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Abstract

Second Degree price discrimination is a coupon strategy that allows all consumers access
to the coupon. Purchases are made by consumer self selection based on utility, a function
of shelf price, coupon face value, and hassle cost. This work builds on a previous study and
develops a graphical analysis and model based on similar assumptions. We find an optimal
shelf price and coupon value to segment a population based on maximizing a firm’s profit.



1 Introduction

This article addresses the questions “Why would a firm simultaneously lower the retail price and
offer a coupon?” and “When and why is this strategy optimal?” We combine Mathematics and
Marketing to discover the combination of both disciplines in comparing our work with that from
an artical in the November 2004 issue of the Journal of Marketing Research [1]. We develop
a model based on similar assumptions that has a graphical representation. This newfound
knowledge is applied to better understand firm and consumer behavior.

Over the past few decades, coupons have grown drastically as a promotional tool. In the
1980’s, this growth was at an average rate in excess of 11%. In 1993 more than 3,000 coupons
per household were distributed [2]. Companies frequently offer coupons for consumer trials,
as incentives to purchase a product, to encourage brand switching, to create brand loyalty, to
gather information about price sensitivity, and to increase sales for a short duration.

A fundamental assumption is that a company is not trying to gain the business of every
consumer in the market. One responsibility of a marketing manager is to segment the population
into different types of consumers and then find the best way to appeal to these segments to
increase profits. In these segments, there are types of people that will not buy your product no
matter how it is priced. For this reason, it is not profitable to price your products in a manner
that appeals to everyone.

This is where price segmentation comes into play. There are many different strategies for
price segmentation. For example, a skimming strategy is used with an introductory product in
which a firm prices the product extremely high to take advantage of the consumers who purchase
at any price in order to be leaders in the market. The firm then gradually decreases the price
until one is found that appeals to a majority of the market. In this paper, we are concerned
with Second Degree price discrimination, or offering a coupon so it is available to all consumers.
For example, a firm may place a coupon in a newspaper to allow all consumers access to this
coupon. Similar couponing methods are Third Degree price discrimination, which refers to the
targeting of consumer segments, and First Degree price discrimination, also known as perfect
price discrimination, which refers to the targeting of individual consumers.

Second Degree price discrimination aims to segment the population by valuation of the
product and by price sensitivity. Thus, purchases are made based on consumer self selection
rather than firm targeting. This has 3 main effects on profit. The negative effect of lost profit
from consumers normally willing to purchase at the regular price but who choose to use a coupon
when one is offered is called the trading down effect. Ideally the trading down effect is zero, but
this is nearly impossible in Second Degree price discrimination. The positive effect on profit
from consumers who purchase the product with a coupon that would not have purchased at the
regular price is called the new customer effect. The change in profit resulting from changes in
the regular price when a coupon is offered is called the regular price effect and is either positive
or negative. The model presented later attempts to offset the positive and negative effects by
setting price and coupon value in such a way as to maximize profit.

Because we are using Second Degree price discrimination, the hassle cost of using a coupon
plays a major role in the decision making. We now introduce the idea of utility. Utility is a term
used to describe benefit. For firms, utility is simply profit. For consumers, utility is the gain
from purchasing a product and is a function of price, hassle cost, coupon value, and intrinsic
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social value. Throughout, utility is used to refer to consumer utility, and profit is used to refer
to firm utility. Our model of utility is described in detail later.

We investigate optimal strategies for setting price and coupon value in order to maximize
profit. This increases overall social welfare, as both the firm increases its profits and most
consumers pay less money. The goal of this paper is to lay a foundation of common assumptions
and provide a single uniform model that is able to describe complex situations with a graphical
representation. This helps us understand the relationships between coupon face value, shelf
price, and hassle cost.

2 Model Assumptions

The model considers a single firm selling to a unit mass of customers of type θ, where θ is
uniformly distributed on the interval [0,1]. The firm sells only one type of product at price
p ≥ 0 with a marginal cost of w ≥ 0. Utility is modeled by a piecewise linear function of q,
where q ≥ 0 is data driven and depicts the valuation increase across the θ interval. That is, q
is the rate at which utility increases over the population. Furthermore, α ≥ 0 is the minimum
value, or intrinsic value, the product has to society. Hassle cost, H(θ) ≥ 0, is positive for
only a fraction β of consumers of type θ ≥ X, where X delineates where consumers begin to
have a hassle cost that effects utility. Hassle cost is discussed later in detail. The value of X
is determined by the data of the specific firm, product, and most importantly consumers. The
utility function, U(θ), for each consumer of type θ is determined by weather or not they consider
using a coupon with a face value c ≥ 0. It is important to note that we assume consumers have
certain characteristics and purchasing patterns in the market, and these characteristics are what
determines α, β,X, q, w, and h. That is, these parameters are data driven. The consumer utility
function is

U(θ) =

{

UC(θ), 0 ≤ θ ≤ (1 + β)X
UNC(θ), (1 + β)X < θ ≤ 1,

where
UC(θ) = UNC(θ) − H + c (1)

and
UNC(θ) = α + θq − p. (2)

The utility functions, UC(θ) and UNC(θ), are restricted to their domains, as shown in Figure (1).
We call UNC(θ) utility with no consideration of a coupon and UC(θ) utility with consideration
of a coupon. Consumers of type θ are not allowed to choose which function they measure their
utility with, but at the same time, it is their consumption patterns upon which utility is based.
For simplification, we assume that income increases as θ increases. That is, consumers of type θ
close to zero have a low income and consumers of type θ close to 1 have a high income, and it is
in this way that the utility domains are chosen. In other words, the wealthier consumers do not
consider using a coupon while the poorer consumers do consider using a coupon. The middle
class consumers have a positive hassle cost and must determine if the coupon value outweighs
their hassle cost.
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Figure 1: Utility Function Domains

If U(θ) ≥ 0, then we say that consumer θ purchases the product. A consumer foregoes
purchasing if their utility is negative. Notice that

UNC(θ) ≥ 0 ⇔ θ ≥
(p − α)

q
, (3)

and

UC(θ) ≥ 0 ⇔ θ ≥
[(p − α)

q
−

(c − H)

q

]

=
p − c − α + H

q
. (4)

Hassle cost is the consumer’s disutility from using a coupon and is a time consideration.
For example, the hassle of keeping track of the coupon, organization costs, or a variety of other
“costs” that influence a consumer’s desire to use a coupon. Hassle cost is defined by

H(θ) =

{

0, 0 ≤ θ ≤ X
h, X ≤ θ ≤ (1 + βX),

where h > 0. Again, notice that hassle cost is only a factor in utility for a fraction β of consumers
of type θ ≥ X. Note that consumers of type θ ∈ ((1+βX), 1] do not consider the use of coupons
because they are too wealthy, thus, they have no applicable hassle cost. Hassle cost is depicted
in the figures as the dashed piecewise constant function.

Since utility is the determining factor of purchases, we are concerned with where U(θ) ≥ 0.
Specifically, we determine exactly where U(θ) = 0, say at θ̂, and consumers of type θ ≥ θ̂
purchase for all θ within the respective utility domain. Although U(θ) is piecewise linear, it is
not continuous, and thus utility can alternate between positive and negative along the θ axis,
as seen in Figure (2). Note that U(θ) = 0 can have 3 solutions.
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Figure 2: Graphical representation for U(θ)

3 A Model of Profit, Segmentation, and Utility with a Graphical

Representation and Analysis

We now develop a model that determines an optimal price and coupon value that segments the
population to maximize profit. Profit, π, is obtained where utility is non-negative, or where
consumers purchase the product. Remember that profit is calculated by price, p, less cost,
w, less any losses from a coupon, c, multiplied by the quantity sold. The model calculates
quantity sold as the number of consumers with a non-negative utility. That is, quantity sold is
the sum of the distance of all θ ∈ [0, 1] where utility is non-negative, or where U(θ) ≥ 0. Let
V = (p, c, a2, s2, s3, s4). The model is as follows:

maxπ(V ) = a2(p − c − w)s2 + (p − c − w)s3+

(p − w)[1 − ((1 + β)X + s4)]

Subject to:

p − c − α

q
= X + a1s1 − a2s2, (5)

a1, a2 ∈ {0, 1}, (6)
∑

i

ai = 1, (7)

X ≤
p − c − α + h

q
+ s3 ≤ (1 + β)X (8)

p − α

q
− s4 = (1 + β)X (9)

0 ≤ s1 ≤ βX, (10)
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0 ≤ s2 ≤ X, (11)

0 ≤ s3 ≤ βX, (12)

0 ≤ s4 ≤ (1 − (1 + β)X), (13)

p, c ≥ 0. (14)

To understand the model, we first explain the constraints. Consider constraints (5) through
(7). From the domain of U(θ) and H(θ), we know that U(θ) = 0 when θ = (p − c − α)/q for
some θ ∈ [0, (1 + β)X]. Note that H(θ) = 0 for θ ∈ [1, X) and remember that X is the point
determined by the data of the population where hassle cost is positive for all θ ∈ [X, (1 + β)X].
Thus we set (p− c−α)/q = X + a1s1 − a2s2, where a1 and a2 are binary variables. Notice that
s1 is the distance from X to (p− c− α)/q when (p− c − α)/q > X, and s2 is the distance from
(p− c−α)/q to X when (p− c−α)/q < X. Constraint (7) allows only one of the ai’s to be 1 so
that either s1 or s2 is removed from the profit calculation. We let 0 ≤ s1 ≤ βX and 0 ≤ s2 ≤ X
which guarantees 0 ≤ (p − c − α)/q ≤ (1 + β)X, and thus utility becomes non-negative within
our population and is restricted to the specified utility domain.

If (p − c − α)/q < X, then profit is increased by (p − c − w)s2. If (p − c − α)/q = X, then
s1 = s2 = 0 and there is no increase in profit. If (p − c − α)/q > X, then profit is not effected
by s1. Although we allow for X < (p− c− α)/q ≤ (1 + β)X, if the utility becomes nonnegative
for some θ ∈ (X, (1 + β)X], then we use s3 for profit calculation within this domain and s1 is
simply used as a reference for utility. That is, if X < (p − c − α)/q, then hassle cost drops the
utility function down and allows contstraint (8) to choose an s3. Figures (3) and (4) depict a
graph of U(θ) that shows the existence of s1 and s3. However, U(θ) < 0 over [0, X), so there is
no s1 and therefore no additional profit is made by the firm from this segment.

Figure (3) represents an infeasible graph of U(θ), but we see a corresponding feasible graph
of U(θ) in Figure (4). That is, our model does now allow Figure (3) because U(θ) 6= 0 for
(1 + β)X ≤ θ ≤ 1. Thus, the model forces p to decrease. We then obtain an intersection
depicted by the feasible graph of U(θ) in Figure (4). This is clarified with the understanding of
the remaining constraints.
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Figure 3: Infeasible graph of U(θ)
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Figure 4: Corresponding feasible
graph of U(θ), with s1, s3 > 0

Again, constraint (8) is used to determine utility on the middle segment. On this interval,
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H(θ) = h and s3 is the distance between (p− c−α + h)/q and (1 + β)X, or where U(θ) ≥ 0 for
θ ∈ [X, (1 + β)X]. We see that the objective function drives s3 to be as large as possible and
that profit for this segment is increased by (p − c − w)s3.

Figure (5) depicts another infeasible graph of U(θ) while Figure (6) depicts the corresponding
feasible graph with positive s2 and s3. Again notice how the model forces the utility function to
change in Figure (6). Constraint (12) bounds s3 so that we keep (p− c−α+h)/q in the correct
domain.
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Figure 5: Infeasible graph of U(θ)
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Figure 6: Corresponding feasible
graph of U(θ), with s2, s3 > 0

Due to the domain divisions of U(θ) and constraint (9), we see that (p − α)/q = 0 for some
θ ∈ [(1+β)X, 1]. We let s4 be the distance between (1+β)X and (p−α)/q, or where U(θ) < 0.
Because of this, we see in the objective function that the distance between (1+β)X and 1 where
U(θ) ≥ 0 is [1 − ((1 + β)X + s4)]. On this domain coupons are not considered, and thus profit
is not effected by c. Therefore profit increases by (p − w)[1 − ((1 + β)X + s4)]. Note that s4

is bounded by constraint (13). Figure (7) represents yet another infeasible graph of U(θ) and
Figure (8) shows the corresponding feasible graph with s4 > 0.
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Figure 7: Infeasible graph of U(θ)
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Figure 8: Corresponding feasible
graph of U(θ), with s4 > 0

Profit is higher when s2 and s3 are larger, and when s4 is smaller. However, the other
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variables in the model greatly effect wheather the objective will attempt to minimize or maximize
any of the si’s.

4 Bounds on p and c

We now make some observations on p and c and see that our model constraints provide bounds
for both p and c.

Theorem 4.1 The model constraints provide a lower bound for c and both an upper and a lower
bound for p. In particular,

h ≤ c, and

(1 + β)Xq + α ≤ p ≤ q + α.

Proof: We first show h ≤ c. From constraints (8) and (9) we have that

X ≤
p − c − α + h

q
+ s3 ≤

p − α

q
− s4, (15)

which implies
qX − p + α ≤ −c + h + qs3 ≤ −qs4. (16)

Since s4 ≥ 0, we have that −qs4 ≤ 0. Therefore,

−c + h + qs3 ≤ 0. (17)

Since qs3 ≥ 0, we conclude that
h ≤ c. (18)

We now show the bounds on p. From constraint (14), p ≥ 0. However, we can find a greater
lower bound by using constraint (9). We see that

p − α

q
− s4 = (1 + β)X

⇒ p = (1 + β)Xq + α + s4. (19)

Since s4 ≥ 0, we have that

p ≥ (1 + β)Xq + α > 0. (20)

Thus, we have shown a lower bound on p.
We use equation (19) and notice from constraint (13) that s4 ≤ (1 − (1 + β)X). Thus, we

substitute into equation (19) to obtain

p ≤ (1 + β)Xq + q(1 − (1 + β)X) + α

= q + α.

Therefore, we have that (1 + β)Xq + α ≤ p ≤ q + α.
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Parameter or Assumed Value
Characteristic for Example

X 1/2
β 1/3
q 8
h 2
α 1
w 2

Table 1: Parameters for Example

p c π

$9 1 $0
$19/3 1 $1,444

$7 1 $1,250
$6 1 $1,333

$9 2 $0
$19/3 2 $1,638

$7 2 $1,250
$6 2 $1,833

$9 3 $0
$19/3 3 $1,889

$7 3 $1,583
$6 3 $1,916

Table 2: Values for p, c, and π

5 A Numerical Example

The following example contains different scenarios for values of p and c and demonstrates the
difficulty in determining an optimal p and c. We first make educated assumptions and pick
values for our population parameters. Table (1) summarizes these parameters.

Selecting values for p and c, we see their effect on profit, π, as shown in Table (2). Note
that the bounds on p give us an upper bound of $9 and a lower bound of $19/3, or $6.33. From
the table, we have that when p is its upper bound, the firm gains zero profit. Thus, it is not
optimal for p to be its upper bound. We also notice that the lower bound on p may be optimal.
Note that the first four cases with c = 1 are not allowed by our model. Furthermore, the three
cases where p = $6 are also not allowed by our model, as the lower bound on p is $6.33. These
cases are simply used as a reference to see the effects of different p and c values on profit. For
profit calculations we assume that θ is representative of 1,000 people in our population. Thus
we multiply profit by 1,000 to gain a more realistic dollar value.

From this example we see that the highest profit obtained is when p = $6 and c = 3.
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Literature Model Our Model

utility function fixed domains
domains dependent for utility

on p and c

2 cases one model

p unbounded p bounded

forces c ≤ h ensures c ≥ h

c = h is optimal claim c > h is optimal

Table 3: Comparison of models

However, this p value is not attainable in our model. The highest profit allowed by our model is
when p = $19/3, the lower bound on p, and when c = 3 > h. This leads us to Conjecture (5.1).

Conjecture 5.1 If (c*,p*) is optimal, then h < c* < (p*-w). Also, there exists an optimal
(c*,p*) such that p*= (1 + β)Xq + α.

In comparing our model with the one in an article from the Journal of Marketing Research
[1], we discover some interesting differences. Table (3) summarizes our comparison. Our model
restricts the domain of the utility function while the literature allows the utility of consumer θ
to change depending on the firms desicions. That is, the literature’s model allows consumers
to measure their utility differently depending on θ, p, and c. Because of this, the literature is
forced to divide the model into two cases, X < (p − α)/(q) and X ≥ (p − α)/(q). We develop a
uniform model that accounts for all possiblilities through the use of binary variables and a new
utility function.

Because of the fixed domains of utility and the constraints that force U(θ) ≥ 0 for each
domain of U(θ), we find that our model places bounds on p. At first glance this seems to restrict
the amount of possible profit, but upon further investigation, we see that the model also insures
c ≥ h. Since c is allowed to increase beyond h, it essentially reduces the price consumers pay
and thus increases their utility so that we obtain an equivalent or greater number of consumers
with a non negative utility than the literature. The literature does not place bounds on p, but
does however add an explicit constraint in their model that forces c ≤ h.

From a marketing standpoint there is always some kind of relationship between hassle cost
and coupon value. Most marketing managers would argue that allowing coupon value to exceed
hassle cost is detrimental to profit as it would not accurately segment the population. The
firm is essentially allowing the market a discounted price and not gaining sales through price
sensitivity segmentation. However, we have used similar assumptions in developing our model
and still find an optimal p and c that maximizes profit given these assumptions. We assume that
h is independent of c, but the literature assumes h is dependent on c. The literature also forces
c ≤ h to agree with the insight of the marketing assumptions. We find that this constraint is
not needed. In fact, using similar assumptions to develop our model, we find that the opposite
is true.
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In our example, c > h provides a higher profit than c = h. We find this to be true because
increasing c essentially reduces p to be below the lower bound for all consumers that consider a
coupon. Thus again we are lead to believe that conjecture (5.1) is true. While we claim c > h
is optimal for our model, the literature finds that c = h is optimal for their model. Note that
this is their upper bound on c.

In this paper we combine two cases in [1] to develop an alternative model based on similar
assumptions that bound p and c. We find it interesting that our model ensures c ≥ h while the
literature forces c ≤ h. However, this is not suprising. Because we ensure c ≥ h, we still have a
feasible optimal solution for maximizing profit. We claim that c > h and the lower bound on p
is optimal. However, because we assume a piecewise utility function with fixed domains U(θ),
we are over simplifying the population. Therefore, it may not be realistic to apply our model to
an empiricle coupon offering.

6 Conclusions

This paper is beneficial to both firms and consumers. For consumers, the understanding of this
paper is most beneficial in understanding their purchasing behaviors. For firms, when offering
a coupon in a Second Degree price discrimination situation, the firm can find an optimal price
and coupon value that maximizes profit. Furthermore, the firm gains an optimal segmentation
of the population. For these reasons, a whole field of study in marketing is devoted to consumer
behavior, which includes the study of hassle cost and purchasing patterns.

In conclusion, this newfound knowledge can be applied to better understand firm and con-
sumer behavior.
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