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Abstract. This paper is a study in the necessary and sufficient conditions of
a map for the existence of f -invariant δ-scrambled sets. It has been shown [3]
that all turbulent maps have such sets. Here, we give our own version of the
proof that all strictly turbulent maps have such sets. We go on to show that
any map with an f -invariant δ-scrambled set is chaotic, and give an example
of a map with such a set that has no periodic points of odd period.
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1. Introduction

Definition 1. A δ-scrambled set for a map f : I → I is an uncountable set S ⊂ I
such that given δ > 0, fixed,

(1) for every s1, s2 ∈ S with s1 6= s2,

(1) lim sup
n→∞

d[fn(s1), fn(s2)] ≥ δ,

(2) lim inf
n→∞

d[fn(s1), fn(s2)] = 0,

(2) for any s ∈ S and any periodic point z,

(3) lim sup
n→∞

d[fn(s), fn(z)] ≥ δ.

Such a set S is f -invariant if for any s ∈ S and any n ≥ 0, fn(s) ∈ S.

Definition 2. A map f : I → I is turbulent if there exist compact subintervals
J,K with at most one common point such that

J ∪K ⊆ f(J) ∩ f(K).
f is strictly turbulent if J and K can be chosen disjoint.

Definition 3. A map f : I → I is chaotic if the following equivalent conditions
hold for f :

(1) f has a periodic point whose period is not a power of 2,
(2) fm is strictly turbulent for some positive integer m,
(3) fn is turbulent for some positive integer n.

Block and Coppel term the following a turbulence stratification:
S1 ⊂ T1 ⊂ P3 ⊂ P5 ⊂ ... ⊂ S2 ⊂ T2 ⊂ P6 ⊂ P10 ⊂ ... ⊂ S4 ⊂ T4 ⊂ P12 ⊂ P20 ⊂

... ⊂ K ⊂ ... ⊂ P8 ⊂ P4 ⊂ P2 ⊂ P1

where Sk designates the set of maps f such that fk is strictly turbulent, Tk the
set of maps f such that fk is turbulent, Pk the set of maps with periodic points of
period k, and K the set of all chaotic maps. The goals of this project are twofold:

(1) to determine whether containment in any one of these sets implies the
existence of an f -invariant δ-scrambled set for that map.

(2) to determine whether all maps with f -invariant δ-scrambled sets are con-
tained in one of the sets listed in the above stratification.

Before we begin dealing with f -invariant δ-scrambled sets, we’ll answer the above
questions for general δ-scrambled sets. In order to do that, we must recognize a
certain subset of the non-chaotic maps:

Definition 4. A point x ∈ I is approximately periodic if for every ε > 0, there
exists a periodic point y and a positive integer N such that

d[fn(x), fn(y)] < ε for all n > N .

Definition 5. A map f : I → I is uniformly non-chaotic if every point x ∈ I is
approximately periodic.

Block and Coppel show that a uniformly non-chaotic map is non-chaotic.
It follows from the definitions that no uniformly non-chaotic map can have a

δ-scrambled set, for if f : I → I is uniformly non-chaotic, then given any δ we can
choose an ε < δ and for any x ∈ I we can find a periodic point y of f such that
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lim sup
n→∞

d[fn(x), fn(y)] < ε < δ.

So no x ∈ I could satisfy (2). Furthermore, it is known that all chaotic maps and
non-chaotic maps which are not uniformly non-chaotic do have δ-scrambled sets
[Propositions VI.26 and VI.27 of [1]]. Thus being either chaotic or non-uniformly
non-chaotic is both a necessary and a sufficient condition for a map to have a
δ-scrambled set.

2. Results

2.1. Sufficient Conditions for the Existence of f-Invariant δ-Scrambled
Sets. As we have complete knowledge about the maps in which δ-scrambled sets
can and do exist, we now turn our attention to f -invariant δ-scrambled sets. It
has been shown [3] that all turbulent maps have f -invariant δ-scrambled sets. We
have a version of the weaker result that all strictly turbulent maps have f -invariant
δ-scrambled sets.

Proposition 1. For a strictly turbulent map f : I → I, there exists a subset S
of I such that for some fixed δ ≥ 0, S is both δ-scrambled and f -invariant. i.e., S
satisfies (1), (2), and (3), and given any s ∈ S and any n ≥ 0, fn(s) ∈ S.

Proof. Suppose f : I → I is strictly turbulent. Then there are disjoint, compact
intervals I0, I1 ⊆ I such that I0 ∪ I1 ⊆ f(I0) ∩ f(I1). Since I0 and I1 are disjoint,
d[I0, I1] > 0. Let δ = d[I0, I1]/2. For ai=0 or 1, let Ia1a2 be the subinterval of
minimum length of Ia1 that is mapped to Ia2 (i.e., f(Ia1a2) = Ia2). Similarly,
let Ia1...ak

be the subinterval of minimum length of Ia1...ak−1 that is mapped to
Ia2...ak

. Let Σ be the set of all infinite sequences of 0’s and 1’s, and for α ∈ Σ,
define Iα as above. Let σ be the shift operator, where σ : Σ → Σ is given by
σ(a1, a2, a3, ...) = (a2, a3, ...). Let X ⊆ I be the set of all endpoints of the Iα, and
define h : X → Σ by h(x) = α if x ∈ α. Since Iα has at most two endpoints (and
only one if it is a point rather than an interval), each α is the image of at most two
x ∈ X. By Proposition II.15 of [1], h is continuous and h ◦ f(x) = σ ◦ h(x)

Let β ∈ Σ be given by (b1, b2, b3, ...) and consider the sequences of the form
γβ = (0, b1, 1, 1, b1, b2, 0, 0, 0, b1, b2, b3, ...). Let xβ be the smaller x ∈ X such that
h(xβ) = γβ (if Iβ is a point, then there is only one such x). Consider the set
S = {fn(xβ)|n ≥ 0}.

This set certainly is certainly f -invariant, for if x ∈ S, then x = fm(xβ) for some
m ≥ 0 and some xβ . Then for any n ≥ 0, fn(x) = fn+m(xβ), and since n,m ≥ 0,
n + m ≥ 0, and fn+m(xβ) ∈ S as well.

Now consider s1, s2 ∈ S, s1 6= s2. Show that (1) holds.
(1) Suppose s1 = fm(xβ), s2 = fm(xβ′)

Since s1 6= s2, xβ 6= xβ′ , and since we have chosen one x ∈ X such that
h(x) = α, for every α ∈ Σ, β 6= β′, i.e., there exists some k such that
bk 6= b′k. So for all n ≥ k, d[fn2−m+k−1(s1), fn2−m+k−1(s2)] ≥ 2δ. So we
can take a sequence of iterations of f that are n2−m+k−1 for n ≥ k (with
k and m fixed as above), and the distance between the images of s1 and s2

for these iterations is greater than or equal to 2δ, because the images will
be in different intervals. So lim sup

n→∞
d[fn(s1), fn(s2)] ≥ 2δ > δ.

(2) Suppose s1 = f `(xβ), s2 = fm(xβ′), and suppose, without loss of general-
ity, that m > `
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fn2−m(s1) ∈ Ib1 , for all n such that n2 > m. b1 = 0 or 1 (b1 is fixed).
fn2−m(s2), n > m− `, is alternately contained in I0 and I1.
So there is an infinite sequence of n’s, n > m−`, such that d[fn2−m(s1), fn2−m(s2)] ≥
2δ. So lim sup

n→∞
d[fn(s1), fn(s2)] ≥ 2δ > δ

These two cases cover every possible pairing of elements in S, since any two elements
are shifted from the original form xβ either by the same amount or by different
amounts.

Consider again s1, s2 ∈ S, s1 6= s2. Show that (2) holds.

(1) Suppose s1 = fm(xβ), s2 = fm(xβ′)
Then, for n such that n2 − n > m,

lim
n→∞

d[fn2−n−m(s1), fn2−n−m(s2)] = 0.

So lim inf
n→∞

d[fn(s1), fn(s2)] = 0, as required.

(2) Suppose s1 = f `(xβ), s2 = fm(xβ′), and suppose, without loss of generality,
that m > `.
Then, for n such that n2 − n > `, n > m− `,

lim
n→∞

d[fn2−n−`(s1), fn2−n−`(s2)] = 0.

So lim inf
n→∞

d[fn(s1), fn(s2)] = 0.

As before, these two cases cover every possible pairing of elements in S.
Now consider s ∈ S and periodic point z. Show that (3) holds. Suppose s =

fm(xβ), z is periodic of period p. Then for n > p + 1, n2 − n > m, there is
some multiple of p contained in the interval of integers [n2 −m − n, n2 −m − 1].
Moreover, for n such that n2 − n > m, fn2−m−n(s) ∈ Iα, where α is a sequence
whose first n entries are either all 0 or all 1 (this alternates with n). So given a
sequence of k such that k is a multiple of p and k ∈ [n2 − m − n, n2 − m − 1]
for some n > p + 1, n2 − n > m, fk(s) alternates between being contained in I0

and I1. For such k, however, fk(z) = z, so the image of z is fixed under this
sequence of iterations. z must either be closer to one of I0, I1, or halfway between
them. Either way, there is a sequence of n (choose alternating values of the k
mentioned above: those such that fk(s) ∈ I0 if z is closer to I1, or those such that
fk(s) ∈ I1! if z is closer to I0. If z is halfway between I0 and I1, then we can take
the entire sequence of multiples of p contained in intervals [n2−m−n, n2−m− 1]
for n > p+1, n2−n > m.) such that d[fn(s), fn(z)] ≥ δ for all n in that sequence.
Thus lim sup

n→∞
d[fn(s), fn(z)] ≥ δ, as required. ¤

2.2. Necessary Conditions for the Existence of an f-Invariant δ-Scrambled
Set. We now explore the necessary conditions of a map for the existence of an f -
invariant δ-scrambled set.

Proposition 2. A map f : I → I that has an f -invariant δ-scrambled set has
periodic points of periods 2 and 2r for all positive, even r.

Proof. Suppose that f : I → I has an f -invariant δ-scrambled set S, i.e., S ⊂ I
is uncountable, f -invariant, and satisfies (1), (2) and (3) for some fixed δ > 0.
Suppose, further, that for some r ≥ 1, fr does not have a periodic point of period
2. Then, by Proposition VI.1 of [1], for every c ∈ I, {fkr(c)} converges to some
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fixed point of fr. Choose s ∈ S ⊂ I, and let w be the fixed point of fr such that
{fkr(s)} → w.

Since f is uniformly continuous, f(fkr(s)) → f(w) as fkr(s) → w. Similarly
(by repeated composition of the continuous f), for any n ≥ 0, fn(fkr(s)) →
fn(w) as fkr(s) → w. Therefore, for any n ≥ 0, lim sup

k→∞
d[fn(fkr(s)), fn(w)] =

lim
k→∞

d[fn(fkr(s)), fn(w)] = 0.

There are r distinct “sub-trajectories” of s: {fkr(s)}, {fkr+1(s)}, ..., {fkr+(r−1)(s)}.
For any n > 0, fn(s) falls into exactly one of these sub-trajectories, since n can be
written as kr + ` with ` ∈ {0, 1, ..., r− 1} in exactly one way. As seen above, by the
uniform continuity of f , for any ` ∈ {0, 1, ..., r − 1},

{fkr+`(s)} → f `(w).

So for each {fkr+`(s)} and any ε > 0, there is a Kε,` such that for all k > Kε,`,
d[fkr+`(s), f `(w)] < ε. Take the set of all such Kε,`, and choose its maximum: call
it Kε,max. Then, for all k > Kε,max and all `, d[fkr+`(s), f `(w)] < ε. Moreover,
for any n such that n−`

r > Kε,max (where ` depends on n: ` = n (mod r)),
d[fn(s), fn(w)] < ε. This can be done for any ε > 0, so

lim sup
n→∞

d[fn(s), fn(w)] = lim
n→∞

d[fn(s), fn(w)] = 0.

However, s ∈ S and since w is fixed for fr, it is periodic for f , so by (2) above,
lim sup

n→∞
d[fn(s), fn(w)] ≥ δ > 0. Thus we have a contradiction, and so fr does have

a periodic point of period 2. This point will have a prime period for f that divides
2r. If its prime period divides r, then it would be fixed by fr, which it is not. Thus
its prime period for f can only be 2 or 2r. If r is even, 2|r, so the point cannot have
prime period 2, and must instead have prime period 2r. If r is odd, it is possible
that the point have prime period 2 for f . So we know that f has periodic points of
periods 2 and 2r for every positive, even r. ¤

Corollary 1. If f : I → I has an f -invariant δ-scrambled set, f is chaotic.

We now know that any f ∈ T1 has an f -invariant δ-scrambled set, and that if
f has an f -invariant δ-scrambled set, then f ∈ P12 ⊂ K. We continue to look for
further restrictions on the type of map that can have an f -invariant δ-scrambled
set - i.e., is there a proper subset of P12 that contains all such maps?
The following theorem appears in [1]:

Theorem 1. Suppose that, for some c ∈ I and some n > 1,
fn(c) ≤ c < f(c)

(1) If n is odd, then f has a periodic point of period q, for some odd q satisfying
1 < q ≤ n.

(2) If n is even, then at least one of the following alternatives holds:
(a) f has a periodic point of period q, for some odd q: 1 < q ≤ n

2 + 1
(b) fk(c) < f j(c) for all even k and all odd j with 0 ≤ j, k ≤ n.

So if we can show that any f : I → I with an f -invariant δ-scrambled set has
points x ∈ I such that the above inequality holds for some odd n, or for some even
n for which (2a) is satisfied, then we will know that these maps have periodic points
for some odd period.
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Lemma 1. If f : I → I has an f -invariant δ-scrambled set, then there are un-
countably many x ∈ I for which there is some n > 1 such that either

(4) fn(x) < x < f(x)

or

(5) f(x) < x < fn(x)

Proof. Suppose f : I → I has an f -invariant δ-scrambled set S, and that there is
no x ∈ I such that, for some n > 1, either (1) or (2) holds. Then, in particular,
for s ∈ S [s not fixed] if f(s) > s, then there is no n > 0 such that fn(s) ≤ s,
and if s > f(s), then there is no n > 0 such that fn(s) ≥ s. So if s < f(s), then
for all n > 0, s < fn(s), and if s > f(s), then for all n > 0, s > fn(s). The
same applies for every fk(s), k > 0, since these are all members of S. That is, if
fk(s) < fk+1(s), then for all ` > k, fk(s) < f `(s), and if fk(s) > fk+1(s), then for
all ` > k, fk(s) > f `(s). Then, by definition, {fk(s)} is bimonotonic.

Definition 6. [1] A sequence {xk} of real numbers is bimonotonic if for every
m ≥ 0, either xk > xm for all k > m, or xk = xm for all k > m, or xk < xm for
all k > m.

Here we take xk = fk(s). Following the statement of the definition of bimono-
tonic, Block and Coppel assert: “A sequence {xk} is bimonotonic if and only if,
for some c ∈ [−∞,∞], the terms xk < c form an increasing sequence, and the
terms xk > c form a decreasing sequence, and xk = c implies xk+1 = c.” Note that
here, because s is a member of an f -invariant δ-scrambled set and is not fixed, it
is certainly not eventually fixed, so for no k1, k2 do we have fk1(s) = fk2(s). We
are dealing just with strict inequalities within the trajectory of s.

Since we have some c ∈ I (since all the xk in question are members of I) as
described above, the orbit of s is divided into at most two bounded, monotonic
sequences. In fact, we know that the orbit cannot be a single monotonic sequence
(note that monotonicity is a stronger condition than bimonotonicity, and in the case
of a sequence being monotonic, we could take c to be some value either entirely
below or entirely above the sequence, depending on whether it was increasing or de-
creasing. c could be one of the endpoints of I, for example.) because then the entire
orbit would converge (all bounded monotonic sequences converge), and we would
have points x, y ∈ S, for example, s and f(s), such that lim sup

n→∞
d[fn(x), fn(y)] = 0,

contrary to the definition of a δ-scrambled set. For the same reason, once we di-
vide the orbit into two separate bounded, monotonic sequences, each of which must
converge, we know that they must have different limits, else the entire orbit would
converge.

Let α be the limit of the lower, increasing sequence (call it {fk(s)}), and let β be
the limit of the upper, decreasing sequence (call it {f `(s)}. Since we know α 6= β,
d[α, β] = γ > 0. Moreover, since all the points in the orbit of s are members of the
same f -invariant δ-scrambled set, we must have γ ≥ δ. (That is, the points in the
orbit will get arbitrarily close to α and β, and we need subsequences of iterations
of f such that the distances between the images of any two points in the orbit of s
converge to something ≥ δ. As we look farther and farther along in the sequence of
iterations (for both points), however, the greatest possible distance will approach
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γ (from above), so if γ < δ, we will not be able to satisfy the first condition of
δ-scrambledness.)

Because f is continuous, for any ε > 0 there is a ξ > 0 such that for x, y ∈ I such
that d[x, y] < ξ, d[f(x), f(y)] < ε. Choose ε0 < γ, and let ξ0 be the appropriate
corresponding ξ.

Because {fk(s)} → α, there is a K0 such that for n1, n2 > K0, d[fn1(s), fn2(s)] <
ξ0 (since the sub-trajectory converges, it is Cauchy), where n1 and n2 are iterates
of f such that fn1(s), fn2(s) ∈ {fk(s)}. Now suppose that there is a n > K0 such
that both fn(s), fn+1(s) ∈ {fk(s)}, but fn+2(s) ∈ {f `(s)}. (It is certainly not
the case that for all n, fn(s) and fn+1(s) lie in the same sub-trajectory, because
then s’s entire trajectory would converge. So if there are indeed n such that fn(s)
and fn+1(s) lie in the same sub-trajectory, then there must be such a pair with
fn+2(s) lying in the other sub-trajectory). Since n > K0, d[fn(s), fn+1(s)] < ξ0.
So we know also that d[f(fn(s)), f(fn+1(s))] = d[fn+1(s), fn+2(s)] < ε0 < γ.
But fn+1(s) ∈ {fk(s)}, which is an increasing sequence converging to α, and so
fn+1(!s) < α. Similarly, fn+2(s) ∈ {f `(s)}, which is a decreasing sequence con-
verging to β, and so fn+2(s) > β. Since d[α, β] = γ, d[fn+1(s), fn+2(s)] > γ. Thus
we have a contradiction when we assume that there are n > K0 such that fn(s)
and fn+1(s) lie in the same sub-trajectory.

The only other alternative is to have the orbit of s be alternating for n > K0.
That is, either for all j, k > K0, with j even and k odd, fk(s) < f j(s), or for all
such j, k, f j(s) < fk(s). But then for every n > K0, d[fn(s), fn+1(s)] > γ ≥ δ, so
lim inf
n→∞

d[fn(s), fn(f(s))] ≥ δ > 0, which contradicts the fact that s and f(s) are in
the same δ-scrambled set.

We have considered all the possibilities for a bimonotonic trajectory of a non-
fixed s ∈ S, and in each case have ended up with a contradiction. Therefore, it must
not be the case that any (non-fixed) member of the f -invariant δ-scrambled set has
a bimonotonic trajcectory. So there are points x ∈ I for which either f(x) > x and
for some n > 1, fn(x) < x, or f(x) < x, and for some n > 1, fn(x) > x. ¤

We have not shown, however, that it is impossible for every n that works to
be even with only the second condition satisfied, so there is still no guarantee that
these maps have periodic points of odd period. In fact, the following example shows
that there are maps with no periodic points of odd period greater than 1 that do
have f -invariant δ-scrambled sets.

Proposition 3. The map given by

(6) T (x) =





2x + 1, if 0 ≤ x < 1
2

−2x + 3, if 1
2 ≤ x < 1

−x + 2, if 1 ≤ x ≤ 2

has no periodic points of odd period and has a T -invariant δ-scrambled set.

Proof. First note that T : [0, 1] → [1, 2], and T : [1, 2] → [0, 1]. So even iterations of
T map these intervals onto themselves, and odd iterations of T switch the intervals.
The only point in either interval that could be mapped onto itself by an odd iteration
of T is their intersection, 1, and 1 is fixed by T . So T has no periodic points of odd
period > 1.

To show that T has a T -invariant δ-scrambled set, first note that every point in
the interval [0,1] can be written as an infinite sum
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a1
21 + a2

22 + a3
23 + ...

where for all i, ai = 0 or 1
We take Ω = {0.a1a2a3...|(∀i) ai = 0 or 1}. Then we let h : [0, 1] → Ω be given by:

(7) h(x) = .a1a2a3...

for x = a1
21 + a2

22 + a3
23 + ....

Next, note that T 2(x) : [0, 1] → [0, 1], and is given by

(8) T 2(x) =

{
−2x + 1, if 0 ≤ x < 1

2

2x− 1, if 1
2 ≤ x ≤ 1

We now construct the following topologically conjugate map, f : Ω → Ω:

(9) f(α) =

{
.ā2ā3ā4..., if a1 = 0
.a2a3a4..., if a1 = 1

where α = 0.a1a2a3..., and āi = 0 if ai = 1, and āi = 1 if ai = 0. (Note that
the first case corresponds to h−1(α) ∈ [0, 1

2 ], and the second case corresponds to
h−1(α) ∈ [ 12 , 1].) Consider the set,

S = {.01n101n201n3 ...} ∪ {.1n101n201n3 ...} ∪ {.10n110n210n3 ...} ∪ {.0n110n210n3 ...}
where n1 < n2 < n3 < ..., and ani represents a string of a’s that is nk long, for
a = 0 or 1. Furthermore, for any two points α, β ∈ S, such that α and β are not
contained in the same orbit, there are infinitely many k for which (nk)α 6= (nk)β .

Note that S is f -invariant: Suppose α ∈ S. Then there are four possible cases:
(1) α = .01n101n201n3 ..., for some n1 < n2 < n3 < .... Then f(α) =

.0n110n210n3 ... ∈ S.
(2) α = .1n101n201n3 ..., for some n1 < n2 < n3 < .... Then f(α) = .1n1−101n201n3 ... ∈

S.
(3) α = .10n110n210n3 ..., for some n1 < n2 < n3 < .... Then f(α) =

.0n110n210n3 ... ∈ S.
(4) α = .0n110n210n3 ..., for some n1 < n2 < n3 < .... Then f(α) = .1n1−101n201n3 ... ∈

S.
Note also that in each of the above cases the set of string lengths for f(α) is the
same - at least after the first string - as the set of string lengths for α. So any point
in S not in the same orbit will have infinitely many string lengths that differ from
the corresponding ones for f(α), as required for membership in S.

We will now show that S is δ-scrambled for f . First, we will show that given
any points α, β ∈ S, α 6= β, (1) holds.

First suppose that α and β are not contained in the same orbit (there is no k
such that either α = fk(β) or β = fk(α)). Then, by construction of S, there are
infinitely many k for which (nk)α 6= (nk)β . It follows that there are infinitely many
positions where one of α, β starts a new string of 0’s or 1’s where the other does
not. So we can pick infinitely many k such that fk shifts the binary expansions so
that one of them is at a new “starting point” while the other is not. Without loss
of generality, suppose fk shifts α to a new “starting point”, and β to the middle
of a string. Then we have fk(α) = .01n` ... or fk(α) = .10n` , and fk(β) = .00... or
fk(β) = .11....

(1) Suppose fk(α) = .01n` ...
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(a) Suppose fk(β) = .00.... Then
d[fk(α), fk(β)] ≥ 1

8

(b) Suppose fk(β) = .11.... Then
d[fk(α), fk(β)] ≥ 1

4

(2) Suppose fk(α) = .10n` ...
(a) Suppose fk(β) = .00.... Then

d[fk(α), fk(β)] ≥ 1
4

(b) Suppose fk(β) = .11.... Then
d[fk(α), fk(β)] ≥ 1

8 .
Since there are infinitely many k for which we can do this, and in each case, the
images of α and β under fk are at least 1

8 apart,

lim sup
n→∞

d[fn(α), fn(β)] ≥ 1
8 .

Now suppose that β = fk(α) for some k. Choose nk ≥ k, and let jk+1

be the number such that f jk+1(α) = .01nk+101nk+2 ... or .10nk+110nk+2 .... Then
f jk+1−k(α) = .1k01nk+101nk+1 ... or .0k10nk+110nk+2 ..., and f jk+1−k(β) = .01nk+101nk+2 ...
or .10nk+110nk+2 ....

(1) Suppose f jk+1−k(α) = .1k01nk+101nk+2 ....
(a) Suppose f jk+1−k(β) = .01nk+101nk+2 .... Since k ≥ 1 and nk+1 > k,

d[f jk+1−k(α), f jk+1−k(β)] ≥ 3
16

(b) Suppose f jk+1−k(β) = .10nk+110nk+2 .... Since k ≥ 1, nk+1 > k,
d[f jk+1−k(α), f jk+1−k(β)] ≥ 1

16

(2) Suppose f jk+1−k(α) = .0k10nk+110nk+2 ....
(a) Suppose f jk+1−k(β) = .01nk+101nk+2 .... Since k ≥ 1, nk+1 > k,

d[f jk+1−k(α), f jk+1−k(β)] ≥ 1
16

(b) Suppose f jk+1−k(β) = .10nk+110nk+2 .... Since k ≥ 1, nk+1 > k,
d[f jk+1−k(α), f jk+1−k(β)] ≥ 3

16

Since the above can be done for any jk for which the corresponding nk is greater
than or equal to k, there are infinitely many iterations of f for which one of the
above cases holds. Thus,

lim sup
n→∞

d[fn(α), fn(β)] ≥ 1
16 .

Two points in S are either in the same orbit or not, so we can generalize to say
that any two points, α, β ∈ S satisfy

lim sup
n→∞

d[fn(α), fn(β)] ≥ 1
16 .

Next, we show that for any points α, β ∈ S, α 6= β, (2) holds. Suppose ak0 is
the first entry of the first string of either 1’s or 0’s in α that is at least j long, and
b`0 is the first entry of the first string of either 1’s or 0’s in β that is at least j
long. Let j0 = max{k0, `0}. f j0−1(α) = .aj0aj0+1aj0+2... or .āj0 āj0+1āj0+2..., and
f j0−1(β) = .bj0bj0+1bj0+2... or .b̄j0 b̄j0+1b̄j0+2.... Without loss of generality, suppose
k0 ≥ `0, so that f j0−1(α) starts with a string of either 0’s or 1’s that is j long.
Then f j0−1(β) either starts with a string of 0’s or 1’s, or starts with a single 0 or 1
that is followed by a string of 1’s or 0’s. Furthermore, since k0 ≥ `0, the first string
in f j0−1(β) is at least j long (and if f j0−1(β) starts with a single entry, the string
that follows is longer than j). Consider the following cases:
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(1) f j0−1(β) starts with a string.
(a) f j0−1(α) and f j0−1(β) either both start with strings of 0’s or both

start with strings of 1’s. Then at least the first j entries of f j0−1(α)
and f j0−1(β) agree. Moreover, in either case, f j0(α) and f j0(β) both
start with a string of 1’s, and therefore agree with each other and with
.1̄ for at least the first j − 1 entries.

(b) One of f j0−1(α) and f j0−1(β) starts with a string of 0’s, and the other
starts with a string of 1’s. Then f j0(α) and f j0(β) both start with a
string of 1’s that is at least j − 1 long. Thus f j0(α), f j0(β), and .1̄
agree for at least the first j − 1 entries.

(2) f j0−1(β) starts with a single entry.
(a) f j0−1(β) = .10nr10nr+11... where nr+1 > nr > j. Then f j0(β) =

.0nr10nr+11..., and f j0+1(β) = .1nr−101nr+10....
(i) f j0−1(α) = .0ns10ns+11..., ns ≥ j. Then at least the first j − 1

entries of f j0(α) and f j0(β) agree. Moreover, at least the first
j − 2 entries of f j0+1(α), f j0+1(β), and .1̄ agree.

(ii) f j0−1(α) = .1ns01ns+10..., ns ≥ j. Then f j0+1(α) = .1ns−201ns+10...,
so at least the first j − 2 entries of f j0+1(α), f j0+1(β), and .1̄
agree.

(b) f j0−1(β) = .01nr01nr+10... where nr+1 > nr > j. Then f j0(β) =
.0nr10nr+11..., and f j0+1(β) = .1nr−101nr+10....

(i) f j0−1(α) = .0ns10ns+11..., ns ≥ j. Then f j0(α) = .1ns−101ns+10...,
and f j0+1(α) = .1ns−201ns+10.... So f j0+1(α) and f j0+1(β)
agree for at least the first j − 2 entries.

(ii) f j0−1(α) = .1ns01ns+10..., ns ≥ j. Then f j0(α) = .1ns−101ns+10...,
and f j0+1(α) = .1ns−201ns+10.... So f j0+1(α) and f j0+1(β)
agree for at least the first j − 2 entries.

Since, in each case, we have been able to find for any j an iterate i of f such that
f i(α) and f i(β) agree for at least the first j − 2 entries, we can find iterates of f
such that the images under that iterate agree for arbitrarily many entries. We can
also choose these iterates such that the images are at the same time converging to
.1̄. Since this “agreement” translates to “closeness” of the points, we know that for
any α, β ∈ S,

lim inf
n→∞

d[fn(α), fn(β)] = 0

Next, we suppose that γ is periodic of period k for f , and we will show that for
any α ∈ S, (3) holds.

First suppose that γ = .1̄. Since α has infinitely many 0’s, we can choose n1, n2,
n3, ... such that for all i, fni(α) = .0... (note that it may not be the case that a 0
occurs at position k in α, and fk−1(α) = .0..., but since there are infinitely many
0’s and infinitely many 1’s in α, and applying f to α either leaves the 0’s as 0’s and
the 1’s as 1’s, or switches all of them, we will always be able to find more k such
that fk(α) = .0...). For each i, d[fni(α), fni(γ)] ≥ 1

2 .
Now suppose that γ 6= .1̄. γ consists of either one block of length k that repeats,

or such a block that alternates with its “complement” block. Furthermore, since
γ 6= 1, γ has infinitely many 0’s. Suppose the first 0 occurs at position m < k.
Then fnk+m(γ) = .0..., n ≥ 0. Suppose r1, r2, r3, ... are the positions of α
where strings of lengths s1, s2, s3, ... (respectively) start (for all i, si ≥ 3). Then
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fri(α) = .1si−101si+101si+2 .... For q ≤ si − 3, fri+q(α) = .11... (the image binary
expansion starts with at least two 1’s). Since we can choose si to be as long as
we want, we can choose si > k + 3, so that for some q ≤ si − 3, ri + q = nk + m
for some n. Then, for that i and that q, fri+q(γ) = .0... and fri+q(α) = .11..., so
d[fri+q(γ), fri+q(α)] ≥ 1

4 . Since there are infinitely many ! such i,

lim sup
n→∞

d[fn(α), fn(γ)] ≥ 1
4

We have shown that S is f -invariant and δ-scrambled for f . Since f is topo-
logically conjugate to T 2, it follows that h−1(S) is T 2-invariant and δ-scrambled
for T 2. It remains to find a T -invariant, δ-scrambled set for T . We will show that
S∗ = h−1(S) ∪ T (h−1(S)) is T -invariant and δ-scrambled for T .

It is easy to see that S∗ is T -invariant: if x ∈ S∗, then x = h−1(s) or T (h−1(s))
for some s ∈ S, and T (x) = T (h−1(s)) or T (T (h−1(s))) = T 2(h−1(s)). In the
first case, T (x) ∈ T (h−1(S)). In the second case, T (x) ∈ h−1(S), since h−1(S) is
T 2-invariant.

We already know that the points in h−1(S) satisfy the δ-scrambled conditions
with respect to one another and to periodic points in [0,1]. We need to show that
they also satisfy (3) with respect to periodic points in (1,2], and that the elements of
T (h−1(S)) satisfy these same conditions with respect to one another and to h−1(S).

First, take x ∈ h−1(S) and y ∈ (1, 2]. Since the binary expansion of x, h(x), has
infinitely many 0’s, there are infinitely many k for which T 2k(x) ∈ [0, 1

2 ]. For each
of these k, T 2k(y) ∈ (1, 2], so d[T 2k(x), T 2k(y)] ≥ 1

2 . Thus,

lim sup
n→∞

d[Tn(x), Tn(y)] ≥ 1
2 .

By the same argument, given x1 ∈ h−1(S) ⊂ [0, 1] and x2 ∈ T (h−1(S)) ⊂
[1, 2], there are infinitely many k for which T 2k(x1) ∈ [0, 1

2 ], and thus for which
d[T 2k(x1), T 2k(x2)] ≥ 1

2 . Thus,

lim sup
n→∞

d[Tn(x1), Tn(x2)] ≥ 1
2 .

Now suppose that x1, x2 ∈ T (h−1(S)) ⊂ [1, 2], and show that (1) holds. Since
T (x1), T (x2) ∈ h−1(S), there is a sequence (k1, k2, k3, ...) such that lim

i→∞
d[T 2ki(T (x1)), T 2ki(T (x2))] ≥

δ. But lim
i→∞

d[T 2ki(T (x1)), T 2ki(T (x2))] = lim
i→∞

d[T 2ki+1(x1), T 2ki+1(x2)], so

lim sup
n→∞

d[Tn(x1), Tn(x2)] ≥ δ

Next suppose that x1 ∈ h−1(S) ⊂ [0, 1], x2 ∈ T (h−1(S)) ⊂ [1, 2], and show
that (2) holds. Then x2 = T (x∗2), for x∗2 ∈ h−1(S). There is a sequence (k1, k2, k3, ...)
such that lim

i→∞
d[T 2ki(x1), T 2ki(x∗2)] = 0. Furthermore, we can choose these ki so

that both orbits are converging to 1. i.e., lim
i→∞

d[T 2ki(x1), 1] = 0 = lim
i→∞

d[T 2ki(x∗2), 1].

Also note that for any x ∈ [0, 1], d[x, 1] = d[T (x), 1]. So lim
i→∞

d[T 2ki(T (x∗2)), 1] =

lim
i→∞

d[T (T 2ki(x∗2)), 1] = lim
i→∞

d[T 2ki(x∗2), 1] = 0 (since T 2ki(x∗2) ∈ [0, 1]). Thus,

lim
i→∞

d[T 2ki(x1), T 2ki(x2)] = lim
i→∞

d[T 2ki(x1), T 2ki(x∗2)] = 0, and so,

lim inf
n→∞

d[Tn(x1), Tn(x2)] = 0.
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Now suppose that x1, x2 ∈ T (h−1(S)) ⊂ [1, 2], so that x1 = T (x∗1), x2 = T (x∗2),
x∗1, x

∗
2 ∈ h−1(S), and show that (2) holds. There is a sequence (k1, k2, k3, ...)

such that lim
i→∞

d[T ki(x∗1), T
ki(x∗2)] = 0. lim

i→∞
d[T ki−1(T (x∗1)), T

ki−1(T (x∗2))] =

lim
i→∞

d[T ki(x∗1), T
ki(x∗2)]. So,

lim inf
n→∞

d[Tn(x1), Tn(x2)] = 0.

Suppose that x ∈ T (h−1(S)) ⊂ [1, 2], and y ∈ [0, 1] is periodic, and show that (3)
holds. So x = T (x∗), and, once again, d[x∗, 1] = d[T (x∗), 1]. Since x∗ ∈ h−1(S), and
1 is fixed by T , there is a sequence (k1, k2, k3, ...) such that lim

i→∞
d[T 2ki(x∗1), 1] ≥ δ.

lim
i→∞

d[T 2ki(T (x∗)), 1] = lim
i→∞

d[T 2ki(x∗), 1] ≥ δ. Also, for all i, T 2ki(T (x∗)) ∈ [1, 2],

and T 2ki(y) ∈ [0, 1]. So lim
i→∞

d[T 2ki(T (x∗)), T 2ki(y)] ≥ δ. Thus,

lim sup
n→∞

d[Tn(x), Tn(y)] ≥ δ.

Lastly, suppose x ∈ T (h−1(S)) ⊂ [1, 2], and y ∈ [1, 2] is periodic, and show
that (3) holds. T (x) ∈ h−1(S), and T (y) ∈ [0, 1]. Since y is periodic, T (y) is peri-
odic. So there is a sequence (k1, k2, k3, ...) such that lim

i→∞
d[T ki(T (x)), T ki(T (y))] ≥

δ. Since lim
i→∞

d[T ki(T (x)), T ki(T (y))] = lim
i→∞

d[T ki+1(x), T ki+1(y)],

lim sup
n→∞

d[Tn(x), Tn(y)] ≥ δ.

¤

This concludes the proof that h−1(S)∪T (h−1(S)) is T -invariant and δ-scrambled
for T , and so we have shown that there do exist maps with no periodic points of
odd period greater than 1 which do have f -invariant δ-scrambled sets.

3. Conclusion

We have established that f -invariant δ-scrambled sets occur only for maps in P12,
but also that they can occur for maps outside of Podd. This adds to our knowledge
from previous work that all maps in T1 have f -invariant δ-scrambled sets. Some
avenues for further research are, firstly, to attempt to establish that some proper
subset of P12 contains all maps with f -invariant δ-scrambled sets and, secondly, to
search for more maps with f -invariant δ-scrambled sets that lie outside of certain
sets named in the turbulence stratification. For example, the map T described
above has no periodic points of odd period, but it is in T2. If we could find such
a map that lies outside of T2, we would know that T2 does not contain all maps
with f -invariant δ-scrambled sets, and that if there is some proper subset of P12

that does contain all these maps, that set must also properly contain T2. In short,
we wish to discover which of the properties that lie between Podd and P12 in the
turbulence stratification are necessary for a map to have an f -invariant δ-scrambled
set, and which are not.
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