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Abstract

Let G be a finite abelian group and let ZS(G) and MZS(G) be the

set of zero sequences and minimal zero sequences of G, respectively. One

way of relating two zero sequences of a finite abelian group, is by using

the extraction degree. In this paper, we attempt to classify the sets of

possible extraction degrees for all combinations of two zero sequences.

These results sometimes vary depending on whether G is cyclic or not.

To begin with, we address some general properties of the extraction degree

when there are no restrictions on the zero sequences. Then, we explore

the sets of possible extraction degrees for all combinations of two zero

sequences. Ultimately, we have been able to determine most of the sets

of possible extraction degrees, when restricting one or both of the zero

sequences, as minimal zero sequences.



1 Introduction

Let G be a finite abelian group. Then, by the Fundamental Theorem of Finite

Abelian Groups, we can represent G canonically as G = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns

such that ni|ni+1 for all 1 ≤ i < s [4]. Then, the rank of G is s, and when s = 1

we simply write G = Zn. For convenience, we denote X, a sequence in G, as

X = gα1
1 gα2

2 · · · gαk

k where each gi ∈ G and gi = gj if and only if i = j for all

i, j ∈ {1, 2, . . . , k}. Each αi is the multiplicity of gi, that is, αi is the number

of times gi appears in X. The multiplicity of gi is also notated as (gi)X , so that

(gi)X = αi.

We say that X is a zero sequence of G, that is X ∈ ZS(G), if

k∑
i=1

αi · gi = 0.

The bold zero represents the zero element in G, namely (0, 0, . . . , 0). In addition,

we say X is a minimal zero sequence of G, that is X ∈ MZS(G), if there is no

proper subset of X whose sum is zero[1, 2, 3, 5].

We must introduce two other notations we use, which we adopt since they

are helpful in many of our results. First, we define the floor of a zero sequence,

and second we define the restriction of one zero sequence to another.

Definition 1.1. Given any zero sequence, X, the floor of X, denoted bXc, is

the set of all distinct elements of X, that occur at least once, repetition not

allowed.

Definition 1.2. Given any two zero sequences, X and Y , the restriction of Y

to X, denoted Y |X , is the set of all g ∈ Y such that g ∈ X, and (g)Y = (g)Y |X .

1.1 The Extraction Degree

One avenue of study with zero sequences of finite abelian groups, that has

not been explored much, is the extraction degree. The extraction degree was

introduced in [6] and is defined as follows.

Definition 1.3. Given X, Y ∈ ZS(G), the extraction degree is given by

λ(X, Y ) = sup
{

β

α
|β ∈ Z≥0, α ∈ Z>0, βX ⊆ αY

}
where βX means β copies of X.
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We use this definition in the following example to demonstrate how the

extraction degree is found for two zero sequences.

Example 1.4. Let G = Z10. Let X = 512131 and Y = 1122315171. If we let

β = 1 then in order for βX ⊆ αY , α ≥ 1 and the maximum β
α = 1

1 . If we let

β = 2, then in order for βX ⊆ αY , α ≥ 2 and the maximum β
α = 2

2 = 1. Since

this is true for all β ≥ 0, λ(X, Y ) = 1.

Throughout this paper we look at the set of all extraction degrees possible

when X and Y are confined to certain subsets of ZS(G). If X is confined to

A ⊆ ZS(G) and Y is confined to B ⊆ ZS(G), then λ(A,B) will represent the

set of all possible extraction degrees where X ∈ A and Y ∈ B. For example, if

X, Y ∈ MZS(G), then λ(MZS(G),MZS(G)) is the set of extraction degrees

for X, Y ∈ MZS(G).

Since little to nothing is known about the extraction degree of zero sequences

of finite abelian groups, we first introduce some properties of the extraction

degree, many of which are useful throughout this paper. Then, we look at what

sets of extraction degrees are possible for all combinations of two zero sequences,

including when either X or Y is restricted as a minimal zero sequence or fixed.

2 Properties of the Extraction Degree

2.1 General Properties

We begin with five very general properties of the extraction degree; some of

these general properties are extremely helpful when proving later results; the

properties we do not directly use in this paper may warrant further study.

This first result is used often throughout our paper. As we began studying the

extraction degree of finite abelian groups, we noticed that finding the extraction

degree using the definition was very cumbersome. Then, by discovering the

following theorem, we now have a way to calculate the extraction degree of any

two zero sequences that is much easier.

Theorem 2.1. Let X = gα1
1 gα2

2 · · · gαk

k and Y = gβ1
1 gβ2

2 · · · gβj

j where αi > 0,

βi ≥ 0, and 1 ≤ i ≤ k ≤ j. Then

λ(X, Y ) = min
{

βi

αi
|1 ≤ i ≤ k

}
.
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Proof. Let X = gα1
1 gα2

2 · · · gαk

k and Y = gβ1
1 gβ2

2 · · · gβj

j where αi > 0, βi ≥ 0,

and 1 ≤ i ≤ k ≤ j. Let β
α = min

{
βi

αi
|1 ≤ i ≤ k

}
and let γ

δ = λ(X, Y ). So,

γX ⊆ δY . Then for all i ∈ {1, 2, . . . , k}, (gi)γX ≤ (gi)δY . Note that, (gi)X = αi

and (gi)Y = βi so (gi)γX = γαi and (gi)δY = δβi. Then, we have that γαi ≤ δβi

⇒ γ
δ ≤

βi

αi
⇒ λ(X, Y ) ≤ β

α .

Now, we show that βX ⊆ αY . Assume not. Then, there exists m ∈
{1, 2, . . . , k} such that (gm)βX > (gm)αY . Since (gm)βX = βαm and (gm)αY =

αβm we have that βαm > αβm ⇒ β
α > βm

αm
for some m ∈ {1, 2, . . . , k}, which

contradicts that β
α = min

{
βi

αi
|1 ≤ i ≤ k

}
. Thus, βX ⊆ αY . Then, by the defi-

nition of λ(X, Y ), β
α ≤ λ(X, Y ).

So, β
α ≤ λ(X, Y ) ≤ β

α . Therefore λ(X, Y ) = β
α = min

{
βi

αi
|1 ≤ i ≤ k

}
.

�

This theorem implies that there is at least one element, g, in X such that
(g)Y

(g)X
= λ(X, Y ). We call this element the critical element. The existence of a

critical element proves extremely helpful in many of our results.

Our next two general properties look specifically at factoring one zero se-

quence into the union of finitely many zero sequences. First, we will examine

what happens when X ∈ ZS(G) is factored into a finite number of zero se-

quences. Then, we will examine what happens when Y ∈ ZS(G) is factored

into a finite number of zero sequences.

Theorem 2.2. Let G be a finite abelian group. Let X, Y ∈ ZS(G). If X can be

written as X1 ∪X2 ∪ · · · ∪Xm where Xi ∈ ZS(G) for all i such that 1 ≤ i ≤ m

then
1

λ(X, Y )
≤

m∑
i=1

1
λ(Xi, Y )

.

Proof. Let X, Y ∈ ZS(G). Let X = X1∪X2∪· · ·∪Xm where Xi ∈ ZS(G) for

all i such that 1 ≤ i ≤ m, and let g be the critical element for X and Y . Then

λ(X, Y ) = (g)Y

(g)X
and and (g)X =

m∑
i=1

(g)Xi . From Theorem 2.1, λ(Xi, Y ) ≤ (g)Y

(g)Xi

for all i such that 1 ≤ i ≤ m. Then we have that

1
λ(X,Y ) = (g)X

(g)Y
=

m∑
i=1

(g)Xi

(g)Y
=

m∑
i=1

(g)Xi

(g)Y
≤

m∑
i=1

1
λ(Xi,Y ) .
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Note that if g is critical for all Xi and Y where 1 ≤ i ≤ m then the inequality

becomes an equality because λ(Xi, Y ) = (g)Y

(g)Xi
for all i such that 1 ≤ i ≤ m.

Theorem 2.3. Let G be a finite abelian group. Let X, Y ∈ ZS(G). If Y can

be written as Y1 ∪ Y2 ∪ · · · ∪ Ym where Yi ∈ ZS(G) for all i such that 1 ≤ i ≤ m

then

λ(X, Y ) ≥
m∑

i=1

λ(X, Yi).

Proof. Let X, Y ∈ ZS(G). Let Y = Y1 ∪ Y2 ∪ · · · ∪ Ym where Yi ∈ ZS(G) for

all i such that 1 ≤ i ≤ m, and let g be the critical element for X and Y . Then

λ(X, Y ) = (g)Y

(g)X
and and (g)Y =

m∑
i=1

(g)Yi
. From Theorem 2.1, λ(X, Yi) ≤

(g)Yi

(g)X

for all i such that 1 ≤ i ≤ m. Then we have that

λ(X, Y ) = (g)Y

(g)X
=

m∑
i=1

(g)Yi

(g)X
=

m∑
i=1

(g)Yi

(g)X
≥

m∑
i=1

λ(X, Yi).

�

Note that if g is critical for all X and Yi where 1 ≤ i ≤ m then the inequality

becomes an equality because λ(X, Yi) = (g)Yi

(g)X
for all i such that 1 ≤ i ≤ m.

This next general property, although not explored further in this paper,

may warrant further study as it examines the extraction degree of three zero

sequences.

Theorem 2.4. Let G be a finite abelian group, and let X, Y, Z ∈ ZS(G). Then

λ(X, Y ) · λ(Y,Z) ≤ λ(X, Z).

Proof. Let g be the critical element for X and Z. Then λ(X, Z) = (g)Z

(g)X
. From

Theorem 2.1, λ(X, Y ) ≤ (g)Y

(g)X
and λ(Y,Z) ≤ (g)Z

(g)Y
. Then

λ(X, Y ) · λ(Y,Z) ≤ (g)Y

(g)X
· (g)Z

(g)Y
= (g)Z

(g)X
= λ(X, Z).

�
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This next general property is useful when working in higher ranks of finite

abelian groups. For example, when a result is obtained for a finite abelian group

of rank 2, we are able to extend the argument to all rank, using this general

property.

Theorem 2.5. Let G and H be finite abelian groups. If there exist X, Y ∈
ZS(G) such that λ(X, Y ) = δ then there exist X ′, Y ′ ∈ ZS(H ⊕ G) such that

λ(X ′, Y ′) = δ. Moreover, if X ∈ MZS(G) then we can find X ′ ∈ MZS(H⊕G)

and if Y ∈ MZS(G) then we can find Y ′ ∈ MZS(H ⊕G).

Proof. Let X, Y ∈ ZS(G). Let X = gα1
1 gα2

2 · · · gαk

k and Y = gβ1
1 gβ2

2 · · · gβj

j

where j ≥ k. Then λ(X, Y ) = min
{

βi

αi
|1 ≤ i ≤ k

}
. Let hi = (0, gi) for all i

such that 1 ≤ i ≤ j where 0 is the zero element in H. Then, each hi ∈ H ⊕G.

Let X ′ = hα1
1 hα2

2 · · ·hαk

k and Y ′ = hβ1
1 hβ2

2 · · ·hβj

j . Then, X ′, Y ′ ∈ ZS(H ⊕ G),

and if X ∈ MZS(G) then by the way we constructed X ′, we have that X ′ ∈
MZS(H ⊕G). Similarly, if Y ∈ MZS(G), then, by the way we constructed Y ′,

we have that Y ′ ∈ MZS(H ⊕G).

Therefore, λ(X ′, Y ′) = min
{

βi

αi
|i ∈ {1, 2, . . . , k}

}
= λ(X, Y ). �

From this theorem, we have that λ(MZS(G),MZS(G)) ⊆ λ(MZS(H ⊕
G),MZS(H ⊕G)), λ(MZS(G), ZS(G)) ⊆ λ(MZS(H ⊕G), ZS(H ⊕G)), and

λ(ZS(G),MZS(G)) ⊆ λ(ZS(H ⊕G),MZS(H ⊕G)).

2.2 Zero and One

This section explores four general properties that are more specific, as these

address the properties of X and Y that yield λ(X, Y ) = 0, λ(X, Y ) = 1,

λ(X, Y ) > 1, or 0 < λ(X, Y ) < 1.

Theorem 2.6. Let X, Y ∈ ZS(G). λ(X, Y ) = 0 if and only if bXc6⊆bY c.

Proof. Let X, Y ∈ ZS(G). Let X = gα1
1 gα2

2 · · · gαk

k and Y = gβ1
1 gβ2

2 · · · gβj

j ,

where j, k ∈ Z+. Then, λ(X, Y ) = 0 if and only if βi

αi
= 0 for some gi ∈ X if

and only if βi = 0 if and only if (gi)Y = 0 and (gi)X = αi if and only if gi ∈ X

such that gi 6∈Y if and only if bXc6⊆bY c. �

Theorem 2.7. Let X, Y ∈ ZS(G). λ(X, Y ) = 1 if and only if X ⊆ Y |X and

there exists at least one element gi ∈ X where (gi)Y = (gi)X .

5



Proof. Let X, Y ∈ ZS(G). Let X = gα1
1 gα2

2 · · · gαk

k and Y = gβ1
1 gβ2

2 · · · gβj

j ,

where j, k ∈ Z+ and j ≥ k. Then, recall Y |X = gβ1
1 gβ2

2 · · · gβk

k . Then, X ⊆ Y |X
such that for some i ∈ {1, 2, . . . , k}, (gi)Y |X = (gi)Y = (gi)X if and only if
βi

αi
= 1 and βl

αl
≥ 1 for all l 6= i if and only if 1 = min

{
βm

αm
|1 ≤ m ≤ k

}
if and

only if 1 = λ(X, Y ). �

Theorem 2.8. Let X, Y ∈ ZS(G). λ(X, Y ) > 1 if and only if for all elements

gi ∈ X, (gi)X < (gi)Y = (gi)Y |X .

Proof. Let X, Y ∈ ZS(G). Let X = gα1
1 gα2

2 · · · gαk

k and Y = gβ1
1 gβ2

2 · · · gβj

j ,

where j and k are positive integers and j ≥ k. Then, recall Y |X = gβ1
1 gβ2

2 · · · gβk

k .

First, suppose that λ(X, Y ) > 1. Then, by Theorem 2.1,

min
{

βi

αi
|1 ≤ i ≤ k

}
> 1 ⇒ βi

αi
> 1 for all i such that 1 ≤ i ≤ k. Thus, βi > αi

for all i ⇒ for all elements gi ∈ X, (gi)X < (gi)Y = (gi)Y |X .

Second, suppose that for all elements gi ∈ X, (gi)X < (gi)Y = (gi)Y |X .

Then, βi > αi for all i such that 1 ≤ i ≤ k. Thus, βi

αi
> 1 for all i ⇒

min
{

βi

αi
|1 ≤ i ≤ k

}
> 1. Then, according to Theorem 2.1, λ(X, Y ) > 1. �

Theorem 2.9. Let X, Y ∈ ZS(G). 0 < λ(X, Y ) < 1 if and only if bXc⊆bY c
with at least one element gi ∈ X where (gi)Y < (gi)X .

Proof. Let X, Y ∈ ZS(G). Let X = gα1
1 gα2

2 · · · gαk

k such that α > 0 and

Y = gβ1
1 gβ2

2 · · · gβj

j , where j, k ∈ Z+ and j ≥ k. (Since, trivially, if j < k, then

bXc6⊆bY c, which implies that λ(X, Y ) = 0.)

First, let 0 < λ(X, Y ) < 1. Since 0 < λ(X, Y ), according to Theorem 2.6,

bXc⊆bY c. Now, by Theorem 2.1 min
{

βm

αm
|1 ≤ i ≤ k

}
= λ(X, Y ) < 1 ⇒ there

exists at least one gi ∈ X such that βi

αi
= λ(X, Y ) < 1. Thus, βi < αi ⇒

(gi)Y < (gi)X .

Second, let bXc⊆bY c with at least one element gi ∈ X where (gi)Y < (gi)X .

Now, as shown in Theorem 2.6, since bXc⊆bY c, λ(X, Y ) > 0. And, since for

some gi ∈ X, (gi)Y < (gi)X ⇒ βi < αi. By algebra, we now have βi

αi
< 1. Thus,

by Theorem 2.1, λ(X, Y ) ≤ βi

αi
< 1. �

2.3 X or Y Minimal Zero Sequence

As we continue to get more specific, when examining general properties of the

extraction degree, we now place restrictions on X or Y , such that one of them
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is a minimal zero sequence. In doing so, we obtain the following nine results.

The following theorem makes it possible to only look at a special subset of

the zero sequences of finite abelian groups, by creating an automorphism that

is applicable as specified in the theorem. This theorem is useful in simplifying

the proofs of later theorems.

Theorem 2.10. Let G be a finite abelian group. Let X ∈ MZS(G) such that

X = gα1
1 gα2

2 · · · gαk

k and gi = (gi
(1), gi

(2), . . . , gi
(s)) for all i such that 1 ≤ i ≤ k

where gi
(j) ∈ Znj for all 1 ≤ j ≤ s. If there exists l where 1 ≤ l ≤ k such

that αl > ns

2 then there exists an automorphism φ : G → G such that φ(gl) =

(gl
(1), gl

(2), . . . , gl
(s−1), 1).

Proof. Let X ∈ MZS(G) such that X = gα1
1 gα2

2 · · · gαk

k and

gi = (gi
(1), gi

(2), . . . , gi
(s)) for all i such that 1 ≤ i ≤ s where gi

(j) ∈ Znj for all j

such that 1 ≤ j ≤ s. Let 1 ≤ l ≤ k such that αl > ns

2 . Since X ∈ MZS(G) and

αl > n
2 , |gl

(s)| = ns. Then there exists r ∈ Zns
such that r · gl

(s) ≡ 0 (mod ns).

Let φ : G ⇒ G be defined as φ((g(1), g(2) . . . , g(s))) = (g(1), g(2), . . . , g(s−1), 1).

Since φ((1, 0, . . . , 0)) = (1, 0, . . . , 0) and φ((0, 0, . . . , 0, 1)) = (0, 0, . . . , 0, r), φ is

an automorphism, and φ(gl) = (gl
(1), gl

(2), . . . , gl
(s−1), 1). �

This next theorem and the resulting corollary construct minimal zero se-

quences in groups of rank two and higher. These specific constructions are used

often in later proofs dealing with sets of extraction degrees.

Theorem 2.11. Let G = Zn1 ⊕ Zn2 such that n1|n2.

If X = (0, 1)α(1, 1)n2−α(r, 0)1, where α ∈ {1, 2, . . . , n2} , r ≡ (n1 − [n2 − α])

(mod n1), and (r, 0) ∈ X when r > 0, then X ∈ MZS(G).

Proof. Let X = (0, 1)α(1, 1)n2−α(r, 0)1, where 1 ≤ α ≤ n2, r ≡ (n1 − [n2 −α])

(mod n1), and (r, 0) ∈ X when r > 0.

First, suppose that 1 ≤ α ≤ n2 such that n1|(n2 − α). Thus, there exists

some m ∈ Z≥0 such that m n1 = n2 − α. Now, r = n1 − (n2 − α) = n1 −
(m n1) = (1 − m)(n1) ≡ 0 (mod n1). Then, X = (0, 1)α(1, 1)n2−α. Thus,

X = α(0, 1) + (n2 − α)(1, 1) = (n2 − α, α + n2 − α) = (m n1, n2) = 0. Since the

second coordinate sums to exactly n2, X ∈ MZS(G).

Second, suppose that 1 ≤ α ≤ n2 such that n1 - (n2 − α). Since n1 -
(n2 − α), n1 ≡ (n2 − α) (mod n1) 6= 0 ⇒ 1 ≤ r ≤ (n1 − 1). Thus, X =
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(0, 1)α(1, 1)n2−α(r, 0)1 = α(0, 1) + (n2 −α)(1, 1) + (r, 0) = (n2 −α + n1 − (n2 −
α), α + n2 − α) = (n1, n2) = 0. Since the first and second coordinates sum to

exactly n1 and n2 respectively, X ∈ MZS(G). �

Corollary 2.12. Let G = Zn1⊕Zn2⊕· · ·⊕Zns where s ≥ 3 and ni|nj for all i, j

such that 1 ≤ i < j ≤ k. If X = (0, . . . , 0, 1)α(0, . . . , 0, 1, 1)nk−α(0, . . . , 0, r, 0)1,

where 1 ≤ α ≤ ns, r = (ns−1− [(ns−α)1]) (mod ns−1), and (0, . . . , 0, r, 0) ∈ X

when r > 0, then X ∈ MZS(G).

Please note that the structure and arguments from Theorem 2.11 are iden-

tical here, in Corollary 2.12. Slight notational changes are the following: The

first and the second coordinates in Theorem 2.11 are now the s − 1 and the s

coordinates, respectively, and the ith coordinates where 1 ≤ i < s − 1 contain

zeros for each element in X.

Continuing to examine what happens when either X or Y is a minimal

zero sequence generates the following results.

Theorem 2.13. If X ∈ MZS(G) where X = gα1
1 gα2

2 · · · gαk

k , then

1 ≤ αi ≤ ns for all i such that 1 ≤ i ≤ k.

Proof. Let X ∈ MZS(G) where X = gα1
1 gα2

2 · · · gαk

k . Since X is a minimal

zero sequence the maximum number of times one elements can appear in X is

ns. So, αi ≤ ns for all i such that 1 ≤ i ≤ k.

Furthermore, if G is cyclic there is a restriction on the number of times

one element can appear in X (since X ∈ MZS); Let G = Zns
. Then, since

αi ≤ ns for all i such that 1 ≤ i ≤ k, suppose there exists m where 1 ≤ m ≤ k

such that αm = ns − 1; then X = (gm)ns−1gp. Then (ns − 1)gm + gp = 0

⇒ gp = ns − (ns − 1)gm = gm. So, X = (gm)ns−1gm = (gm)ns . So when

G is cyclic, αi 6= ns − 1 for all 1 ≤ i ≤ j. Therefore, when G is cyclic,

αi ∈ {1, 2, . . . , ns − 2, ns} for all 1 ≤ i ≤ k.

When G is not cyclic, if αm = ns − 1 for some m ∈ {1, 2, . . . , k}, then

let X = (0, . . . , 0, 1)ns−1(0, . . . , 0, 1, 1)(0, . . . , 0, a, 0) such that a ≡ (ns−1 − 1)

(mod n)s−1. Then, since the last coordinate sums to exactly ns and X =

0, X ∈ MZS(G). Thus, when G is not cyclic αi ∈ {1, 2, . . . , ns} for all i such

that 1 ≤ i ≤ k.

�
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Corollary 2.14. If X ∈ MZS(G), Y ∈ ZS(G) then

λ(X, Y ) = 0 or λ(X, Y ) ≥ 1
ns

.

Proof. Let X ∈ MZS(G) and Y ∈ ZS(G) such that λ(X, Y ) = β
α . Then from

Theorem 2.13 α ≤ ns. From the definition of λ(X, Y ), β ∈ Z≥0. If β = 0 then

λ(X, Y ) = 0. Now, let β ∈ Z+. Then β ≥ 1 so β
α ≥ 1

ns
. �

Theorem 2.15. If X ∈ ZS(G) and Y ∈ MZS(G) then

λ(X, Y ) ≤ 1.

Proof. Let X ∈ ZS(G) and Y ∈ MZS(G) where X = gα1
1 gα2

2 · · · gαk

k and Y =

gβ1
1 gβ2

2 · · · gβj

j . If j < k then bXc 6⊆ bY c and by Theorem 2.6, λ(X, Y ) = 0 < 1.

So, let j ≥ k. Assume λ(X, Y ) > 1. Let β
α = λ(X, Y ) > 1. Then α < β.

From Theorem 2.1, β
α = min

{
βi

αi
|1 ≤ i ≤ k

}
, which implies that βi

αi
≥ β

α > 1 so

βi > αi for all i such that 1 ≤ i ≤ k. Then X ( Y . However, Y ∈ MZS(G), so

X /∈ ZS(G) which is a contradiction so β
α ≤ 1. �

It is important to note that when Y is a minimal zero sequence of a cyclic

group, there is another bound on the extraction degree. The following lemmas

and theorem state this bound.

Lemma 2.16. Let β ≤ n−2 and α > β. Then β
α > n−2

n if and only if β = α−1

and n
2 < α < n.

Proof. First, let β = α − 1 where n
2 < α < n. Since n

2 < α ⇒ n < 2α ⇒
nα− n > nα− 2α ⇒ α−1

α > n−2
n ⇒ β

α > n−2
n .

Now, let β
α > n−2

n . We want to show that β = α−1 and n
2 < α < n. Assume

not, then β 6= α− 1, α ≤ n
2 , or α ≥ n.

First, let β 6= α − 1. Since β < α, we have that β ≤ α − 2. Now, α ≤ n or

α > n. If α > n then β
α ≤ n−2

n , which is a contradiction. Now, let α ≤ n. Then

2α ≤ 2n ⇒ nα − 2α ≥ nα − 2n ⇒ n−2
n ≥ α−2

α ≥ β
α , which is a contradiction.

Since we reached a contradiction for all α, we have that β = α− 1.

Second, let α ≤ n
2 . Then 2α ≤ n ⇒ nα− 2α ≥ nα− n ⇒ n−2

n ≥ α−1
α = β

α ,

which is a contradiction, so α > n
2 .

Now, let α ≥ n. Since β ≤ n − 2 we have that β
α ≤ n−2

n which is a

contradiction, so α < n.

So, we have that β = α− 1, and n
2 < α < n. �
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The following term, is needed for this next lemma: If a zero sequence Y

sums to n ∈ Z, then we say that Y is basic [7].

Lemma 2.17. Let Y ∈ MZS(G). If Y = 1βgβ2
2 · · · gβj

j where β ≥ n−1
2 then Y

is basic.

Proof. If any combination of gi’s has a sum greater than n − β in Zn, then

because (1)Y = β, we know we can find a proper subset of Y whose sum is zero

in Zn. So, each element and each combination of elements, not including the

combination with all the elements, has a sum less than n− β. So, if we look at

the sequence g2, g
2
2 , . . . , gβ2

2 , gβ2
2 g3, g

β2
2 g2

3 , . . . , gβ2
2 gβ3

3 · · · gβk−1
k , the sum of each

term modulo n is less than n− β. So, in Z+ the sum of each term is less than

n−β or greater than n. Since g2 < n−β, if there is a term in this sequence that

is greater than n, we must have at some point jumped from being less than n−β

to being greater than n, which implies that we added on some gi whose value

is greater than β. Then β < gi < n− β ⇒ β < gi ≤ n− β − 1 ⇒ β < n− 1− β

⇒ 2β < n− 1 ⇒ β < n−1
2 , which is a contradiction, so every term is less than

n− β in Z+ so β +
k∑

i=2

gi · βi = n in Z. Therefore, Y is basic. �

Theorem 2.18. Let G = Zn where n ≥ 4. If Y ∈ MZS(G), X ∈ ZS(G) then

λ(X, Y ) ≤ n− 2
n

or λ(X, Y ) = 1.

Proof. Let X ∈ ZS(G), Y ∈ MZS(G) such that λ(X, Y ) = β
α . From Theorem

2.13, β ∈ {1, 2, . . . , n− 2, n} and from Theorem 2.15, β
α ≤ 1. So assume n−2

n <
β
α < 1.

Let n−2
n < β

α < 1. Either β = n, or β ≤ n− 2. If β = n, then the floor of Y

consists of one element, call it g, where |g| = n. If bXc 6⊆ bY c then by Theorem

2.6, λ(X, Y ) = 0 ≤ n−2
n which is a contradiction, so let bXc ⊆ bY c. Then

bXc = {g} which implies that X = gα. In order for X to be a zero sequence,

α = m · n where m ∈ Z+. If m = 1 then β
α = 1, which is a contradiction.

So, m ≥ 2. This implies that β
α ≤ n

2 ≤ n−2
n since n ≥ 4, which is also a

contradiction, so β ≤ n− 2.

Since β
α < 1, β < α. Then, since β ≤ n − 2, we can apply Lemma 2.16.

Since n−2
n < β

α , we know that β
α = α−1

α and n
2 < α < n. Now, we work towards

showing that this is not a valid extraction degree when Y ∈ MZS(G). First,

we will show that without loss of generality, we can assume that the critical
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element, call it g, is 1.

Since β = α − 1 and α > n
2 , we have that β > n−2

2 ⇒ β ≥ n−1
2 . If n is

even then n−1
2 /∈ Z so β ≥ n

2 ⇒ . If β = n
2 then |g| ≥ n

2 . If |g| = n
2 , then

because Y ∈ MZS(G), Y = g
n
2 . Since λ(X, Y ) 6= 0, bXc ⊆ bY c, so X = g

n
2 +1,

However, since n ≥ 4 and |g| = n
2 , X /∈ ZS(G) which is contradiction, so

|g| 6= n
2 ⇒ |g| < n

2 ,which is also a contradiction. Thus, β 6= n
2 ⇒ β > n

2 . So,

from Theorem 2.10, we can assume g = 1. Now, if n is odd, then neither n−1
2

nor n
2 divides n, so |g| > n

2 ⇒ |g| = n, so from Theorem 2.10, we can assume

g = 1. So, we write X = 1αgα2
2 · · · gαk

k and Y = 1βgβ2
2 · · · gβj

j where j ≥ k. Then

from Lemma 2.17, Y is basic.

Now, we will show that αi ≤ βi for all i ∈ {2, 3, . . . , k}. Assume not, then

there exists m ∈ {2, 3, . . . , k} such that αm > βm. So, αm ≥ βm + 1. We will

look at the cases when αm > n and when αm ≤ n.

If αm > n, then βm

αm
<

n
2
n = 1

2 ≤
n−2

n < β
α which implies that λ(X, Y ) 6= β

α ,

which is a contradiction so αm ≤ n.

Now, let βm + 1 ≤ αm ≤ n. Here we have two subcases: βm + 1 = αm

and βm + 1 < αm. In the first subcase, βm + 1 = αm, which implies that

βm = αm − 1. Since the maximum number of elements in any minimal zero

sequence with more than one distinct element is n − 1 and β ≥ n−1
2 , we know

that βi ≤ n−1
2 for all i ∈ {2, 3, . . . , k}. Since m ∈ {2, 3, . . . , k}, βm ≤ n−1

2 .

So, we have that αm − 1 = βm ≤ n−1
2 ≤ β = α − 1. If βm = n−1

2 = β, then

Y = 1
n−1

2 g
n−1

2
m and X = 1

n+1
2 g

n+1
2

m because α = β + 1, αm = βm + 1, and the

maximum number of elements in Y is n − 1. Then the sum of the elements in

X is n+1+ gm. Since gm < n−β and β ≥ n−1
2 , gm < n+1

2 < n−1 since n ≥ 4,

so the sum of X does not equal zero. So, βm 6= β ⇒ αm − 1 < α − 1. Then
βm

αm
= αm−1

αm
< α−1

α = β
α which is a contradiction.

In the second subcase, βm + 1 < αm. We then have that βm + 2 ≤ αm

so βm

αm
≤ αm−2

αm
≤ n−2

n ≤ β
α which is a contradiction. Since we have reached

a contradiction in all cases where αm > βm we know that αi ≤ βi for all

i ∈ {2, 3, . . . , k}.
So, we have shown that when β

α > n−2
n , Y is basic and αi ≤ βi for all

i ∈ {2, 3, . . . , k}. Now, we will show that β
α is not a possible extraction degree

when Y ∈ MZS(G). We will first look at the case when αi = βi for all

i ∈ {2, 3, . . . , k}, then we will look at the case when there exists m ∈ {2, 3, . . . , k}
such that αm < βm.
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Let αi = βi for all i. Then, since Y is basic we have n =
k∑

i=2

giβi + α − 1 =

k∑
i=2

giαi + α− 1 ≡ n− 1. Since n ≥ 4, we have a contradiction.

Let αm < βm for some m ∈ {2, 3, . . . , k}. Then αm ≤ βm − 1. Since gm > 1

we have, gmαm ≤ gm(βm − 1) = gmβm − gm < gmβm − 1. Since Y is basic

we have n − 1 =
k∑

i=2

giβi − 1 + α − 1 >
k∑

i=2

giαi + α − 1 = n − 1, which is a

contradiction. Since we have a contradiction in both cases, we know that when
bt
α > n−2

n , there is no X ∈ ZS(G) and Y ∈ MZS(G) such that λ(X, Y ) = β
α .

Therefore, β
α ≤ n−2

n . �

3 Sets of Extraction Degrees

Moving beyond general theorems, we now examine the sets of possible extraction

degrees for zero sequences, X and Y . This first theorem tells us what all the pos-

sible extraction degrees are when neither X nor Y have any restrictions. Then,

the following theorems deal with specific subsets of ZS(G). Furthermore, in this

theorem and in many subsequent theorems λ(ZS, ZS) = λ(ZS(G), ZS(G)), so

the G is implied.

Theorem 3.1. Let X, Y ∈ ZS(G) then

λ(ZS, ZS) = Q+ ∪ {0} .

Proof. It suffices to show that Q+∪{0} ⊆ λ(ZS, ZS). Let r ∈ Q+∪{0}. Then

there exists β ∈ Z≥0 and α ∈ Z+ such that r = β
α . Let X and Y be sequences

such that X = (0, 0, . . . , 1)α(0, 0, . . . , nk − 1)α and Y = (0, 0, . . . , 1)β

(0, 0, . . . , nk − 1)β . Then, X, Y ∈ ZS(G). From Theorem 2.1, λ(X, Y ) = β
α .

Therefore, λ(ZS, ZS) = Q+ ∪ {0}. �

Although for Theorem 3.1, the set of possible extraction degrees is the same

for all finite abelian groups, there are some situations where if X, Y, or both

are restricted, then the set of possible extraction degrees is notably different for

finite abelian cyclic groups. This is mainly because of the restriction for cyclic

groups when working with minimal zero sequences as discussed in Theorem 2.13.

Thus, when our set of extraction degrees is notably different for cyclic groups,

it will also be mentioned.

12



3.1 X and Y Minimal

We will now restrict both X and Y to be minimal zero sequences. We will

first look at certain results in rank two. This lemma explains about a hole that

appears when G = Z2⊕Zn such that n ∈ 2Z≥4, which then leads to the theorem

for the set of possible extraction degrees in this case. Also, in this lemma, since

we are working in rank two, the maximum number of elements in Y ∈ MZS(G)

is n + 1 [8].

Lemma 3.2. Let G = Z2 ⊕ Zn such that n ∈ 2Z≥4. If X, Y ∈ MZS(G) such

that there exists an element, g ∈ X where (g)X = n− 1 and (g)Y = n− 2, then

λ(X, Y ) = 0.

Proof. Let X, Y ∈ MZS(G) such that there exists an element, g = (a, b) ∈ X

where (g)X = n − 1 and (g)Y = n − 2. We need to show that we can use

the automorphism defined in Theorem 2.10. First, suppose g = (a, 0). Then,

since n ∈ 2Z≥4, n − 1 > 2. Thus, (a, 0)2 = 0 and (a, 0)2 ( (a, 0)n−1 ⊆ X.

This contradicts X ∈ MZS(G). Thus, b 6= 0. Second, since (g)X = n − 1, we

want |b| > n
2 . Thus, suppose |b| ≤ n

2 < n − 1. Then, since (a, b)|b| = 0 and

(a, b)|b| ( (a, b)n−1 ⊂ X this contradicts X ∈ MZS(G). Thus, |b| > n
2 . Now,

according to Theorem 2.10, there exists an automorphism φ : Z2⊕Zn → Z2⊕Zn

such that φ((a, b)) = (a, 1). Since a ∈ Z2, φ((0, b)) = (0, 1) and φ((1, b)) = (1, 1).

Using this automorphism, we will construct the possible X, Y ∈ MZS(G).

For the first case, suppose that g = (0, 1). Then, X = (0, 1)n−1(1, 1)(1, 0),

which according to Theorem 2.11 is in MZS(G). Now, according to Theorem

2.6, bXc6⊆bY c if and only if λ(X, Y ) = 0. So, to prove by contradiction, assume

λ(X, Y ) > 0. Thus, Y = (0, 1)n−2(1, 1)γ(1, 0)δgε
m, where γ, δ > 0 and gm ∈ Y

only when ε > 0. As mentioned above, the maximum number of elements in

Y ∈ MZS(G) is n+1. Since γ, δ > 0 we have two possibilities: First, γ +δ = 2.

Then, γ = δ = 1. Then, Y = (0, 1)n−2(1, 1)(1, 0) = (0, n − 1) 6= 0. Thus,

we need ε = 1 where gm = (0, 1) = g. Then, Y = (0, 1)n−1(1, 1)(1, 0) = X

and (g)Y 6= n − 2. Second, γ + δ = 3. Then, either γ = 1 and δ = 2 or

γ = 2 and δ = 1. If δ = 2, then (1, 0)2 ∈ MZS(G) and (1, 0)2 ( Y , this

contradicts Y ∈ MZS(G). Now, if γ = 2 and δ = 1, then ε = 1 where

g = (1, 0). Thus, once again (1, 0)2 ( Y ⇒ Y 6∈MZS(G). Thus, if g = (0, 1),

then bXc6⊆bY c ⇒ λ(X, Y ) = 0.

For the second case, suppose that g = (1, 1). Then, X = (1, 1)n−1(0, 1)(1, 0),
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which according to Theorem 2.11 is in MZS(G). Similarly, assume λ(X, Y ) > 0.

Thus, Y = (1, 1)n−2(0, 1)γ(1, 0)δgε
m, where γ, δ > 0 and gm ∈ Y only when

ε > 0. Once again, the maximum number of elements in Y ∈ MZS(G) is n+1.

Since, γ, δ > 0 we have the same two possibilities: First, γ + δ = 2 ⇒ γ = δ =

1 ⇒ Y = (1, 1)n−2(0, 1)(1, 0)(1, 1) = X ⇒ (g1)Y 6= n − 2. Second, γ + δ = 3.

If δ = 2 ⇒ (1, 0)2 ( Y ⇒ Y 6∈MZS(G). Now, if γ = 2 and δ = 1, then ε = 1

where gm = (1, 0) ⇒ (1, 0)2 ( Y ⇒ Y 6∈MZS(G). Thus, if g = (1, 1), then

bXc6⊆bY c ⇒ λ(X, Y ) = 0. �

Theorem 3.3. If G = Z2 ⊕ Zn such that n ∈ 2Z≥4, then

λ(MZS, MZS) =
{

β

α
|β
α
≤ 1,

β

α
6= n− 2

n− 1
, 1 ≤ α ≤ n

}
∪ {0} .

Proof. First, let λ(MZS,MZS) = γ
δ (and show that

γ
δ ⊆

{
β
α |

β
α ≤ 1, β

α 6= n−2
n−1 , 1 ≤ α ≤ n

}
). Then, there exist X ∈ MZS(G) and

Y ∈ MZS(G) such that γ
δ = λ(X, Y ). From Theorem 2.13, since X ∈ MZS(G)

and Y ∈ MZS(G), δ ≤ n and γ ≤ n. From Corollary 2.14, since X ∈ MZS(G),
γ
δ ≥ 1

n or γ
δ = 0. From Lemma 3.2, since X, Y ∈ MZS(G), γ

δ 6= n−2
n−1 . Last,

suppose that γ
δ > 1. Then, according to Theorem 2.8, for all g ∈ X, (g)X <

(g)Y . This implies that X ( Y . Then, Y 6∈MZS(G), contradiction. Thus,
γ
δ ≤ 1.

Now let γ
δ ∈

{
β
α |

β
α ≤ 1, β

α 6= n−2
n−1 , 1 ≤ α ≤ n

}
∪ {0} (and show that γ

δ ⊆
λ(MZS,MZS)). First, we will show that 0 ∈ λ(MZS,MZS). Let

X = (0, 1)n−2(1, 1)2 and let Y = (0, 1)n. Then X, Y ∈ MZS(G) and bXc 6⊆
bY c, thus λ(X, Y ) = 0. Second, we will show that 1 ∈ λ(MZS,MZS). Let

X ∈ MZS(G). Let Y = X. Then Y ∈ MZS(G), and λ(X, Y ) = 1.

Third, we will show that γ
δ ∈

{
β
α |

β
α < 1, β

α 6= n−2
n−1 , 1 ≤ α ≤ n

}
. To show

this, there are the following three cases, where δ and γ are positive integers: Case

one, let δ = n then 0 < γ < δ. Let X = (0, 1)n and Y = (0, 1)γ(1, 1)n−γ(a, 0)

where a = (2− [n− γ]) (mod 2), and (a, 0) ∈ Y when a > 0. Then, according

to Theorem 2.11, X, Y ∈ MZS(G) and for all such values of δ and γ, γ
δ =

γ
n < 1. Case two, let 0 < δ ≤ n − 1 and δ be an odd positive integer then

0 < γ < δ and γ 6= n − 2. Let X = (0, 1)δ(1, 1)n−δ(1, 0) and when γ ∈
2Z+, Y = (0, 1)n−2k1(1, 1)2k1−2(1, 0)(1, 2) such that k1 ≥ 2 and when γ is

an odd positive integer, Y = (0, 1)n−(2k2−1)(1, 1)2k2−1(1, 0) such that k2 ≥ 1.

Then, X, Y ∈ MZS(G) and for all such values of γ, γ
δ < 1. Case three, let

0 < δ ≤ n − 2 and δ ∈ 2Z+ then 0 < γ < δ. Let X = (0, 1)δ(1, 1)n−δ and
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when γ ∈ 2Z+, Y = (0, 1)n−2k3(1, 1)2k3 such that k3 ≥ 1 and when γ is an odd

positive integer, Y = (0, 1)n−(2k4+1)(1, 1)2k4+1(1, 0) such that k4 ≥ 2. Then,

X, Y ∈ MZS(G) and for all such values of δ and γ, γ
δ < 1. �

By excluding the case addressed in Theorem 3.3, we obtain this inclusive

result.

Theorem 3.4. If G = Zn1 ⊕ Zn2 such that n1 ≥ 3 and n1|n2, then

λ(MZS,MZS) =
{

β

α
|β
α
≤ 1, 1 ≤ α ≤ n2

}
∪ {0} .

Proof. First, let λ(MZS,MZS) = γ
δ (and show that

γ
δ ⊆

{
β
α |

β
α ≤ 1, 1 ≤ α ≤ n2

}
). Then, there exist X ∈ MZS(G) and Y ∈

MZS(G) such that γ
δ = λ(X, Y ). From Theorem 2.13, since X ∈ MZS(G) and

Y ∈ MZS(G), δ ≤ n2 and γ ≤ n2. From Corollary 2.14, since X ∈ MZS(G),
γ
δ ≥

1
n2

or γ
δ = 0. Next, suppose that γ

δ > 1. Then, according to Theorem 2.8,

for all g ∈ X, (g)X < (g)Y . This implies that X ( Y . Then, Y 6∈MZS(G),

contradiction. Thus, γ
δ ≤ 1.

Now, let γ
δ ∈

{
β
α |

β
α ≤ 1, 1 ≤ α ≤ n

}
∪ {0} (and show that

γ
δ ⊆ λ(MZS, MZS)). First, show that 0 ∈ λ(MZS,MZS).

Let X = (0, 1)n2−1(1, 1)(a1, 0) where a1 = (n1 − 1) and let Y = (0, 1)n2 . Then,

according to Theorem 2.11, X, Y ∈ MZS(G). Then, X, Y ∈ MZS(G) and

bXc 6⊆ bY c, thus λ(X, Y ) = 0. Now, show that 1 ∈ λ(MZS, MZS). Let

X ∈ MZS(G). Let Y = X. Then Y ∈ MZS(G), and λ(X, Y ) = 1.

Next, show that γ
δ ∈

{
β
α |

β
α < 1, 1 ≤ α ≤ n

}
. To show this, there are

the following three cases, where δ and γ are positive integers: Case one, let

δ = n2 then γ < δ. Let X = (0, 1)n2 and Y = (0, 1)γ(1, 1)n2−γ(a2, 0) where

a2 = (n1− [n2−γ]) (mod n1), and (a2, 0) ∈ Y when a2 > 0. Then, according to

Theorem 2.11, X, Y ∈ MZS(G) and for all such values of δ and γ, γ
δ = γ

n2
< 1.

Case two, let δ < n2 − 1. First, let γ < δ − 1. Then, let X = (0, 1)δ(0, b1)

where b1 = (n2 − δ) (mod n)2 and Y = (0, 1)β(0, b1)(0, b2) where b2 = (δ − γ)

(mod n2). Then, X, Y ∈ MZS(G) and for all such values of δ and γ, γ
δ < 1. Sec-

ond, let γ = δ − 1. Then, let X = (1, 1)δ(a3, b3) where a3 = (n1 − δ) (mod n)1
and b3 = (n2 − δ) and Y = (1, 1)δ−1(a3, b3)(1, 0)(0, 1). Then, X, Y ∈ MZS(G)

and for all such values of δ and γ, γ
δ < 1. Case three, let δ = n2 − 1. First,

let γ = δ − 1. Then, let X = (1, 1)δ(1, 0)(0, 1) and Y = (1, 1)δ−1(1, 0)2(0, 1)2.

Then, X, Y ∈ MZS(G) and for all such values of δ and γ, γ
δ < 1. Second, let
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γ < δ − 1. Then, let X = (1, 1)δ(1, 0)(0, 1) and Y = (1, 1)γ(1, 0)(0, 1)(a4, b4)

where a4 = (n1−[γ+1]) (mod n1) and b4 = n2−(γ+1). Then, X, Y ∈ MZS(G)

and for all such values of δ and γ, γ
δ < 1. �

Now we exclude rank 2, and discover the hole addressed in Lemma 3.2 is

filled in for higher ranks in this following lemma.

Lemma 3.5. If G = Z2 ⊕ · · · ⊕ Z2 ⊕ Zns
such that ns ∈ 2Z≥4 and s ≥ 3, then

there exists X, Y ∈ MZS(G) such that λ(X, Y ) = ns−2
ns−1 .

Proof. Denote G = Zn1 ⊕ · · · ⊕ Zns−1 ⊕ Zns where 2 = {n1, . . . , ns−1} and

ns ∈ 2Z≥4 and suppose Rank(G) = k ≥ 3. Now, let G = H1 ⊕ H2 where

H1 = Zn1 ⊕ · · · ⊕Zns−3 and H2 = Zns−2 ⊕Zns−1 ⊕Zns
. Then, denote 0H1 ,0H2 ,

and 0G as the zero elements in H1, H2, and G respectively. (Note: if k = 3

then G = H2 and there are no elements from an H1 to be in X or Y .)

Now, let X = (0H1 , 0, 0, 1)ns−1(0H1 , 0, 1, 1)(0H1 , 0, 1, 0).

According to Corollary 2.12, X ∈ MZS(G).

Let Y = (0H1 , 0, 0, 1)ns−2(0H1 , 0, 1, 1)(0H1 , 0, 1, 0)(0H1 , 1, 0, 1)(0H1 , 1, 0, 0).

Since the sum of all the elements in Y equals (0H1 ,0H2) = 0G and the s-

coordinate sums to exactly ns, we know Y ∈ MZS(G).

Now, for all g ∈ X, min
{

β
α |(g)X = α, (g)Y = β

}
= ns−2

ns−1 . Thus, according

to Theorem 2.1, λ(X, Y ) = ns−2
ns−1 . �

This next theorem utilizes Lemma 3.5 to generalize this set of extraction

degrees to all finite abelian non-cyclic groups.

Theorem 3.6. If G = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns , ni|ni+1 for all 1 ≤ i < s ≥ 3,

then

λ(MZS(G),MZS(G)) =
{

β

α
|β
α
≤ 1, 1 ≤ α ≤ ns

}
∪ {0} .

Proof. Let X, Y ∈ MZS(G). Since X, Y ∈ MZS(G), from Theorem 2.13,

for all g ∈ X, (g)X = α ∈ {1, . . . , nk}, and since all g ∈ X may or may not

be in Y, (g)Y = β ∈ {0, 1, . . . , nk}. Also, suppose that β
α > 1. Then, accord-

ing to Theorem 2.8, for all g ∈ X, (g)X < (g)Y . This implies that X ( Y .

Then, Y 6∈MZS(G), contradiction. Thus, β
α ≤ 1 for all g ∈ X. Therefore,

λ(MZS(G),MZS(G)) ⊆
{

β
α |

β
α ≤ 1, α ∈ {1, . . . , ns}

}
∪ {0} .

Now, we must consider the cases where ns−1 > 2 and where ns−1 = 2. First,

let ns−1 > 2 and let G = H1 ⊕ H2 where H1 = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns−2 and
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H2 = Zns−1 ⊕ Zns
. From Theorem 2.5, λ(MZS(H2),MZS(H2)) ⊆

λ(MZS(H1 ⊕ H2),MZS(H1 ⊕ H2)) = λ(MZS(G),MZS(G)). Then, since

ns−1 6= 2, from Theorem 3.4, λ(MZS(H2),MZS(H2)) ={
β
α |

β
α ≤ 1, α ∈ {1, . . . , ns}

}
∪ {0} . Thus,

{
β
α |

β
α ≤ 1, α ∈ {1, . . . , nk}

}
∪ {0} =

λ(MZS(H2),MZS(H2)) ⊆ λ(MZS(G),MZS(G)).

Therefore, λ(MZS(G),MZS(G)) =
{

β
α |

β
α ≤ 1, α ∈ {1, . . . , ns}

}
∪ {0} .

Second, let ns−1 = 2. Again, let G = H1 ⊕ H2 where H1 = Zn1 ⊕ Zn2 ⊕
· · · ⊕ Zns−2 and H2 = Zns−1 ⊕ Zns

. And, as shown above and from Theorem

2.5, λ(MZS(H2),MZS(H2)) ⊆ λ(MZS(G),MZS(G)) ⊆{
β
α |

β
α ≤ 1, α ∈ {1, . . . , ns}

}
∪ {0} . Then, since ns−1 = 2, from Theorem 3.3,

λ(MZS(H2),MZS(H2)) =
{

β
α |

β
α ≤ 1, β

α 6= ns−2
ns−1 , α ∈ {1, 2, . . . , ns}

}
∪{0}. Now,

from Theorem 3.5, since k ≥ 3 there exists X, Y ∈ MZS(G) such that λ(X, Y ) =
ns−2
ns−1 . Thus, λ(MZS(G),MZS(G)) =

{
β
α |

β
α ≤ 1, α ∈ {1, . . . , ns}

}
∪ {0}. �

Now, in the cyclic group case, we obtain a similar but noteworthy result.

Theorem 3.7. Let G = Zn where n ≥ 4. Then

λ(MZS,MZS) =
{

β

α
≤ n− 2

n
|α ∈ {1, 2, . . . , n− 2, n}

}
∪ {0, 1} .

Proof. λ(MZS,MZS) ⊆
{

β
α ≤ n−2

n |α ∈ {1, 2, . . . , n− 2, n}
}
∪ {0, 1} follows

directly from Theorem 2.13, Theorem 2.18, and the definition of the extraction

degree.

Now, let δ ∈
{

β
α ≤ n−2

n |α ∈ {1, 2, . . . , n− 2, n}
}
∪ {0, 1}. Then we can rep-

resent δ as β
α where β

α ≤ n−2
n and α ∈ {1, 2, . . . , n− 2, n}. We want to show

that there exist X ∈ MZS(G) and Y ∈ ZS(G) such that λ(X, Y ) = β
α . Now,

λ(1n−22, 1n) = 0 and λ(1n, 1n) = 1, so let 0 < β
α ≤ n−2

n . Then we have four

cases: α = n, α = n
2 , α < n

2 , and n
2 < α ≤ n− 2.

First, let α = n. Then let X = 1α and let Y = 1β(n − 1)β . Then, from

Theorem 2.1, λ(X, Y ) = β
α .

Next, let α = n
2 . Then let X = 2α and let Y = 2β1n−2β . Then, from

Theorem 2.1, λ(X, Y ) = β
α .

Now, let α < n
2 . Since β

α ≤ n−2
n we know that β

α < 1, so β < α ⇒
2β < 2α < n ⇒ n − 2β > n − 2α so n−2β

n−2α > 1. Let X = 2α1n−2α and let

Y = 2β1n−2β . Then β
α < 1 < n−2β

n−2α . then from Theorem 2.1, λ(X, Y ) = β
α .

Finally, let n
2 < α ≤ n−2. Then, from Lemma 2.16, β 6= α−1, so β < α−1,
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so α−β > 1. Also, since α ≤ n−2 we know that n−α > 1. Let X = 1α(n−α)

and let Y = 1β(n− α)(α− β). From Theorem 2.1, λ(X, Y ) = β
α . �

3.2 X Minimal

In this section we only place the restriction that X has to be a minimal zero

sequence. Again, there is a different result for the cyclic case that is addressed

in the second theorem, as we would expect from Theorem 2.13.

Theorem 3.8. Let G = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns
where nj |nj+1 for all 1 ≤ j < s

and s ≥ 2. Then

λ(MZS,ZS) =
{

β

α
|1 ≤ α ≤ ns, β ∈ Z≥0

}
.

Proof. λ(MZS,ZS) ⊆
{

β
α |1 ≤ α ≤ ns, β ∈ Z≥0

}
follows directly from Theo-

rem 2.13 and the definition of the extraction degree.

Now, let δ ∈
{

β
α |1 ≤ α ≤ ns, β ∈ Z≥0

}
. Then δ is of the form β

α where

1 ≤ α ≤ ns and β ∈ Z≥0. If α = ns then we can let X = (0, 0, 1)ns

and Y = (0, 0, 1)β(0, ns−1 − 1, ns − 1)β(0, 1, 0)β . Then, from Theorem 2.1,

λ(X, Y ) = β
α .

Let α < ns. Then, let X = (0, 0, 1)α(0, 1, ns − α)(0, ns−1, 0) and let

Y = (0, 0, 1)β(0, 1, ns − α)1+m1·ns(0, ns−1, 0)2+m2·ns(0, 1, d) where d = α − β

(mod n), and m1,m2 ∈ Z≥0 such that 1 + m1ns > β
α and 2 + m2ns > β

α .

Then, from Theorem 2.1, λ(X, Y ) = β
α . So,

{
β
α |α ∈ {1, 2, . . . , ns} , β ∈ Z≥0

}
⊆

λ(MZS,ZS). �

Theorem 3.9. Let G = Zn where n ≥ 3. Then,

λ(MZS,ZS) =
{

β

α
| α ∈ {1, 2, . . . , n− 2, n} , β ∈ Z≥0

}
.

Proof. λ(MZS,ZS) ⊆
{

β
α | α ∈ {1, 2, . . . , n− 2, n} , β ∈ Z≥0

}
follows directly

from Theorem 2.13, and the definition of extraction degree.

Let β
α ∈

{
β
α | α ∈ {1, 2, . . . , n− 2, n} , β ∈ Z≥0

}
. Now, α = n or α ≤ n− 2.

Let α = n. Then let X = 1n and let Y = 1β(n − 1)β . Then from Theorem

2.1, λ(X, Y ) = β
α . Now, let α ≤ n − 2. Let X = 1α(n − α) and let Y =

1β(n − α)β2(n − 1)β3 where β2 = 1 + mn with m ∈ Z+ such that β2 ≥ β
α ,

and β3 ∈ Z+ such that β3(n − 1) ≡ α − β (mod n). Then, from Theorem 2.1,

λ(X, Y ) = β
α . �
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3.3 Y Minimal

Now, we place the restriction that Y must be a minimal zero sequence. Referring

to Theorem 2.6, bXc 6⊆ bY c yields λ(X, Y ) = 0. In order to obtain non trivial

results when restricting Y , this imposes restrictions on X. This makes it difficult

to obtain a complete answer. Here, we work through the cyclic case first. It is

important to note that in the following theorem we use ᾱ to denote α (mod n).

Theorem 3.10. Let G = Zn where n ≥ 4. Then{
β

α
|β <

n

2
,

β

α
∈ λ(ZS, MZS)

}
=

{
β

α
≤ n− 2

n
|β <

n

2
, α ∈ Z+

}
∪ {1} .

Proof.
{

β
α |β < n

2 , β
α ∈ λ(ZS, MZS)

}
⊆

{
β
α ≤ n−2

n |β < n
2 , α ∈ Z+

}
follows

directly from the definition of the extraction degree and Theorem 2.18.

We want to show that
{

β
α ≤ n−2

n |β < n
2 , α ∈ Z+

}
∪ {1} ⊆{

β
α |β < n

2 , β
α ∈ λ(ZS, MZS)

}
. First, let β < n

2 , X = 2β1n−2β and Y =

2β1n−2β Then λ(X, Y ) = 1. Now, let β
α ∈

{
β
α ≤ n−2

n |β < n
2 , α ∈ Z+

}
. Then

β
α < 1, β < n

2 , and α ∈ Z+. Since β
α < 1, β < α. Then all the possible cases for

α are: β = ᾱ, ᾱ = 0, β < ᾱ < n
2 , ᾱ = n

2 , ᾱ = n− 1, n
2 < ᾱ ≤ n− 2, or ᾱ < β.

First, let β = ᾱ. Since β < n
2 , 2β < n. So, let X = 2α1n−2β and let

Y = 2β1n−2β . Then from Theorem 2.1, λ(X, Y ) = β
α .

Now, let ᾱ = 0 or ᾱ = n
2 . Since β < n

2 , 2β < n. So, let X = 2α and let

Y = 2β1n−2β . Then from Theorem 2.1, λ(X, Y ) = β
α .

Now, let β < ᾱ < n
2 . Then 2β < 2ᾱ < n so n − 2β > n − 2ᾱ > 0. So, let

X = 2α1n−2β and let Y = 2β1n−2ᾱ. Then from Theorem 2.1, λ(X, Y ) = β
α .

Now, let ᾱ = n − 1. Since β < n
2 we know that β ≤ n−1

2 and n − 2β ≥ 1.

So, let X = 2α12 and let Y = 2β1n−2β . Since n−2β ≥ 1, bXc ⊆ bY c, and since

β ≤ n−1
2 , we have that β

α ≤
n−1

2
n−1 . From Theorem 2.1, λ(X, Y ) = β

α .

Now, let n
2 < ᾱ ≤ n − 2. Here, we have two subcases: β = ᾱ − 1 and

β ≤ ᾱ − 2. First, let β = ᾱ − 1. Since ᾱ > n
2 and β = ᾱ − 1 we know from

Lemma 2.16 that ᾱ 6= α because if it did β
α > n−2

n , so α > n. Now, we know

that ᾱ − 1 = β < n
2 < ᾱ so β = n−1

2 and ᾱ = n+1
2 . So, let X = 2α1n−1 and

let Y = 2β1. We need to show that β
α ≤ 1

n−1 . Since α > n we know that

α ≥ n+ n+1
2 = 3n+1

2 . So, β
α ≤

n−1
2

3n+1
2

= n−1
3n+1 < n

3n = 1
3 ≤

1
n−1 since n ≥ 4. Then

by Theorem 2.1, λ(X, Y ) = β
α .

Second, let β ≤ ᾱ−2. Then ᾱ−β ≥ 2 so we can write ᾱ−β = 2β23β3 where
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β2, β3 ∈ Z≥0. Since ᾱ ≤ n−2 we have n− ᾱ ≥ 2 so we can write n− ᾱ = 2α23α3

where α2, α3 ∈ Z≥0. Then let X = 1α2α23α3 and let Y = 1β2α2+β23α3+β3 .

Then we have that β + 2(α2 + β2) + 3(α3 + β3) = β + n − ᾱ + ᾱ − β = n so

Y ∈ MZS(G). Also, if α2 > 0 then α2+β2
α2

≥ 1 and if α3 > 0 then α3+β3
α3

≥ 1.

Since β
α < 1, by Theorem 2.1, λ(X, Y ) = β

α

Finally, let 0 < ᾱ < β. Then α > n. These next few paragraphs construct

X ∈ ZS(G), Y ∈ MZS(G) such that λ(X, Y ) = β
α for all n ≥ 12.

Assume n − β and n − α are odd. Then let X = 1α2a3 where 2a3 = n − α

and let Y = 1β2b3 where 2b3 = n − β. Then X ∈ ZS(G) and Y ∈ MZS(G).

Then b
a =

n−β−3
2

n−α−3
2

= n−β−3
n−α−3 If n is odd n − β ≥ n+1

2 and n − α ≤ n − 2. So,

n−β−3
n−α−3 ≥

n+1
2 −3

n−2−3 = n−5
2(n−5) = 1

2 . If n is even n−β ≥ n+2
2 and n−α ≤ n− 1. So,

n−β−3
n−α−3 ≥

n+1
2 −3

n−1−3 = n−4
2(n−4) = 1

2 .

Assume n − β is odd and n − α is even. Then let X = 1α2a32 where

2a32 = n − α and let Y = 1β2b3 where 2b3 = n − β. Then X ∈ ZS(G) and

Y ∈ MZS(G). Then b
a =

n−β−3
2

n−α−6
2

= n−β−3
n−α−6 If n is odd n − β ≥ n+1

2 and

n−α ≤ n− 1. So, n−β−3
n−α−6 ≥

n+1
2 −3

n−1−6 = n−5
2(n−7) ≥

1
2 . If n is even n−β ≥ n+2

2 and

n− α ≤ n− 2 < n− 1. So, n−β−3
n−α−6 ≥

n+1
2 −3

n−1−3 = n−4
2(n−7) ≥

1
2 .

Assume n−β and n−α are even. Then let X = 1α2a where 2a = n−α and

let Y = 1β2b where 2b = n − β. Then X ∈ ZS(G) and Y ∈ MZS(G). Then
b
a =

n−β
2

n−α
2

= n−β
n−α Then whether n is odd or even n−β ≥ n+1

2 and n−α < n−1.

So, n−β
n−α >

n+1
2
n > 1

2 .

Assume n − β is even and n − α is odd. Then let X = 1α2a33 where

2a33 = n − α and let Y = 1β2b32 where 2b32 = n − β. Then X ∈ ZS(G)

and Y ∈ MZS(G). Then b
a =

n−β−6
2

n−α−9
2

= n−β−6
n−α−9 If n is odd n − β ≥ n+1

2 and

n − α ≤ n − 2. So, n−β−6
n−α−9 ≥

n+1
2 −6

n−2−9 = n−11
2(n−11) = 1

2 . If n is even n − β ≥ n+2
2

and n− α ≤ n− 1. So, n−β−6
n−α−9 ≥

n+2
2 −6

n−1−9 = n−10
2(n−10) = 1

2 .

So b
a ≥

1
2 and β

α ≤ 1
2 . So β

α ≤ b
a in all cases so β

α = λ(X, Y ).

Since this works for n ≥ 12 we need to address 4 ≤ n ≤ 11. Because n ≤ 11

and β < n
2 we know that β ≤ 5. Then, since ᾱ < β, β − ᾱ ≤ 4.

First, let β − ᾱ = 1. Since β < n
2 we have 2β ≤ n − 1 ⇒ 3β ≤ n + β − 1

⇒ β
n+β−1 ≤ 1

3 . Since 2β ≤ n − 1 ⇒ 2β + 1 ≤ n ⇒ 4β + 2 ≤ 2n ⇒
4β +2+n ≤ 3n ⇒ n−2β +2 ≤ 3n−6β ⇒ 1

3 ≤
n−2β

n−2β+2 . Let Y = 2β1n−2β and

X = 2α1n−2ᾱ. Since ᾱ = β−1, we know α > n+β−1, and n−2ᾱ = n−2β+2.

So we have that β
α ≤ β

n+β−1 ≤
1
3 ≤

n−2β
n−2β+2 = n−2β

n−2ᾱ . Then from Theorem 2.1,
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λ(X, Y ) = β
α .

Now, let β− ᾱ = 2. Then β ≥ 3. Since β < n
2 , we know n−β ≥ 4 so we can

write n−β = 2β23β3 where β2 ≥ 1 and β3 ≥ 0. We also have that n−ᾱ = n−β+2

so we can write n − ᾱ = 2β2+13β3 . Let X = 1α2β2+13β3 and Y = 1β2β23β3 .

Since α > n, α ≥ n + β − 2. So, β
α ≤ β

n+β−2 ≤
β

3β−2 ≤
β
2β = 1

2 ≤
β2

β2+1 . Then

from Theorem 2.1, λ(X, Y ) = β
α .

Now, let β − ᾱ = 3. Then β ≥ 4, and n − ᾱ = n − β + 3. Then

α ≥ n + β − 3 ≥ 3β − 3 ≥ 3β − bt = 2β. Since β ≥ 4 and β < n
2 , we

know n− β ≥ 5. Then we can write n− β = 2β23β3 where β3 ≥ 1 and β2 > 0.

We can also write n − ᾱ = 2β23β3+1. Let X = 1α2β23β3+1 and Y = 1β2β23β3 .

Then β
α ≤ β

n+β−3 ≤
β
2β = 1

2 ≤
β3

β3+1 . Then from Theorem 2.1, λ(X, Y ) = β
α .

Finally, let β − ᾱ = 4. Then β ≥ 5 and n − ᾱ = n − β + 4. So,

α ≥ n + β − 4 ≥ 3β − 4 ≥ 3β − β = 2β. Since β ≥ 5 and β > n
2 we

know that n − β ≥ 6. Since n ≤ 11 we know that n − β ≤ 6 so we have that

6 ≤ n− β ≤ 6 ⇒ n− β = 6. Then n− ᾱ = 10. Let X = 1α25 and Y = 1β23.

Then β
α ≤ β

2β = 1
2 < 3

5 . Then from Theorem 2.1, λ(X, Y ) = β
α .

Now, that we have covered all cases, we have shown that there exists X ∈
ZS(G) and Y ∈ MZS(G) such that λ(X, Y ) = β

α for all
β
α ∈

{
β
α ≤ n−2

n |β < n
2 , α ∈ Z+

}
. �

Furthermore, we were able to construct X ∈ ZS(G) where bXc ⊆ {1, 2, 3}
and Y ∈ MZS(G) where bY c ⊆ {1, 2, 3}. This leads directly to the next

theorem.

Theorem 3.11. Let X ∈ ZS(G) and Y ∈ MZS(G) such that λ(X, Y ) = β
α

where β ≥ n
2 then there exists X ′ ∈ ZS(G) and Y ′ ∈ MZS(G) where bX ′c ⊆

{1, 2, 3} and bY ′c ⊆ {1, 2, 3} such that λ(X ′, Y ′) = β
α .

Proof. Let X ∈ ZS(G), Y ∈ MZS(G) such that λ(X, Y ) = β
α where β ≥ n

2 .

Since β ≥ n
2 we can let X = 1αgα1

1 · · · gαk

k and Y = 1βgβ1
1 · · · gβj

j where j ≥ k.

Since β
α = λ(X, Y ), β

α ≤ βi

αi
∀i ∈ {2, 3, . . . , k}. Now, for all i ∈ {2, 3, . . . , k}

we know that each gi = 2ai3bi so gαi
i = (2ai3bi)αi = 2αiai3αibi . Now, let

X ′ = 1α(2a13b1)α1 · · · (2ak3bk)αk and Y ′ = 1β(2a13b1)β1 · · · (2aj 3bj )βj . . So,

α′ = (2)X′ =
k∑

i=1

αiai, α′′ = (3)X′ =
k∑

i=1

αibi, β′ = (2)Y ′ ≥
k∑

i=1

βiai, and β′′ =

(3)Y ′ ≥
k∑

i=1

βibi. Then β′

α′ =

k∑
i=1

βiai

k∑
i=1

αiai

≥
k∑

i=1

β
α αiai

k∑
i=1

αiai

= β
α and β′′

α′′ =

k∑
i=1

βibi

k∑
i=1

αibi

≥
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k∑
i=1

β
α αibi

k∑
i=1

αibi

= β
α . Therefore, β

α = λ(X ′, Y ′). �

Since when β ≥ n
2 , we can form every possible extraction degree only using

{1, 2, 3} for the floor of X and Y , we now define a function that compares every

possible combination of 2’s and 3’s for n − β and n − α when given β and α.

This function allows us to answer the question of which extraction degrees are

possible when β ≥ n
2 .

Definition 3.12. Given β
α where β ≥ n

2 and α > n then n−β = 2β′3β′′(2−332)a

and n− α = 2α′3α′′(2−332)b where β′′ α′′ ∈ {0, 1}, 0 ≤ a ≤ β′

3 , and 0 ≤ b ≤ α′

3 .

Then γa,b is defined to be min
{

β′−3a
α′−3b , β′′+2a

α′′+2b

}
, and ρ(β, α) is defined to be

max
{

γa,b| 0 ≤ a ≤ β′

3 , 0 ≤ b ≤ α′

3

}
.

Theorem 3.13. Let G = Zn. Let β ≥ n
2 , and α > n. Then there exist

X ∈ ZS(G), Y ∈ MZS(G) such that λ(X, Y ) = β
α if and only if β

α ≤ ρ(β, α).

Proof. Assume there exists X ∈ ZS(G), Y ∈ MZS(G) such that λ(X, Y ) = β
α .

Then from Theorem 3.11, then there exists X ′ ∈ ZS(G) and Y ′ ∈ MZS(G)

where bX ′c ⊆ {1, 2, 3} and bY ′c ⊆ {1, 2, 3} such that λ(X ′, Y ′) = β
α . Then

we can write X ′ = 1α2α23α3 and Y ′ = 1β2β23β3 . Since β
α = λ(X ′, Y ′), from

Theorem 2.1, β
α ≤ β2

α2
and β

α ≤ β3
α3

. Then β
α ≤ min

{
β2
α2

, β3
α3

}
. Note that we can

find α′ ∈ Z≥0, α′′ ∈ {0, 1}, b ≥ 0 such that 2α23α3 = 2α′3α′′(2−332)b. We can

also find β′ ∈ Z≥0, β′′ ∈ {0, 1}, a ≥ 0 such that 2β23β3 = 2β′3β′′(2−332)a. Then
β
α ≤ min

{
β2
α2

, β3
α3

}
= min

{
β′−3a
α′−3b , β′′+2a

α′′+2b

}
= γa,b ≤ ρ(β, α). This last inequality

follows directly from the definition of ρ(β, α).

Now, let β
α ≤ ρ(β, α). We can write n − ᾱ = 2α′3α′′ and n − β = 2β′3β′′

where α′′, β′′ ∈ {0, 1} and α′, β′ ∈ Z≥0. Then from the definition of ρ(β, α),

there exist a where 0 ≤ a ≤ β′

3 and b where 0 ≤ b ≤ α′

3 such that ρ(β, α) = γa,b =

min
{

β′−3a
α′−3b , β′′+2a

α′′+2b

}
. So, β

α ≤ min
{

β′−3a
α′−3b , β′′+2a

α′′+2b

}
. Let X = 1α2α′−3b3α′′+2b

and Y = 1β2β′−3a3β′′+2a. Because min
{

β′−3a
α′−3b , β′′+2a

α′′+2b

}
= min

{
(2)Y

(2)X
, (3)Y

(3)X

}
,

and Theorem 2.1, λ(X, Y ) = β
α . �

Although this function completely answers the question of which extraction

degrees are possible for cyclic groups when Y is a minimal zero sequence, it is

not nice. We were not able to determine a simple formula for calculating ρ(β, α)
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or even its minimum. Now, we look to higher ranks, and use some of our results

from the cyclic case.

Theorem 3.14. Let G = Zn1 ⊕Zn2 ⊕· · ·⊕Zns where nj |nj+1 for all 1 ≤ j < s

and s ≥ 2, ns ≥ 4. Then{
β

α
|β <

ns

2
,

β

α
∈ λ(ZS, MZS)

}
=

{
β

α
≤ 1|β <

ns

2
, α ∈ Z+

}
.

Proof.
{

β
α |β < ns

2 , β
α ∈ λ(ZS, MZS)

}
⊆

{
β
α ≤ 1|β < ns

2 , α ∈ Z+
}

follows di-

rectly from the definition of the extraction degree and Theorem 2.15.

Now,
{

β
α ≤ 1|β < ns

2 , α ∈ Z+
}
\

({
β
α ≤ ns−2

ns
|β < n

2 , α ∈ Z+
}
∪ {1}

)
={

β
α |

ns−2
ns

< β
α < 1, β < ns

2 , α ∈ Z+
}

. From Lemma 2.16, since β
α > ns−2

ns
we

know that ns > α > ns

2 and β = α−1. Then we have that α−1 = β < ns

2 < α.

This can only happen if ns is odd, α = ns+1
2 and β = ns−1

2 .

Now, we will show that β
α ∈ λ(ZS(G),MZS(G)). Since ns ≥ 4 and ns is

odd, we know that ns ≥ 5. Then ns−1
2 ≥ 2 so we can write ns − α = 2α23α3

where α2, α3 ∈ Z≥0. So, let X = (0, . . . , 0, 1)α(0, . . . , 0, 2)α2(0, . . . , 0, 3)α3 . If

ns−1 = 2, let Y = (0, . . . , 0, 1)β(0, . . . , 0, 2)α2(0, . . . , 0, 3)α3(0, . . . , 0, 1, 1)

(0, . . . , 0, 1, 0). If ns−1 ≥ 3, then ns−1 − 1 = 2β23β3 where β2, β3 ∈ Z≥0, so let

Y = (0, . . . , 0, 1)α(0, . . . , 0, 2)α2(0, . . . , 0, 3)α3(0, . . . , 0, 1, 1)(0, . . . , 0, 2, 0)β2

(0, . . . , 0, 3, 0)β3 .

Then either way, Y ∈ MZS(G) and λ(X, Y ) = β
α .

Now, we will show that({
β
α ≤ ns−2

ns
|β < n

2 , α ∈ Z+
}
∪ {1}

)
⊆

{
β
α |β < ns

2 , β
α ∈ λ(ZS(G),MZS(G))

}
.

If we write G = H1 ⊕H2 where H1 = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns−1 and H2 = Zns ,

then from Theorem 2.5,{
β

α
|β <

ns

2
,

β

α
∈ λ(ZS(H2),MZS(H2))

}
⊆

{
β

α
|β <

ns

2
,

β

α
∈ λ(ZS(G),MZS(G))

}
.

Now, from Theorem 3.10,({
β

α
≤ ns − 2

ns
|β <

n

2
, α ∈ Z+

}
∪ {1}

)

⊆
{

β

α
|β <

ns

2
,

β

α
∈ λ(ZS(H2),MZS(H2))

}
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⊆
{

β

α
|β <

ns

2
,

β

α
∈ λ(ZS(G),MZS(G))

}
.

Thus, {
β

α
|ns − 2

ns
<

β

α
< 1, β <

ns

2
, α ∈ Z+

}
=

{
β

α
≤ 1|β <

ns

2
, α ∈ Z+

}
\

({
β

α
≤ ns − 2

ns
|β <

n

2
, α ∈ Z+

}
∪ {1}

)
⊆

{
β

α
|β <

ns

2
,

β

α
∈ λ(ZS(G),MZS(G))

}
, as needed.

�

Extending Theorem 3.10 to all finite abelian groups is straightforward. How-

ever, finding a function similar to ρ(β, α) for all finite groups is a possible area

of further study. This could include simplifying the problem as Theorem 3.11

does for cyclic groups.

4 Fixing A Zero Sequence

In this section we fix either X or Y to be a specific zero sequence and allow the

other to vary within a subset of ZS(G). We then analyze the set of possible

extraction degrees.

4.1 Fixing X

To begin with, allowing Y to be any zero sequence, and fixing X as a zero

sequence produces the following theorem.

Theorem 4.1. If X ∈ ZS(G) where X = gα1
1 gα2

2 · · · gαk

k then

λ(X, ZS) =
{

β

αi
| 1 ≤ i ≤ k, β ∈ Z≥0

}
.

Proof. λ(X, ZS) ⊆
{

β
αi
| 1 ≤ i ≤ k, β ∈ Z≥0

}
follows directly from Theorem

2.1.

Now, we will show that
{

β
αi
| 1 ≤ i ≤ k, β ∈ Z≥0

}
⊆ λ(X, ZS). We need to

construct a Y ∈ ZS(G) such that some element gi ∈ X, (gi)Y

(gi)X
≤ (gj)Y

(gj)X
for all

j such that 1 ≤ j ≤ k. This construction is different for cyclic and non-cyclic

finite abelian groups.

24



If gj ∈ G, then we write gj = (g(1)
j , g

(2)
j , . . . , g

(s)
j ). Now, let

Y = gβ1
1 · · · gβ

i · · · g
βk

k h, where for all j such that 1 ≤ j ≤ k, βj = αj + dj · ns,

and dj is chosen such that βj

αj
≥ β

αi
. For h = (h(1), h(2), . . . , h(s)) we define each

h(m) as h(m) =
i−1∑
j=1

βj ·g(m)
j +

k∑
j=i+1

βj ·g(m)
j −β ·g(m)

i (mod nm) for all 1 ≤ m ≤ s.

Thus, Y ∈ ZS(G). Now, if h 6= gi, then from Theorem 2.1, λ(X, Y ) = β
αi

. So,

let h = gi, then either gi has at least two non-zero coordinates or gi has exactly

one non-zero coordinate.

First, suppose that gi contain at least two non-zero coordinates. Then we

can write gi = (0, . . . , 0, g
(u)
i , 0, . . . , 0, g

(v)
i , 0, . . . , 0) such that u 6= v and u, v ∈

{1, 2, . . . , s}. Then, since Y ∈ ZS(G), we can replace h ∈ Y with h1 and

h2 where h1 = (0, . . . , 0, g
(u)
i , 0, . . . , 0) and h2 = (0, . . . , 0, g

(v)
i , 0, . . . , 0). Then,

from Theorem 2.1, λ(X, Y ) = β
αi

.

Second, suppose that gi has exactly one non-zero coordinate. Here we have

two subcases: when G is not cyclic and when G is cyclic. To start, we will assume

that G is not cyclic. Then we can write gi = (0, . . . , 0, g
(u)
i , 0, . . . , 0) such that

1 ≤ u ≤ s. Then, since Y ∈ ZS(G), we can replace h ∈ Y with h1 and h2 where

h1 = (0, . . . , 0, g
(u)
i , 0, . . . , 0, 1(w), 0, . . . , 0) and h2 = (0, . . . , 0, (n−1)(w), 0, . . . , 0)

such that u 6= w and 1 ≤ w ≤ s. Then from Theorem 2.1, λ(X, Y ) = β
αi

. Now,

we will assume that G is cyclic. Then we can write G = Zn. Since Y ∈ ZS(G)

we can replace h with fr where f 6= gi, |f | = n and f · r ≡ h. Then from

Theorem 2.1, λ(X, Y ) = β
αi

. �

Corollary 4.2. If X ∈ MZS(G) where X = gα1
1 gα2

2 · · · gαk

k , then

λ(X, MZS) =
{

β

αi
| 1 ≤ i ≤ k, β ∈ Z≥0

}
.

Proof. Theorem 4.1 applies here, because X ∈ MZS(G) ⊆ ZS(G). �

Theorem 4.3. Let G = Zn1⊕Zn2⊕· · ·⊕Zns
such that nj |nj+1 for all 1 ≤ j < s.

If X ∈ MZS(G) where X = gα1
1 gα2

2 · · · gαk

k then

λ(X, MZS) ⊆
{

βi

αi
| 1 ≤ i ≤ k, βi ≤ αi

}
∪ {0} .

Proof. Let βi

αi
∈ λ(X, MZS). Then there exists a Y ∈ MZS(G) such that

λ(X, Y ) = βi

αi
. According to Theorem 2.1, this implies that there exists gi ∈ X

such that (gi)X = αi and (gi)Y = βi. Also, since Y ∈ MZS(G), as shown
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in Theorem 2.15, βi

αi
≤ 1. Since αi > 0, βi

αi
≤ 1 implies that βi ≤ αi. Thus,

βi

αi
∈

{
βi

αi
≤ 1| 1 ≤ i ≤ k, βi ≤ αi

}
. �

Note that Theorem 4.3 is not a complete answer for the case of X, a fixed

minimal zero sequence, and Y ∈ MZS(G). Based on the general properties and

the results from Theorem 3.6, we believe that this containment is actually an

equality, as shown in the Conjectures below. Furthermore, the second conjecture

is needed because of Lemma 3.2.

Conjecture 4.4. Let G = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns
such that nj |nj+1 for all

1 ≤ j < s, excluding the case where s = 2 with n1 = 2 and n2 ∈ 2Z≥4. If

X ∈ MZS(G) where X = gα1
1 gα2

2 · · · gαk

k then

λ(X, MZS) =
{

βi

αi
| 1 ≤ i ≤ k, βi ≤ αi

}
∪ {0} .

Conjecture 4.5. Let G = Z2⊕Zn such that n ∈ 2Z≥4. If X ∈ MZS(G) where

X = gα1
1 gα2

2 · · · gαk

k then

λ(X, MZS) =
{

βi

αi
| 1 ≤ i ≤ k, βi ≤ αi, and

βi

αi
6= n− 2

n− 1

}
∪ {0} .

Although we do not have the complete answer for all finite abelian groups,

we do have an answer for cyclic groups.

Theorem 4.6. X ∈ MZS(G) where X = gα1
1 gα2

2 · · · gαk

k , α1 > α2 · · · ≥ αk. If

∃Y ∈ MZS such that Xg−1
1 ⊆ Y , then

λ(X, MZS) = {0, 1} ∪
{

β

αi
| 1 ≤ i ≤ k, 1 ≤ β ≤ αi − 1

}
.

Otherwise,

λ(X, MZS) = {0, 1} ∪
{

β

α1
| β ≤ α1 − 2

}
∪

{
β

αi
| 2 ≤ i ≤ k, 1 ≤ β ≤ αi − 1

}
.

Proof. According to Theorem 2.18 and Theorem 2.13, λ(X, MZS) ⊆ {0, 1} ∪{
β
αi
| 1 ≤ i ≤ k, 0 ≤ β ≤ αi

}
.

{0, 1} ⊆ λ(X, MZS) follows directly from Theorem 2.6 and Theorem 2.7.

To show that
{

β
αi
| 1 ≤ i ≤ k, β ≤ αi − 1

}
\

{
α1−1

α1

}
⊆ λ(X, MZS), we will

first construct a Y that satisfies β
α1

= λ(X, Y ), for any β ≤ α1 − 2. Let

Y = gβ
1 gα2

2 · · · gαk

k h, h = (α1 − β)g1 (mod n), and β ≤ α1 − 2. It is important

that we show that h 6= g1. Assume that h = g1, then Y = gβ
1 gα2

2 · · · gαk

k h =
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gβ+1
1 gα2

2 · · · gαk

k ⊆ X. This contradicts the fact that X ∈ MZS(G), and

hence h 6= g1. Clearly, whether h = gi 6= g1 or not, β
α1

is the minimum of{
βi

αi

}
, where βi = (gi)Y . Therefore, β

α1
∈ λ(X, MZS). Now, we will con-

struct a Y ′ that satisfies β
αi

= λ(X, Y ′), for any β ≤ αi − 1 and i 6= 1. Let

Y ′ = gα1−1
1 gα2

2 · · · gβ
i · · · g

αk

k h, h = (αi−β)gi + g1 (mod n), and β ≤ αi− 1. We

will show that αi−1
αi

≤ α1−1
α1

. α1−1
α1

= 1− 1
α1

, αi−1
αi

= 1− 1
αi

. Since 1
α1

≤ 1
αi

, we

get αi−1
αi

≤ α1−1
α1

. Using the same reasoning as above, it follows that β
αi

is the

minimum of
{

α1−1
α1

,
βj

αj

}
, where βi = (gi)Y . Therefore, β

αi
∈ λ(X, MZS).

Now consider the case where α1−1
α1

∈ λ(X, MZS). We will first show

that α1−1
α1

is not in the set of λ(X, MZS) if α1 > n
2 . Assume that α1−1

α1
∈

λ(X, MZS). α1−1
α1

= 1 − 1
α1

> 1 − 1
n
2

= 1 − 2
n = n−2

n is a contradiction

to Theorem 2.18. If α1 6 n
2 and α1−1

α1
∈ λ(X, MZS), then there must exist a

Y ∈ MZS(G) such that α1−1
α1

is the minimum of
{

βi

αi

}
, βi = (gi)Y . We will show

that Y must contain a subsequence Xg−1
1 . By Theorem 2.1, if λ(X, Y ) = α1−1

α1
,

then (g1)X = α1 and (g1)Y = α1−1. Also, all remaining elements h ∈ X and Y

must have (h)Y

(h)X
≥ α1−1

α1
. Hence, (h)Y ≥ (h)X . Therefore, α1−1

α1
∈ λ(X, MZS)

only if α1 ≤ n
2 and ∃Y ∈ MZS(G) such that Xg−1

1 ⊆ Y . �

The final case is when X is a fixed zero sequence and Y ∈ MZS(G). Since

we do not have a complete answer for λ(ZS, MZS), generating one when X is

fixed is an area for further study. However, we were able to find a bound for

the cyclic case.

Theorem 4.7. X ∈ ZS(G) where X = gα1
1 gα2

2 · · · gαk

k . If k = 1, then

λ(X, MZS) =
{

0, (g1)Y

α1

}
. Otherwise,

λ(X, MZS) ⊆
{

β

α
| β

α
≤ min

{
|gi| − 1

αi

}}
.

Proof. If k = 1, λ(X, MZS) =
{

0, (g1)Y

α1

}
follows directly from the character-

ization of λ(X, Y ).

Let Y be any minimal zero sequence. Assume that λ(X, Y ) > min
{

|gi|−1
αi

}
.

If gj is the critical element and |gj |−1
αj

= min
{

|gi|−1
αi

}
, then β

αj
> min

{
|gi|−1

αi

}
implies that there are at least |gj | copies of gj in Y. Since g

|gj |
j ∈ MZS(G)

and g
|gj |
j ∈ Y , this contradicts the fact that Y ∈ MZS(G). If gj is the criti-

cal element and |gj |−1
αj

6= min
{

|gi|−1
αi

}
, then by definition of λ(X, Y ), β

αj
is the
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minimum of
{

(gi)Y

αi

}
. However, Y must have βi copies of gi, βi < |gi|. Since

min
{

βi

αi

}
≤ min

{
|gi|−1

αi

}
< β

αj
, it contradicts the assumption that β

αj
is the

minimum of
{

βi

αi

}
. Therefore λ(X, Y ) ≤ min

{
|gi|−1

αi

}
. �

By restricting X to have only two distinct elements, we were able to prove

a theorem for the special case where X = gα1
1 gα2

2 and there doesn’t exist a

Y ∈ MZS such that bY c = {g1, g2}. The following example illustrates the set

of extraction degrees for such an X in Z(12). Let X = 3443, which is obviously

a zero sequence. The possible minimal zero sequences Y in Z(12) that give

λ(X, Y ) 6= 0 or 1, are: 113341101; 3341111; 334271; 324172; 314151; 3242101.

The resulting λ(X, Y ) ∈
{

1
3 , 2

3 , 1
4 , 2

4

}
.

Theorem 4.8. X ∈ ZS(G) where X = gα1
1 gα2

2 . If there does not exist a

Y ∈ MZS such that bY c = {g1, g2}, then

λ(X, MZS) = {1, 0} ∪
{

β

αi
| β

αi
≤ min

{
|g1| − 1

α1
,
|g2| − 1

α2

}
, i ∈ {1, 2}

}
.

Proof. {0, 1} ⊆ λ(X, MZS) follows directly from Theorem 2.6 and Theorem

2.7.

Now, we will show that λ(X, MZS) ⊆{
β
αi
| β

αi
≤ min

{
|g1|−1

α1
, |g2|−1

α2

}
.i ∈ {1, 0}

}
. Let β

α ∈ λ(X, MZS), and Y =

gβ1
1 gβ2

2 with λ(X, Y ) = β
α . According to Theorem 2.1, there must exist an ele-

ment gi ∈ X, such that β = (gi)Y and α = (gi)X = αi. Since Y ∈ MZS(G), β is

less than or equal to |gi|−1. Otherwise, g
|gi|
i ∈ MZS(G) is a subsequence of Y ,

which contradicts the fact that Y ∈ MZS(G) and that bY c = {g1, g2}. There-

fore, β
α ≤ |gi|−1

αi
. It is important to show that β

α ≤ |gj |−1
αj

, j 6= i. Using the same

reasoning as above, we have βj ≤ |gj | − 1, where βj = (gj)Y and j 6= i. By defi-

nition of λ(X, Y ), β
αi
≤ βj

αj
≤ |gj |−1

αj
. Therefore, β

α = β
αi
≤ min

{
|g1|−1

α1
, |g2|−1

α2

}
.

To show that
{

β
αi
| β

αi
≤ min

{
|g1|−1

α1
, |g2|−1

α2

}}
⊆ λ(X, MZS), it suffices to

show that β
α1

∈ λ(X, Y ). Construct Y = gβ
1 g

|g2|−1
2 h, where β < |g1|,

h = n−{βg1 + (|g2| − 1)g2 (mod n)}. Obviously, Y is a zero sequence. We will

now show that Y ∈ MZS(G). Assume that Y /∈ MZS(G), then there must

exist a Y ′ = gβ1
1 gβ2

2 h such that Y ′ ∈ MZS(G), and β1 = β, β2 < |g2| − 1, or

β1 < β, β2 = |g2| − 1, or β1 < β, β2 < |g2| − 1. All three cases imply that

gβ−β1
1 g

(|g2|−1)−β2
2 ∈ MZS(G). If both β − β1 and (|g2| − 1) − β2 are non-zero,

then gβ−β1
1 g

(|g2|−1)−β2
2 ∈ MZS(G) contradicts the assumption that there does
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not exist a Y such that bY c = {g1, g2}. We will next show that β − β1 or

(|g2| − 1) − β2 being zero is not possible. Both β, β1 are less than |g1|, and

hence β − β1 < |g1|. Similarly, (|g2| − 1)− β2 < |g2|. Trivially, either gβ−β1
1 or

g
β2−(|g2|−1)
2 cannot be zero sequence. Therefore, Y ∈ MZS(G). Then h 6= g1

or h 6= g2 follows directly from the hypothesis, because Y cannot contain only

the elements g1 and g2. Therefore, β
α1

≤ min
{

|g1|−1
α1

, |g2|−1
α2

}
∈ λ(X, Y ).

�

4.2 Y Fixed

The final sets that we investigated are those in which Y is a fixed zero sequence

and X is contained in either MZS(G) or ZS(G). As discussed previously, by

placing restrictions on Y , we impose restrictions on X. Using some of our

previous results we were able to state some bounds for these sets.

Proposition 4.9. If Y ∈ ZS(G) where Y = gβ1
1 gβ2

2 · · · gβj

j and X is any mini-

mal zero sequence, then

λ(X, Y ) = 0, or min
{

βi

|gi|
|1 ≤ i ≤ j

}
≤ λ(X, Y ) ≤ max {βi|1 ≤ i ≤ j} .

Proof. Let Y = gβ1
1 gβ2

2 · · · gβj

j and let X ∈ MZS(G). If bXc 6⊆ bY c, then

from Theorem 2.6, λ(X, Y ) = 0. So, assume bXc ⊆ bY c. Then there exist m

where 1 ≤ m ≤ j such that λ(X, Y ) = (gm)Y

(gm)X
= βm

(gm)X
. Since X ∈ MZS(G),

1 ≤ (gm)X ≤ |gm|. Then βm

|gm| ≤
βm

(gm)X
≤ βm

1 . Then we have that

min
{

βi

|gi| | 1 ≤ i ≤ j
}
≤ βm

|gm| ≤ λ(X, Y ) ≤ βm

1 ≤ max {βi| 1 ≤ i ≤ j}. �

For the case when Y is a fixed minimal zero sequence, note that if Y ∈
MZS(G), λ(X, Y ) ≤ 1 from Theorem 2.15. Specifically, if G = Zn, λ(X, Y ) ≤
n−2

n from Theorem 2.18 .

Now, for the last two cases where X is any zero sequence and Y is either

a fixed minimal zero sequence or zero sequence, we can combine the previous

upper bounds with the fact that if X is any zero sequence, λ(X, Y ) can be

arbitrarily close to zero. For example, let X = mY where m ∈ Z+. Then

λ(X, Y ) = 1
m .
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5 Conclusion

We set out to find the sets of possible extraction degrees for all combinations of

two zero sequences. In the end, we were able to determine complete results for

many of these combinations. However, difficulties arose when placing restric-

tions on Y, as addressed in Section 3.3 and Section 4.2. These problems are

open to further study.
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