be bounded under backwards iteration,
ν ∈ K− ⊂ ∂K− = J− = Wu(p).
Since, by the unstable manifold theorem, Wu(p) can be parameterized by smooth
curves, if q ∈ J \ {t} \ {p} then

Case 1: q ∈ Wu(p)
fn(ν) → p as n →∞.
∴ ν is not periodic. ⇒⇐
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Case 2: q ∈ J− \Wu(p)
Since Wu(p) is a smooth curve, q is one of at most two limit points1 of
Wu(p) that is not in Wu(p).

Case A: Let q be a fixed point. Then there are three fixed points. But
under F−1(x, y),

(3.17)
{

x−1 = 1
a (y0 − x2

0 − c)
y−1 = x0

Since x−1 = x0 and y−1 = y0 for a fixed point, x0 = 1
a (x0 − x2

0 − c).
Hence the existence of three fixed points violates the Fundamental
Theorem of Algebra.

Case B: Let q be a periodic point.
Denote the other limit point of Wu(p) not in Wu(p) by q′. Then if q is
periodic, it must be of period 2, or else there will be a point in Wu(p)
in its orbit. But there are no points of period 2 by Lemma 3.3. ⇒⇐

So there are exactly two periodic points, which are the fixed points.
¤

Lemma 3.4. J ∩ R2 ⊂ {t, p}, where t is the attracting point and p is the saddle
point.

Proof. By Theorem 2.7, Ω(f) = J ∪ {α1, . . . , αm}, so J ∩ R2 ⊂ Ω(f) ∩ R2 =
{t, p}. ¤
Lemma 3.5. Let r ∈ R2 and m ∈ C2 \ R2. Then |fk(m)− fk(r)| → 0 as k →∞
implies that F k(r) → p or F k(r) → t.

Proof. Consider Theorem 2.6. When r ∈ J or r ∈ Per(F ), r is a fixed point. So
consider following cases:

Case 1: m ∈ J \ Per(F )
Since J is F -invariant, F k(m) → R2 ⇒ F k(m) → J ∩ R2 ⊂ {t, p}.

Case 2: m ∈ Per(F )
Suppose m is periodic of prime period j. Since F k(m) ∈ C2 \ R2∀k ∈ N,

min{d(F i(m),R2)}∞i=0 = min{d(F i(m),R2)}j
i=0 = δ > 0

⇒ d(F i(m), F i(r)) ≥ d(F i(m),R2) ≥ δ > 0
⇒ |F k(r)− F k(m)|9 0 as k →∞
⇒⇐

By (iii) in Theorem 2.6, if neither of these cases hold, then F k(r) → ∞ as k →
∞. ¤
Theorem 3.2. There are no chain recurrent points of F in R2.

Proof. Suppose q is a chain recurrent point. Then its orbit is bounded under
forwards and backwards iteration by Theorem 2.3. Since it is chain recurrent, it
cannot be in the basin of attraction of the attracting point, so it must lie in W s

R2(p).
Since int K− = ∅, K−∩R2 ⊂ J−∩R2 ⊂ Wu

C2(p). Note that we can disregard points
in [(J+ ∪ J−) ∩ R2] \ (W s

R2(p) ∪ Wu
R2(p)) because from Theorem 2.6 and Lemma

3.5, they must converge to ∞ under iteration. So a point can be chain recurrent if

1This fact remains to be verified, but we are confident that it is true because the stable and
unstable manifolds are Lipschitz [8].
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and only if it is in W s
R2(p) ∩W s

R2(p). If q 6= p, then q is a homoclinic point, which
implies the existence of periodic points of infinitely many periods. But there are
no periodic points other than the fixed points. ⇒⇐ ¤

4. Results for a > 1, −(1−a)2

4 < c < (1−a)2

4

Let M = {(a, c)|a > 1, −3(1−a)2

4 < c < (1−a)2

4 }.

In our treatment of this region, we realize that the same ideas that apply to the
map under forward iteration also apply to it under backwards iteration.

Theorem 4.1. If F ∈ FM then F has a repelling fixed point, r, and a saddle point,
p.

Proof. Recall that the fixed points are given by the equations

(4.1) y+ = (1−a)+
√

(1−a)2−4c

2

y− = (1−a)−
√

(1−a)2−4c

2

and the eigenvalues of a point are given by

(4.2) λ1 = y +
√

y2 + a

λ2 = y −
√

y2 + a

Consider a > 1, y < 0. Then

(4.3)

|y +
√

y2 + a| > 1
⇒ −|y|+

√
y2 + a > 1

⇒
√

y2 + a > 1 + |y|
⇒ y2 + a > 1 + 2|y|+ y2

⇒ a−1
2 > |y|

⇒ 1−a
2 < y

Clearly, |y −
√

y2 + a| > | − √1| = 1.
For (1−a)2

4 > c > 0 it follows that y+ > 1−a
2 and y− < 1−a

2 , so y+ is an attracting
point and y− is a saddle point.

Now consider y > 0, a > 1.
Clearly y +

√
y2 + a >

√
1 > 1.

Suppose

(4.4)

|y −
√

y2 + a| ≤ 1
⇒ y −

√
y2 + a ≥ −1

⇒ y + 1 ≥
√

y2 + a
⇒ y2 + 2y + 1 ≥ y2 + a
⇒ y ≥ a−1

2

Consider the case where (a, c) ∈ U, c < 0. Suppose y+ ≥ a−1
2 . Then

(4.5)

(1− a) +
√

(1− a)2 − 4c ≥ a− 1√
(1− a)2 − 4c ≥ 2(a− 1)

(1− a)2 − 4c ≥ 4(1− a)2

−4c ≥ 3(1− a)2

c ≤ −3(1−a)2

4 ⇒⇐
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So when (a, c) ∈ U, c < 0, (y+, y+) is a repelling fixed point and (y−, y−) is a
saddle point.

¤

It follows that under backwards iteration, (y+, y+) is an attracting fixed point
and (y−, y−) is a saddle fixed point. Since

(4.6) F−1(x, y) = (
1
a
(y − x2 − c), x)

The Jacobian of which is given by

(4.7) DF−1(x, y) =
( −2x

a
1
a

1 0

)

and

|det DF−1(x, y)| =
∣∣∣∣
−1
a

∣∣∣∣ =
1
a

< 1

and
d(F−1) = 2

.
Using arguments analogous to those in §3, we can conclude the following about

U :

Theorem 4.2. The chain recurrent set (and hence Ω(f) and the set of periodic
points) for F ∈ U consists exclusively of {r, p}.

5. Periodic Points for a > 0, c < −3(1−a)2

4

This section demonstrates how the maps in FN , where N = {(a, c)|a > 0, a 6=
1, c < −3(1−a)2

4 }, have infinitely many periodic points.

Proof. In the following proof we are only considering a > 0.
Case 1: y > 0

If y ≥ 1, then clearly y +
√

y2 + a > 1. If y < 1, then

(5.1)

y +
√

y2 + a > 1√
y2 + a > 1− y

y2 + a > 1− 2y + y2

y > 1−a
2

and for all y > 0

(5.2)

|y −
√

y2 + a| ≥ 1√
y2 + a− y ≥ 1√
y2 + a ≥ 1 + y

y2 + a ≥ 1 + 2y + y2

a−1
2 ≥ y

Case 2: y < 0

(5.3)

|y +
√

y2 + a| ≥ 1√
y2 + a− |y| ≥ 1

y2 + a ≥ 1 + 2|y|+ y2

a−1
2 ≥ |y|
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If |y| ≥ 1, clearly |y −
√

y2 + a| = |y|+
√

y2 + a > 1. If |y| < 1,

(5.4)

|y −
√

y2 + a| ≤ 1
|y|+

√
y2 + a ≤ 1√

y2 + a ≤ 1− |y|
y2 + a ≤ 1− 2|y|+ y2

|y| ≤ 1−a
2

y ≥ a−1
2

Case A: 0 < a < 1
Suppose y− = (1−a)−

√
(1−a)2−4c

2 ≥ a−1
2 Then

(5.5)

(1− a)−
√

(1− a)2 − 4c ≥ a− 1
2(1− a) ≥

√
(1− a)2 − 4c

4(1− a)2 ≥ (1− a)2 − 4c
3(1− a)2 ≥ −4c
−3(1−a)2

4 ≤ c ⇒⇐
The fact that a < 1 makes (5.3) a contradiction, so |λ1| < 1, and (5.5)

and (5.4) implies that |λ2| > 1, so (y−, y−) is a saddle point.
Since a < 1, 1 − a > 0, so y+ > 0, and by (5.1) and (5.2), (y+, y+) is a
saddle point.

Case B: a > 1 Since y+ > 0, y+ +
√

y2
+ + a >

√
a > 1, so λ1 > 1.

Suppose y+ ≤ a−1
2 . Then

(5.6)

(1− a) +
√

(1− a)2 − 4c ≤ (a− 1)√
(1− a)2 − 4c ≤ 2(a− 1)

(1− a)2 − 4c ≤ 4(a− 1)2

−4c ≤ 3(1− a)2

c ≥ −3(1−a)2

4

So y+ > a−1
2 . It follows from (5.2) that λ2 < 1, so y+ is a saddle point.

Consider y−. Since a > 1,
(5.7)
|(1− a)−

√
(1− a)2 − 4c| = |1− a|+

√
(1− a)2 − 4c > |1− a|+ |1− a| = 2(a− 1)

⇒ |y−| > a−1
2

It follows from (5.3) that |λ1| < 1. Since a > 1,(5.4) becomes a contradic-
tion, so |λ2| > 1, and we have a saddle point for y−.

¤

Lemma 5.1. For F ∈ FN , F has two points of period two.

Proof. From Lemma 3.3, we know that if a point (x, y) of period 2 must satisfy the
following conditions:

(5.8) x = y2 + ax + c
y = (y2 + ax + c)2 + ay + c

Substituting for (y2 + ax + c) we see that

(5.9)
y = x2 + y + c

y = x2+c
1−a
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Hence if x is real, since a 6= 1, it is guaranteed that y is real.
From Lemma 3.3, if there is a point of period 2, then

(5.10) x2 + (1− a)x + ((1− a) + c) = 0

Clearly, it is necessary that there are two real solutions, or else the orbit of the
periodic point does not exist. So the discriminant must be greater than zero.

(1− a)2 − 4(1)((1− a)2 + c) > 0
−4c > 3(1− a)2

c < −3(1−a)2

4

So for all F ∈ FN there are periodic points of period 2. ¤

Let {p1, p2} be the fixed saddle points.

Theorem 5.1. For F ∈ FM , there are infinitely many periodic points.

Proof. Consider v1, v2, the points of period 2.

Claim: v1 is a saddle point. In calculating eigenvalues, we can treat the x
value that we solve for in the equation x+(1−a)x+((1−a)+c) = 0 as a y
value, since it should be the y value of the other point of period 2. Solving
for x:

(5.11)
x+ = (a−1)+

√
(1−a)2−4((1−a)+c)

2

x− = (a−1)−
√

(1−a)2−4((1−a)+c)

2

Case 1: a > 1
Consider x+. Then x+ > a−1

2 , so λ1 > 1 and λ2 < 1.
Case 2: a < 1

Consider x−. Then x− < a−1
2 . By (5.3) and (5.4), x− is a saddle

point.

Recall from 2.2 that if d(F ) > 1 then J+ = W s
C2(p) and J− = Wu

C2(p). It follows
that J+ ∩ R2 = W s(p1) = W s(p2) and J− ∩ R2 = Wu(p1) = Wu(p2). We will
hitherto refer to J+ ∩ R2, J− ∩ R2, and J ∩ R2as J+,J−, and J for simplicity.
Let v1 = (x+, x−) for a < 1. Suppose v2 is an attracting point. Then any point
that has an orbit that attracts to O(v2) also attracts to O(v1), which implies that
v1 is also attracting. But v1 is a saddle point by (5) ⇒⇐. From Theorem 2.7 we
know that v1 ∈ Ω(F ) = J ∪ {α1, . . . , αm}, so it must be in J . Since W s(p1) is
a smooth, continuous curve in R2, there are at most two points in J+ \ W s(p1),
and one which is p2. Similarly, p1 ∈ J+ \ W s(p2). But then these must be the
endpoints of J , which implies that v1 ∈ W s(p1). Similarly, v1 ∈ Wu(p1). So v1 is
a homoclinic point, which implies the existence of infinitely many periodic points.
An analogous argument follows for (x0, x+) for a > 1, if we consider backwards
iteration in order to invoke Theorem 2.7.

¤

This result leads us to conclude that no map in FN can have the same recurrent
dynamics (and hence cannot be topologically conjugate) to any map in FU or FP .
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6. Classifying the Parameter Space

This section confirms that the dynamics of maps in FP and FU are unique for all
a ≥ 0, by expounding on the differences between maps in these sets and all other
maps on in the parameter space.
Let Θ = {(a, c)|c > (1−a)2

4 }.
Fact 6.1. If F ∈ FΘ then F has no fixed points.

Proof. In order for a point to be a fixed point, the equation

(6.1) 0 = y2 + (a− 1)y + c

must have a real solution. But in this case the discriminant is

(6.2) (1− a)2 − 4c < 0

¤

Let T = {(a, c)|c = (1−a)2

4 }.
Fact 6.2. For F ∈ FT there is only one fixed point.

Proof. The fixed points are given by (y+, y+), (y−, y−). Furthermore, y± = (1−a)±
√

(1−a)2−4c

2 .
But (1− a)2 − 4c = 0, so y+ = y−, so on this curve the fixed points collapse to one
fixed point. ¤

Let U = {(a, c)|a = 1, c < 0}.
Fact 6.3. For F ∈ FU , the fixed two fixed points are saddle points.

Proof. For a = 1, the fixed points are given by

(6.3) y± =
(1− a)±

√
(1− a)2 − 4c

2
=
√−4c

2
=
√−c

Consider λ±. For
√−c

λ+ =
√−c +

√
| − c|+ 1 > 1

Suppose |λ−| ≥ 1. Then

|√−c−
√
| − c|+ 1| ≥ 1√

| − c|+ 1−√−c ≥ 1√
| − c|+ 1 ≥ 1 +

√−c
| − c|+ 1 ≥ 1 + 2

√−c + | − c|
0 ≥ √−c ⇒⇐

So (
√−c,

√−c) is a saddle point. Similarly, |λ−| = | − √−c −
√
| − c|+ 1| =√−c +

√
| − c|+ 1 > 1.

Suppose |λ+| ≥ 1

(6.4)
| − √−c +

√
| − c|+ 1| = −√−c +

√
| − c|+ 1 ≥ 1√

| − c|+ 1 ≥ √−c + 1
0 ≥ √−c ⇒⇐

So (−√−c,−√−c) is also a saddle point. ¤

Fact 6.4. For F ∈ FU , there are no points of period two.
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Proof. From the proof of 3.3, in order for a point (x, y)to be of period two, it must
satisfy the equation

(6.5) y =
x2 + c

1− a

whose solution is undefined for a = 1. ¤

Fact 6.5. For a = 0, F is not a diffeomorphism.

Proof. If a = 0, F (x, y) = (y, y2 + ax + c) = (y, y2 + c). Since F (1, 0) = (0, c) and
F (153642, 0) = (0, c), F is not one-to-one, and hence is not a diffeomorphism. ¤

7. A Survey of c = 0, 0 < a < 1

The following section serves an an example of the behavior of the maps in FP ,
and classifies the dynamics of the set F(a,0), 0 < a < 1. Our approach is to tile the
plane with regions and to explain the behavior of the points within these regions
under iteration as well as the relationships between the regions, in order to create
a global picture of the dynamics of the system.

In the remainder of the paper the following notation will be used:
f(x, y) = (y, y2 + ax).
Let f−1(x, y) = g(x, y) = (b(y − x2), x), where b = 1

a . Clearly, b > 1.

fn(x0, y0) = (xn, yn) denotes the nth iteration of an initial value (x0, y0).
f−1(x, y) = g(x, y) = (b(y − x2), x), where b = 1

a . Clearly, b > 1.
Define the following regions:
Q1 = {(x, y)|x ≥ 0, y ≥ 0}
Q2 = {(x, y)|x < 0, y ≥ 0}
Q3 = {(x, y)|x < 0, y < 0}
Q4 = {(x, y)|x ≥ 0, y < 0}

Define the following regions in Q1:
S1 = {(x, y)|x > 0, y > 0, y < x2}
S2 = {(x, y)|x > 0, y > 0, y > x2 + a

√
x}

S3 = {(x, y)|x > 0, y > 0, x2 + a
√

x > y > x2 + ax, x > y−y2

a }
S4 = {(x, y)|x > 0, y > 0, x < y−y2

a , x2 + a
√

x > y > x2 + ax, x < 1− a, y > 1− a}
S5 = {(x, y)|x > 0, y > 0, x > y−y2

a , x2 + ax > y > x2, y > x}
S6 = {(x, y)|x > 0, y > 0, x > y−y2

a , x2 + ax > y > x2, y < x}
S7 = {(x, y)|x > 1− a, y > 1− a, x < y−y2

a }
S8 = {(x, y)|x > 0, y > 0, x > y, y−y2

a > x}
As well as the following regions in Q1 :

T1 = {(x, y)|x > 1− a, y > 1− a}
T2 = {(x, y)|x < 1− a, y > 1− a}
T3 = {(x, y)|x < 1− a, y < 1− a}
T4 = {(x, y)|x > 1− a, y < 1− a}

The reader may verify that these regions cover the plane.
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Proposition 7.1. f has a fixed attracting point at (0, 0) and a fixed saddle point
at (1− a, 1− a).

Proof. By computation, we find that the fixed points are (0, 0) and (1− a, 1− a).
The Jacobian of f(x, y) is given by

Df((x, y)) =
(

0 1
a 2y

)

So the eigenvalues are given by y ±
√

y2 + a.
At (0, 0), λ1 =

√
a, λ2 = −√a.

Since 0 < a < 1, |√a| < 1. So (0, 0) is an attracting point.
At (1− a, 1− a),
λ1 = (1− a) +

√
(1− a)2 + a√

(1− a)2 + a =
√

1− 2a + a2 + a =
√

(1− a) + a2.
a < 1 ⇒ (1− a) > 0 ⇒ (1− a) + a2 > a2 ⇒

√
(1− a)2 + a2 > a

⇒ |(1− a) +
√

(1− a)2 + a| > |(1− a) + a| > 1.
∴ |λ1| > 1. λ2 = (1− a)−

√
(1− a)2 + a

Suppose |λ2| ≥ 1. Then a +
√

(1− a)2 + a ≥ 2
⇒

√
(1− a)2 + a ≥ 2− a

⇒ 1− 2a + a2 ≥ 4− 4a + a2

⇒ 3a ≥ 3 ⇒⇐
∴ |λ2| < 1.
So (1− a, 1− a) is a saddle point. ¤
Fact 7.1. Q1 is a trapping region under forward iteration.

Proof. x1 = y0 ≥ 0
x0 > 0 ⇒ ax0 > 0 ⇒ y1 = x2

0 + ax0 > 0.
∴ (x1, y1) ∈ Q1. ¤
Proposition 7.2. Let R = {(x, y)|x, y ∈ R, |x| < (1 − a), |y| < (1 − a)}. Then R
is the largest open square such that lim

n→∞
fn(R) = (0, 0).

Proof. Claim 1: The {ki}, defined by the y-values of f i(k0, k0), where k0 <
1− a, are strictly decreasing.

Since k0 < 1−a, it is geometrically evident that (k0, k0) ∈ {(x, y)| |y|−|y|2a <

|x|}. It follows that k1 = k2
0 + ak0 < k0.

Assume that km < km−1 for all integers less than or equal to m. Then
k2

m < k2
m−1 and km−1 < km−2.

From a Fact 7.1, we know that ki ≥ 0 for all i ∈ N. So km+1 < k2
m+akm−1 <

k2
m−1 + akm = km.

Let W0 = {(x, y)||x| < k0, |y| < k0, 0 < k0 < 1− a}.
For every (x0, y0) ∈ W0,
|y1| = |y2

0 + ax0| < k2
0 + ak0 = k1 ⇒ |x2| = |y1| < k1

Furthermore, |y1| < |k1| < |k0| and |y0| < |k0|
⇒ |y1|2 < |k1|2
⇒ |y2| < |y1|2 + a|y0| < k2

1 + ak0 = k2 < k1.
It follows that f(W0) ⊂ W1 = W0 and f2(W1) ( W2, where W2 =
{(x, y)||x| < k1, |y| < k1}.



16 XIAOLING L. ANG

Define Wn = {(x, y)||x| < kn−1, |y| < kn−1} where ki = k2
i−1 + aki−2.

Claim 2: f2(Wn−1) (Wn for all n ∈ N, n ≥ 2.
Let (x0, y0) ∈ W2. Then
|x0| < k0, |y0| < k1

⇒ |x1| = |y1| < k0 and |x2| = |y1| = |y2
0+ax0| < |y0|2+a|x0| < k2

1+k2
0 = k2.

Similarly, |y2| = |y2
1 + ay0| < k2

2 + k2
1 = k3 < k2. So f(W2) ( W2 and

f2(W2) (W3.
By induction, assume that f(Wm−1) (Wm for m = 2, 3, . . . m.

Let (x0, y0) ∈ Wm. Then |x| < km < km−1, |y| < km

⇒ |xm+1| = |ym| = |y2
m−1 + axm−1| < |ym−1|2 + a|xm−1| < k2

m + k2
m−1 =

km+1 Similarly, |ym+1| = |y2
m + aym−1| < k2

m+1 + k2
m = km+2 < km+1.

So f(Wm) ( Wm and f2(Wm) (Wm+1.
Clearly, the absolute values of (xi, yi) are dominated by the values of

(ki−1, ki) under iteration, so f j(W0) ( Wj , j ≥ 2.
Claim 3: As i →∞, ki → 0.

From a previous result L = i →∞limki ≥ 0
underseti →∞limki = lim

i→∞
k2

i−1 + lim
i→∞

aki−2 ⇒ L = L2 + aL

So L=(1-a) or L=0. Since the ki are strictly decreasing and k0 < 1 − a,
L 6= 1− a. So L = 0.

It follows that lim
i→∞

Wi = (0, 0).

Take W0 to be R. Then it follows that limn→∞fn(R) = (0, 0).
R is the largest such square because (1 − a, 1 − a) is a limit point of R, so any

open square that contains R will also contain (1− a, 1− a). Since (1− a, 1− a) is
a fixed point of f, this implies that any such square will not converge to (0, 0). ¤

Proposition 7.3. For f(x, y) = (y, y2 + ax), R = 1 + a, where R is the value
defined in Theorem 2.10.

Proof. If |x| > |y| the conditions of Lemma 2.10 are fulfilled.
Consider |x| ≤ |y|. If y is fixed, then
inf |z| = inf |y2 + ax| = inf(|y2 − a|x||) = |y|2 − a|y|
⇒ R2 − aR ≥ R
⇒ R(R− (1 + a)) ≥ 0
Since R > 0, (R− (1 + a)) > 0 ⇒ R > 1 + a.

Let m(|y|) = (|y|2−a|y|)−|y|. Then m′(x) = 2|y|−(1+a), so if |y| > 1+a, then
m(x) ≤ (|z|−|y|) is increasing, and hence is always greater than 0. So R = 1+a. ¤

Propositions 7.4 to 7.10 consider f−1(x, y) = g(x, y).

Proposition 7.4. If (x, y) ∈ Q4 then the x2i are strictly decreasing.

Proof. Let (x0, y0) ∈ Q4.
g2(x0, y0) = (b(x0 − b(y0 − x2

0))
2, b(y0 − x2

0)). Since (b(y0 − x2
0))

2 ≥ 0, x0 − (b(y0 −
x2

0))
2 ≤ x0,

⇒ x2 = b(x0 − (b(y0 − x2
0))

2) ≤ bx0 < x0. ¤

Proposition 7.5. There are no periodic points in Q3.

Proof. ‖(xi, yi)‖ is strictly increasing.
Consider k ≥ 1.
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gk(x0, y0) = (xk, yk−1)
gk+1(x0, y0) = (xk+1, xk)
For k even, by Proposition 7.4, xk+1 < xk < 0. For k odd, since (x1, y1) may be re-
indexed as (x′0, y

′
0) as the sequence of (x′i, y

′
i), by Proposition 7.4, xk+1 < xk−1 < 0.

‖gk(x0, y0)‖ = ‖(xk, xk−1)‖ =
√

(xk)2 + (xk−1)2,
and‖gk+1(x0, y0)‖ = ‖(xk+1, xk)‖ =

√
(xk)2 + (xk+1)2.

xk+1 < xk−1 < 0 ⇒ x2
k+1 > x2

k−1

⇒ ‖gk(x0, y0)‖ < ‖gk+1(x0, y0)‖.
For k = 0,
g0(x0, y0) = (x0, y0)
g1(x0, y0) = (x1, x0)
Since b > 1, y0 < 0, by0 < y0 ⇒ by0 − bx2

0 < y0 < 0.
Similar to the argument above, ‖g0(x0, y0)‖ < ‖(g1(x0, y0)‖
Since the norms of the points in the orbit are strictly increasing, there are no
periodic points in the region. ¤

Proposition 7.6. If (x, y) ∈ Q2 and y ≤ x2 then g(x, y) maps (x, y) to Q3.

Proof. Consider (x0, y0) in the region defined in the proposition.
g(x0, y0) = (b(y0 − x2

0), x0) = (x1, y1).
Clearly, y1 = x0 < 0.
y0 < x2

0 ⇒ y0 − x2
0 < 0 ⇒ x1 = b(y0 − x2

0) < 0.
∴ (x1, y1) ∈ Q3.

¤

Proposition 7.7. If (x, y) ∈ Q4 then g(x, y) ∈ Q2.

Proof. Let (x0, y0) ∈ Q4. Then y1 = x0 > 0. Since y0 < 0 and x2
0 > 0,y0 − x2

0 <
0 ⇒ x1 = b(y0 − x2

0) < 0.
∴ (x1, y1) ∈ Q2. ¤

Proposition 7.8. If (x, y) ∈ Q2 and y ≥ x2 then g(x, y) maps (x, y) to Q4.

Proof. Let (x0, y0) in the region defined in the proposition.
g(x0, y0) = (b(y0 − x2

0), x0) = (x1, y1).
Clearly, y1 = x0 < 0.
y0 > x2

0 ⇒ y0 − x2
0 > 0 ⇒ x1 = b(y0 − x2

0) > 0.
∴ (x1, y1) ∈ Q4. ¤

Corollary 7.1. There are no periodic points of odd period in Q2 or Q4.

Proof. Suppose (x0, y0) is a periodic point in Q4. Then its orbit must oscillate
between Q2 ∩ {(x, y)|y ≥ x2} and Q4. Then for every n ∈ N, its 2n iteration is in
Q4. But then its (2n + 1) iteration must be in Q2 ∩ {(x, y)|y ≥ x2}. ⇒⇐.
An analogous argument follows for (x0, y0) ∈ Q2 ∩ {(x, y)|y ≥ x2}. ¤

Proposition 7.9. If (x0, y0) ∈ Q4 then the odd xi’s are strictly decreasing.

Proof. Let (x0, y0) ∈ Q4.
f(x0, y0) = (b(y0 − x2

0), x0)
Since y0 < 0 and x2

0 > 0, x1 = b(y0 − x2
0) < 0.

f2(x0, y0) = f(x1, y1) = (b(y1 − x2
1), x1) = (x2, y2)

f3(x0, y0) = f(x2, y2) = (b(y2 − x2
2), x2) = (b(y2 − x2

2), x2) = (x3, y3) = (b(x1 −
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x2
2, y3) Since x1 < 0 and x2 > 0, x3 = y2 − x2

2 = x1 − x2
2 < x1 < 0.

Remark that the either g2n+2(x0, y0) maps into Q3 for some n ∈ N ,otherwise
g2n+2(x0, y0) maps back into Q4, so for all odd i, xi < 0.
By induction, assume that x1 > x3 > · · · < x2n−1.
g2n−1(x0, y0) = (x2n−1, x2n−2)
g2n(x0, y0) = (x2n, x2n−1)
g2n+1(x0, y0) = (x2n+1, x2n)
x2n+1 = b(x2n−1 − x2

2n < x2n−1 < 0. ¤

Proposition 7.10. There are no periodic points of even period in Q2 or Q4.

Proof. Suppose (x0, y0) is a periodic point in Q2.

Claim: x2 < x0

f2(x0, y0) = (b(y1 − x2
1), x1) = (b(x0 − x2

1), x1)
x0 < 0 ⇒ x0 − x2

1 < x0 ⇒ x2 = b(x0 − x2
1) < x0 − x2

1 < x0.

We can take the even x2i for i > 0 to be the odd x′i of the orbit of (x′0, y
′
0) = (x1, y1).

By Proposition 7.9, the x2i are strictly decreasing. So there can be no points of
even period in Q2.
Since every periodic point in Q4 must oscillate between Q2 and Q4, every orbit of
a periodic point in Q4 must contain a periodic point in Q2. But there are no such
points in Q2, so there are no periodic points in Q4. ¤

Proposition 7.11. S8 is a trapping region, and there are no periodic points in S8.

Proof. Consider (x0, y0) ∈ S8.
x0 <

y0−y2
0

a

⇒ y1 = y2
0 + ax0 < y0 = x1.

Furthermore,
y1 < y0 ⇒ y2

1 < y2
0

⇒ y2
1 + ay0 < y2

0 + ax0 = y1

⇒ y1−y2
1

a > x1.
∴ S8 is a trapping region.
It is evident that they yi are strictly decreasing in S8, which implies that there are
no periodic points. ¤

Proposition 7.12. S8 is in the basin of attraction of (0, 0).

Proof. S8 lies below the line y = 1− a.
For all (x, y) ∈ S8, y−y2

a − y > 0.
So (1− a)y > y2, and since y > 0, y > 1− a. Suppose that lim

i→∞
yi = L

Then L2 + aL = L
⇒ L = 1− a, 0.
So L = 0. ¤

Proposition 7.13. There are no periodic points in S1.

Proof. Let (x0, y0) ∈ S1.
Then y0 − x2

0 < 0 ⇒ x1 = b(y0 − x2
0) < 0.

Since y1 = x1 > 0, g(x0, y0) ∈ Q2.
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We know from a previous result that there are no periodic points in Q2, so no
periodic orbit can contain a point in S1.

¤

Proposition 7.14. There are no periodic points in S2.

Proof. Consider (x0, y0) ∈ S2.
g(x0, y0) = (b(y0 − x2

0), x0) = (x0, y1).
Then y > x2 + a

√
x

⇒ y0 − x2
0 > a

√
x0

⇒ x1 = b(y0 − x2
0) >

√
x0 =

√
y0

⇒ x2
1 > y1.

Hence g(x0, y0) ∈ S1 ∪ Q2 ∪Q3 ∪Q4, so there are no periodic points in S2.

¤

It is clear that S3, S4, S5, S6, and S7 cannot map into S1 or S2 under forward
iteration, because this would imply that they are in S1 or Q2 ∪Q3 ∪Q4, which is
a contradiction since these regions are disjoint.

Proposition 7.15. S5 maps into S5, and there are no periodic points in S5.

Proof. Let (x0, y0) ∈ S5. Then x0 < y0 = x1 and y0 < y2
0 + ax0 = y1 implies that

x1 < y1.
Suppose

(7.1) y1 ≥ x2
1 + ax1 = y2

0 + ay0 > y2
0 + ax0 = y1 ⇒⇐

So y1 < x2
1 + x1. Clearly, from y1 > x2

1.
It follows from (7.1) that y1 < y2

0 + ay0 < y2
1 + ay0 = y2

1 + x1.
∴ (x1, y1) ∈ S5.
Since the yi are monotonically increasing, there are no periodic points in S5. ¤

Proposition 7.16. S3 maps into S5.

Proof. Let (x0, y0) ∈ S3.
y1 > y0 ⇒ y1 > x1 and x1 > x0.
Suppose y1 > x2

1 + ax1

y1 ≥ y2
0 + y0 > y2

0 + ax0 = y1 ⇒⇐
So y1 < x2

1 + ax1. As in Proposition 7.15, y1 < y2
0 + ay0 < y2

1 + ay0.
∴ (x1, y1) ∈ S5. ¤

Corollary 7.2. There are no periodic points in S3.

Proposition 7.17. If (x0, y0) ∈ S6 ∩ T1 then (x1, y1) ∈ S3 ∪ S5.

Proof. Since y0−y2
0

a < x0, y1 > y0, so y1 > x1.
Suppose y1 < x2

1 + ax1.
⇒ y1 < y2

0+ay0. But x0 > y0 ⇒ y1 > y2
0+ay0 ⇒⇐. So if y1 < 1 then (x1, y1) ∈ S3.

Otherwise, (x1, y1) ∈ S5. ¤

Proposition 7.18. T1 is a trapping region.
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Proof. Let (x0, y0) ∈ T1.
Then y1 = y2

0 + ax0 > (1− a)2 + a(1− a) = 1− a.
Also, x1 = y0 > 1− a.
∴ (x1, y1) ∈ T1 ¤

Proposition 7.19. f(S7) ⊂ S6 ∩ T1.

Proof. Let (x0, y0) ∈ S7.
Then y0 > x0 by geometry. Hence x1 > x0.
y0−y2

0
a > x0 ⇒ y0 > y1 ⇒ x1 > y1.

Furthermore, y1 = y2
0+ax0 > x2

1. Since x0 > 1−a, y0 > 1−a, (x1, y1) ∈ T1∩S6. ¤

Corollary 7.3. There are no periodic points in T1.

Proposition 7.20. There are no periodic points in S4 ∪ (S6 ∩ T4).

Proof. Let (x0, y0) ∈ S4. Since S4 ⊂ T2, x1 = y0 > 1 − a. So (x1, y1) ∈ T1 ∪ T4.
If (x1, y1) ∈ T1, then (x0, y0) or (x0, y0) ∈ T4 ∪ S1 then (x0, y0) is not a periodic
point. Otherwise, (x1, y1) ∈ S6 ∩ T4. But if (x1, y1) ∈ T4 then x2 = y1 < 1 − a,
so (x2, y2) ∈ T2 ∪ T3. If (x2, y2) ∈ T3 then it is in the basin of attraction of (0, 0)
and is not a periodic point, as shown in a previous result. An analogous argument
can be made with (x0, y0) initially in S6 ∩ T4. It follows that if there are periodic
points in S4 ∪ (S6 ∩ T4), then they must alternate between T2 and T4.
Let (x0, y0) ∈ S4, and suppose x0 > x2.
Then
x0 > y2

0 + ax0

⇒ (1− a)x0 > y2
0

But since x0 < 1− a and y0 > 1− a, this is a contradiction.
So the x2i are strictly increasing in S4, and as a result the y2i+1 are strictly de-
creasing in S6 ∩ T4. ¤

Theorem 7.1. There are no periodic points of f in R2 other than the fixed points.

Proof. This follows from all the previous propositions and corollaries, since a peri-
odic point under forward iteration implies one under backwards iteration, and vice
versa.

¤

Proposition 7.21. S7 ∩W s(p) = ∅.
Proof. This follows from Propositions 7.19 and 7.17, and the strictly increasing yi’s
established in the proof of 7.15. ¤

Proposition 7.22. (S2 ∩ T1) ∩W s(p) = ∅.
Proof. Let (x0, y0) ∈ S2∩T1. If (x0, y0) ∈ M1 its orbit does not intersect the stable
set, by Proposition 7.19.
If (x0, y0) ∈ S2 ∩ T1 \M1, then y1 > y0, and y1 = y2

0 + ax0 > y2
0 = x2

1, so (x1, y1) ∈
T1∩ (S2∪S3∪S5∪S6∪S7) = T1 \ (S1∩T1). As long as the (xi, yi) ∈ S2∩ (T1 \S7),
the yi are strictly increasing. In all cases, the yi eventually increase strictly, so
S2 ∩ T1 = ∅. ¤

Proposition 7.23. (S1 ∩ T1) ∩W s(p) = ∅.
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Proof. y1 = y2
0 + ax0 > y2

0 = x2
1. From Propositions 7.21,7.22, 7.17, 7.15, and 7.16,

(S1 ∩ T1) ∩W s(p) = ∅. ¤
Corollary 7.4. T1 ∩W s(p) = ∅.
Corollary 7.5. The orbits of the points in W s(p) ∩Q1 must alternate between T2

and T4.

Proof. By Corollary 7.4 T1 ∩W s(p) = ∅. By Proposition 7.2, all points in T3 are
attracted to (0, 0) under forward iteration, so T3 ∩W s(p) = ∅.
So W s(p) ∈ S2 ∪ S4. Suppose (x0, y0) ∈ S4 ∩ W s(p). Since x1 = y0 < 1 − a,
(x1, y1) ∈ T2. Similarly, if (x0, y0) ∈ S2 ∩W s(p), x1 = y0 > 1− a, so (x1, y1) ∈ T4.
Clearly, this holds for all (yi, yi) ∈ W s(p) ∩Q1. ¤

This following theorem implies that the stable or unstable manifold cannot be
self-intersecting.

Theorem 7.2. Let Φ be a region in R2. Then fn(Φ) ⊂ int fn(∂Φ), and f−n(Φ) ⊂
int f−n(∂Φ).

Proof. Let β be a rectangle in R2 with sides parallel to the axes;
β = {(x, y)|c ≤ x ≤ d, s ≤ y ≤ t}.
Label A = (c, s), B = (c, t), C = (d, t), D = (d, s).
Then
f(AB) = (y0, y

2
0 + ac) = (x1, x

2
1 + ac), s < x1 < t)

f(CD) = (y0, y
2
0 + ad) = (x1, x

2
1 + ad), s < x1 < t)

f(AD) = (s, s2 + ax0), c < x0 < d)
f(BC) = (t, t2 + ax0), c < x0 < d)
Let (xβ , yβ) ∈ β. Then f(xβ , yβ) = (yβ , y2

β + axβ) = (xβ1, yβ1.
xβ > c ⇒ yβ1 = y2

β + axβ > y2
β + ac

xβ < d ⇒ yβ1 = y2
β + axβ < y2

β + ac

And clearly, s < yβ = xβ1 < t. So f(β) ⊂ int f(∂β)

This argument can be extended to show that fn(Φ) ⊂ int fn(∂Φ)
Φ can be covered by a finite number of (not necessarily equal) βi whose interiors

do not intersect. As n →∞,
n⋃

i=1

βi → Φ, and the parts of the perimeters of the βi

that are not common between two βi approximate the boundary of Φ.

From above, f(βi) ⊂ int f(∂βi) for all i. Since f is C∞, the image of a

closed curve remains closed and the image of
n⋃

i=1

βi remains connected, so the

image of points on its boundary are boundary points in its image under f . So

f(∂
n⋃

i=1

βi) ⊂ int f(
n⋃

i=1

βi).

This implies that f(Φ) ⊂ int f(∂Φ). This process can be repeated infinitely
often, by partitioning the fn(Φ) with rectangles, βin, as was done for the base
case. It follows that fn(Φ) ⊂ int fn(∂Φ).

An identical process can be followed for f−1, since if we impose the restriction
that either c ≥ 0, d > 0, or c < 0, d ≤ 0, then
f−1(AB) = (b(y − c2), c), s < y < t
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f−1(CD) = (b(y − d2), d), s < y < t
f−1(AD) = (b(s− x2), x), c < x < d
f−1(BC) = (b(t− x2), x), c < x < d
Let (xβ , yβ) ∈ β. f−1(xβ , yβ) = (b(yβ − x2

β), xβ) = (xβ1, yβ1), where b = 1
a .

Clearly, c < xβ = yβ1 < d.
For c ≥ 0, d > 0, c < xβ < d ⇒ b(yβ − c2) > b(yβ − x2

β) > b(yβ − d2), and for
c < 0, d ≤ 0,c < xβ < d ⇒ b(yβ − c2) < b(yβ − x2

β) < b(yβ − d2).
Hence f−1(β) ⊂ int f−1(∂β)

¤
Corollary 7.6. W s(p) ∩Wu(p) = {p}
Proof. Suppose (x0, y0) ∈ (W s(p) ∩Wu(p)) \ {p}.
Then (x0, y0) is a homoclinic point. This implies the existence of periodic points
of infinitely many periods. But there are no periodic points other than the fixed
points. ⇒⇐ ¤

Since for consecutive iterations of a point (x0, y0), d(f(x0, y0), f(x0, y0)) = 0 < ε
for all ε > 0, the definition of a chain recurrent point can be stated as follows:

Definition 7.1. Let F be a diffeomorphism. A point x is chain recurrent for F ,if,
for any ε > 0, there are points x = x0, x1, x2, . . . , xk = x, such that
|F (xi−1)− xi| < ε
for each i.

Lemma 7.1. Suppose Φ is a trapping region under f (f−1) where the yi (xi) are
strictly increasing(decreasing), and whose boundaries are not determined by lines
parallel to the axes. Then there are no chain recurrent points in Φ.

Proof. Suppose (x0, y0) ∈ Φ is chain recurrent. Let f(x0, y0) = (x′0, y
′
0). Construct

Υ = {(x, y)|y0 ≤ y ≤ y′0}. Consider Υ ∩ Φ. Since Υ ∩ Φ is a closed subset of R2,
it is compact. By compactness, ∀(x̂0, ŷ0) ∈ Υ ∩ Φ, for some δ > 0, ŷ0

′ > y0 + δ.
Choose ε < δ

2 .
Consider (x1, y1), as in Definition 7.1. Then

Case 1: (x1, y1) ∈ Υ ∩ Φ.
Then y′1 > y1 > y0 + δ, so y2 cannot be in an ε-neighborhood of y0.

Case 2: (x1, y1) /∈ Υ ∩ Φ.
Then y1 > y′0. So y′1 > y1 > y′0 > y0 + δ, so y2 cannot be in an ε-
neighborhood of y0.

By induction, it follows that either
• (xi, yi) ∈ Υ ∩ Φ

or
• yi > y′0.

So d[(x0, y0), (xi, yi)] ≥ |yi − y0| > δ, so (xi, yi) /∈ Nε(x0, y0), so there are no chain
recurrent points in Φ. ¤
Lemma 7.2. Suppose Γ is a trapping region under f−1 (f) where the norms of
the iterates are strictly increasing(decreasing). Then there are no chain recurrent
points in Γ.
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Proof. Suppose (x0, y0) ∈ Γ is chain recurrent. Let f−1(x0, y0) = (x′0, y
′
0). Con-

struct Ψ = {(x, y)|‖(x0, y0)‖ < ‖(x, y)‖ < ‖(x′0, y′0)‖}. Consider Γ ∩Ψ. Since Γ ∩Ψ
is a closed subset of R2, it is compact. By compactness, ∀(x̂0, ŷ0) ∈ Γ∩Ψ, for some
δ > 0, ‖(x̂0, ŷ0)‖ > ‖(x0, y0)‖+ δ. Choose ε < δ

2 .
Consider (x1, y1), as in Definition 7.1. Then

Case 1: (x1, y1) ∈ Γ ∩Ψ.
Then ‖(x′1, y′1)‖ > ‖(x1, y1)‖ > ‖(x0, y0)‖ + δ, so (x2, y2) cannot be in an
ε-neighborhood of y0.

Case 2: (x1, y1) /∈ Γ ∩Ψ.
Then ‖(x1, y1)‖ > ‖(x′0, y′0)‖. So ‖(x′1, y′1)‖ > ‖(x1, y1)‖ > ‖(x0, y0)‖ + δ,
so y2 cannot be in an ε-neighborhood of y0.

By induction, it follows that either

• (xi, yi) ∈ Γ ∩Ψ
or

• ‖(x1, y1)‖ > ‖(x′0, y′0)‖.
So d[(x0, y0), (xi, yi)] ≥ |yi − y0| > δ, so (xi, yi) /∈ Nε(x0, y0), so there are no chain
recurrent points in Γ. ¤

Theorem 7.3. There are no chain recurrent points of f in R2.

Proof. If the orbit of (x0, y0) ∈ A alternates between disjoint regions A and B
with increasing (decreasing) yi (xi) in A, since ε can be chosen so that ε <
inf d[(x0, y0), ∂B], so all odd iteration will not be in an ε-neighborhood of (x0, y0),
and Lemma 7.1 can be applied to even iterations. In light of the strictly increasing
(decreasing) arguments made in the proof of Theorem (where we show there are
no periodic points), and Lemma 7.1 and Lemma 7.2, there are no chain recurrent
points of f in R2. ¤

8. Future Questions

Since this research was conducted over an eight week summer program, many
questions remain. The project has furnished us with an overview of the recurrent
dynamics in R2for the maps F in the parameter space a > 0 and −3(1−a)2

4 < c <
(1−a)2

4 , but we seek to extend this result by proving,

Conjecture 8.1. All maps in FP are structurally stable.

Conjecture 8.2. All maps in FU are structurally stable.

Conjecture 8.3. All maps in the FP are topologically conjugate.

Conjecture 8.4. All maps in the FU are topologically conjugate.

Conjecture 8.5. All maps in FP under forward iteration are topologically conju-
gate to maps in FU under backwards iteration.

The approach we are currently pursuing to prove Conjectures 8.3 and 8.4 involves
proving Conjectures 8.1 and 8.2 by compactifying R2in a manner that is consistent
with the dynamics of F , and appealing to
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Theorem 8.1. [7] Let M be a compact C∞ manifold without boundary, and for
r ≥ 1 let Diff(M) be the set of Cr diffeomorphisms of M with the uniform Cr

topology. Consider F ∈ Diff(M) which satisfies
(1) Ω(f) is finite,

(2) Ω(f) is hyperbolic,

(3) Transversality Condition.
Then f is structurally stable.

Furthermore, we seek to construct conjugacies between maps of the families
F(a,0), 0 < a < 1 and F (a, 0), a > 1.

Other potential questions include classifying the dynamics for maps in regions
of the parameter space where a < 0, on the line x = 1, and for regions where
c > (1−a)2

4 .

We shall continue pursuing these questions through the remainder of the summer
and into the academic year.
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