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ABSTRACT

Let S ⊆ Z. The generalized factorial function for S, denoted n!S , is introduced in
accordance with theory already established by Bhargava ([4]). Along with several known
theorems about these functions, a number of other issues will be explored. This Thesis is
divided into 4 chapters. Chapter 1 provides the necessary definitions and offers a connec-
tion between the generalized factorial function and rings of integer-valued polynomials. In
Chapter 2, necessary conditions on an infinite sequence of integers are obtained in order for
that sequence to serve as the factorial sequence for some subset S ⊆ Z. Chapter 3 explores
the subject of !-equivalent subsets and we find a condition on two infinite subsets S and T
of Z which force n!S = n!T for every nonnegative integer n. We close in Chapter 4 with
an analysis of generalized binomial coefficients, and for a given infinite subset S ⊆ Z, we
characterize those subsets T ⊆ Z for which

(
n
m

)
S

=
(
n
m

)
T

.
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1 Introduction

Most anyone who has taken an undergraduate course in abstract algebra should be some-
what familiar with the polynomial ring Q[x]; that is, the the set containing all those poly-
nomials, anxn + an−1x

n−1 + · · ·+ a1x+ a0, where the ai’s are in Q. As such, Q[x] satisfies
all the properties of a ring. In addition, Q[x] is closed under scalar multiplication from
elements in Q; so Q[x] is a vector space over the field Q. For that reason, we can search for
a basis of this vector space (i.e. a linearly independent subspace spanning Q[x]). One’s first
choice, a correct one, might be {xn}∞n=0. However, for the purposes of this paper, there is
a more interesting possibility, but first a definition.

Definition 1.1. Let n be a non-negative integer. If n ≥ 1 then set(
x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!

and if n = 0,
(
x
0

)
= 1.

This “more interesting” prospective basis is {
(
x
n

)
}∞n=0, called the set of binomial poly-

nomials. Let’s consider a proof of this fact.

Proposition 1.2. The set {
(
x
n

)
}∞n=0 is a basis for the vector space Q[x] over Q.

Proof. There are two parts to this proof.
1) Show that {

(
x
n

)
}∞n=0 spans Q[x] (i.e., every element of Q[x] can be expressed as a linear

combination of elements in {
(
x
n

)
}∞n=0). We use induction on the degree of the polynomial.

For the initial case, let f(x) be a polynomial in Q[x] of degree zero or, in other words,
f(x) = b0 where b0 is in Q. So f(x) = b0

(
x
0

)
and the initial case is proven. Now, assume

that the property holds for all polynomials of degree ≤ n−1. Let f(x) = a0+a1x+· · ·+anxn
be a polynomial of degree n. Now ann!

(
x
n

)
is a polynomial in Q[x] of degree n, whose xn

term has leading coefficient an. So, since the xn terms will cancel, the rational polynomial
g(x) = f(x) − ann!

(
x
n

)
has degree ≤ n − 1, and from our assumption, g(x) =

∑∞
i=0 bi

(
x
i

)
.

Thus f(x) = ann!
(
x
n

)
+
∑∞

i=0 bi
(
x
i

)
, which is the linear combination we’re looking for. Thus,

the property is proven for all rational polynomials.
2) Show that {

(
x
n

)
}∞n=0 is a linearly independent set in Q[x]. Let f(x) = a0 + a1

(
x
1

)
+

· · · + an
(
x
n

)
be an arbitrary linear combination. Now, for f(x) = 0, it must be that the

coefficient of the
(
x
n

)
term is zero (i.e., an = 0) since it is the only

(
x
i

)
which features such a

term. For the same reason (coupled with the fact that an = 0), an−1 = 0 and so on down
the line, thus all coefficients are zero and the property is proven.

We now turn to another ring, the set of all integer-valued polynomials (see [6]), denoted
by Int(Z). This set is denoted by,

Int(Z) = {p(x) ∈ Q[x] | p(z) ∈ Z,∀z ∈ Z}.
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In other words, Int(Z) contains all those polynomials in Q[x] that map integers to integers.
A few examples of polynomials in the set would be x, 3x2 − 1, or an integer such as 7.
However Int(Z) contains more than just polynomials with integer-coefficients, such as those
listed above. For instance, the polynomial x(x−1)

2 is in Int(Z) (since either z or z− 1 is even
for every z in Z), as well as all the other binomial polynomials, as we show in the following
lemma.

Lemma 1.3.
(
x
n

)
∈ Int(Z), for all n ≥ 0.

Proof. Let n be arbitrary. If
(
x
n

)
∈ Int(Z), then

(
a
n

)
∈ Z, for all a ∈ Z. There are a number

of cases to consider.
1) Let a ≥ n. Then

(
a
n

)
is a standard binomial coefficient, thus

(
a
n

)
∈ Z.

2) Let 0 ≤ a ≤ n− 1. By definition of
(
x
n

)
, x− a is in the numerator, thus

(
a
n

)
= 0.

3) Let a < 0. Then,(
a

n

)
=
a(a− 1) · · · (a− n+ 1)

n!
=

(−1)n
(−a)(1− a) · · · (n− 1− a))

n!
= (−1)n

(
n− 1− a

n

)
.

Thus the problem reduces to one of the two cases above. Therefore the proof is complete.

Since Int(Z) is a ring, it is closed under addition and also closed under scalar multipli-
cation with the integers. Although we can’t properly consider Int(Z) to be a vector space
(since Z is not a field), it is a Z-module, which turns out to be enough for our purposes
(see [7]). Much of the terminology remains the same, least of which is the concept of free
basis (or Z-basis, as it will be in this context), which carries over logically into the realm
of modules. On that note, what are some possible Z-bases for Int(Z)? It would perhaps be
appropriate to look at the example bases from Q[x]. Upon immediate inspection, it can be
seen that {xn}∞n=0 isn’t satisfactory (for instance, there is no way to generate x(x−1)

2 from
a linear combination of the elements in {xn}∞n=0 using only integer coefficients). But it so
happens that the set, {

(
x
n

)
}∞n=0, is in fact a Z-basis.

Proposition 1.4. The set {
(
x
n

)
}∞n=0 is a Z-basis for Int(Z).

Proof. Here we need to show independence over Z and spanning.
1) The independence of {

(
x
n

)
}∞n=0 is shown similarly as in Proposition 1 above.

2) For spanning, it suffices to show that every polynomial in Int(Z) is a linear combina-
tion over Z of elements in {

(
x
n

)
}∞n=0. To show this, we first need a couple of lemmas.

Lemma 1.5. If f(x) and g(x) are polynomials of degree ≤ n in Q[x] and f(0) = g(0),
f(1) = g(1), . . . , f(n) = g(n), then f(x) = g(x).
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Proof. Using the premises, the polynomial f(x) − g(x) has degree ≤ n; thus the equation
f(x)− g(x) = 0 has at most n distinct roots (if it is not equivalently the zero-polynomial).
However it has been assumed that f(x) = g(x) at least n+1 values; thus f(x)−g(x) = 0,∀x,
and f(x) = g(x).

Lemma 1.6. Given a sequence of integers, b0, b1, . . . , bn, there is a polynomial g(x) =
c0

(
x
0

)
+ c1

(
x
1

)
+ · · ·+ cn

(
x
n

)
, ci ∈ Z,∀i such that g(0) = b0, g(1) = b1, . . . , g(n) = bn.

Proof. The proof will be by induction on the length of the integer sequence.
1) Let the sequence, b0, be of length one. Then g(x) = b0

(
x
0

)
.

2) Assume that the property holds for sequences of length ≤ n. Given the sequence
b0, b1, . . . , bn, we find a corresponding g(x). From the assumption, there exists a f(x) =∑n−1

i=0 ci
(
x
i

)
for which

f(0) = b0, f(1) = b1, . . . , f(n− 1) = bn−1.

Consider the polynomial g(x) = f(x)+(bn−f(n))
(
x
n

)
. Now, for all i such that 0 ≤ i ≤ n−1,(

i
n

)
= 0 (for (x−i) is in the numerator of

(
x
n

)
). Thus g(i) = f(i) = bi,∀0 ≤ i ≤ n−1. Now, at

n, g(n) = f(n)+(bn−f(n))
(
n
n

)
= f(n)+bn−f(n) = bn. So with g(x) = f(x)+(bn−f(n))

(
x
n

)
,

an appropriate polynomial has been found, and the lemma has been proved.

We return to the proof of Proposition 4. Let f(x) be a polynomial in Int(Z) with degree
n, and let f(0) = b0, f(1) = b1, . . . , f(n) = bn. By Lemma 1.6, there is a polynomial
g(x) =

∑n−1
i=0 c1

(
x
i

)
for which g(0) = f(0), g(1) = f(1), . . . , g(n) = f(n). By Lemma 1.5,

f(x) = g(x),∀x. Thus the proof is complete.

We now introduce a new ring. If S is a subset of Z, set

Int(S,Z) = {p(x) ∈ Q[x] | p(s) ∈ Z,∀s ∈ S}.

In other words, Int(S,Z) contains all those polynomials in Q[x] that are integer-valued at
the elements of S. An easy observation about this ring is that Int(Z) ⊆ Int(S,Z) (since a
polynomial that is integer-valued for all integers must be integer-valued for any subset, S,
of the integers). Again, for reasons similar to the above, Int(S,Z) is a Z-module. What else
can we say about Int(S,Z)? More specifically, can we determine any Z-bases? In order to
approach these questions more intelligently, with some hope of success, we turn to Bhargava
and his work on generalizing the factorial function for subsets of Z (see [3] and [4]).

At the foundation of Bhargava’s theory is a notion called a p-ordering of S (where S
is an arbitrary subset of Z). A p-ordering of S is a sequence, {ai}∞i=0, of elements in S
constructed in the following manner.

Select any element in S, and denote it as a0.
Select an element a1 ∈ S that minimizes the highest power of p dividing a1 − a0.
Select an element a2 ∈ S that minimizes the highest power of p dividing (a2−a0)(a2−a1).
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In general, select an element ak ∈ S that minimizes the highest power of p dividing
(ak − a0)(ak − a1) · · · (ak − ak−1).

It should be immediately apparent that there is no unique p-ordering of S since, among
other reasons, a0 is chosen arbitrarily (there could also be any number of elements mini-
mizing the product at any particular point, from which you can only pick one). Now, if we
are given a particular p-ordering of S, we can define a new sequence, {νk(S, p)}∞i=0, called
the associated p-sequence of S. For each k ≥ 0, let νk(S, p) be the power of p minimized at
the kth step in the p-ordering process. In other words,

νk(S, p) = wp((ak − a0) · · · (ak − ak−1))

where wp(a) represents the highest power of p dividing a (for instance, w5(50) = 25). From
the construction of the p-ordering, it is easy to see that such a sequence must be monotone
increasing. What is truly amazing about these associated p-sequences is that they are
entirely independent of the choice of p-ordering!

Theorem 1.7. [4, Theorem 5] The associated p-sequence, {νk(S, p)}∞k=0, is independent of
the particular choice of p-ordering of S.

To better understand the construction of a p-ordering, we consider Z itself.

Proposition 1.8. [4, Proposition 6] The ordering 0, 1, 2, . . . forms a natural p-ordering of
Z for all primes p.

Proof. We again use induction.
1) The a0 can be chosen arbitrarily, so choose 0. By selecting a1 = 1, a1−a0 = 1−0 = 1

which obviously minimizes the power of p dividing a1 − a0 for all primes p.
2) Assume that the property holds for the first k − 1 steps (i.e., the ordering thus

far is 0, 1, 2, . . . , k − 1). In the kth step, we want to minimize the power of p dividing
(ak − 0)(ak − 1) · · · (ak − (k − 1)). But regardless of our choice of ak, the product is a
product of k consecutive integers, thus divisible by k!. But this k! can be had if k is selected
as the ak, which would clearly minimize the power of p dividing the product for all primes.
Thus the proof is complete.

With this natural p-ordering, we can determine the unique associated p-sequence for Z
as follows:

νk(Z, p) = wp((ak − a0) · · · (ak − ak−1)) = wp((k − 0) · · · (k − (k − 1))) = wp(k!).

Notice that if we were to fix k and have p range over all primes, taking the product of all
the resulting νk(Z, p)’s would yield the prime factorization of k!. Thus we can represent k!
purely as a product of these νk(Z, p)’s (which are invariant in Z) as,

k! =
∏
p

νk(Z, p).
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But since each subset, S, has its own invariant νk(S, p)’s, we can similarly define the gen-
eralized factorial function, k!S , as follows:

k!S =
∏
p

νk(S, p).

If, as in the case with Z, there is a p-ordering, {ai}∞i=0,which holds for all primes simulta-
neously, then k!S can be written more simply as k!S =| (ak − a0)(ak − a1) · · · (ak − ak−1) |
(see [4, Lemma 16]).

Let’s look at a few examples of the generalized factorial function in various subsets of
Z. (These examples are taken from [4].)

Example 1.9. Let S = 2Z (i.e. S is the set of even integers). Like Z before, there is a
natural p-ordering 0, 2, 4, . . . which holds for all primes p. Thus

k!2Z = (2k − 0)(2k − 2) · · · (2k − (2k − 2)) = 2kk!.

Example 1.10. Let S be the set of powers of 2 (which are in Z). Again there is a natural
ordering 1, 2, 4, 8, . . . holding for all primes p. Here

k!S = (2k − 1)(2k − 2) · · · (2k − 2k−1).

Example 1.11. Let S be the set of all squares in Z, which we denote by ZS . There is a
natural ordering 0, 1, 4, 9, . . . which holds for all primes. So

k!
ZS = (k2 − 0)(k2 − 1) · · · (k2 − (k − 1)2)) =

(2k)!
2

.

The task of calculating the generalized factorial function for subsets such as these (sub-
sets that are well-structured and bear a natural p-ordering that holds for all primes) is
relatively straightforward; though this is certainly not the case with more “perverse” sub-
sets. For instance, when S is the set of all primes, we get the result (from [4]):

k!S =
∏
p

p
b k−1
p−1
c+b k−1

p(p−1)
c+b k−1

p2(p−1)
c+···

.

Moving on, since k!S is called a generalized factorial function, we would expect it to share
some of the properties held by the traditional factorial function, k!. A familiar property
of the factorial is that for any nonnegative integers n and m, n!m! | (n + m)!. A proof
of this fact could be presented rather easily, though it’s sufficient for our purposes just to
recall that the binomial coefficient,

(
n+m
n

)
= (n+m)!

n!m! , is integer-valued. It is hoped that
the same could be said in the general case (i.e., for any nonnegative integers n and m,
n!Sm!S | (n + m)!S). This property is proven in Bhargava (see [4, Theorem 8]), though
not without difficulty (and a number of lemmas), so let the truth of the statement stand
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without explicit substantiation. Now with this being true, we can define something called
the generalized binomial coefficient for S in the logical way:(

n

k

)
S

=
n!S

k!S(n− k)!S
.

These coefficients become quite interesting. Each subset of Z has a characteristic set of
binomial coefficients, so each will have its own Pascal’s Triangle and no doubt a whole
range of other interesting characteristics. Returning to Examples 1.9 and 1.11 above, it can
be shown, by easy calculation, that

(
n
k

)
2Z

=
(
n
k

)
, and

(
n
k

)
ZS

= 2
(

2n
2k

)
.

It would perhaps be an appropriate time to recall the reason why we found the need
to define these p-orderings, generalized factorials, etc. It was our intent to find a basis for
the Z-module, Int(S,Z). Recall that for Int(Z) (which could also be written Int(Z,Z)), the
basis that we presented was the set of binomial polynomials, {

(
x
n

)
}∞n=0, where(

x

n

)
=
x(x− 1) · · · (x− k + 1)

n!
.

Given our new knowledge of p-orderings (specifically that the sequence 0, 1, 2, . . . forms a
p-ordering, {ai}∞i=0, on Z for all primes p), we can re-express this polynomial as(

x

n

)
=

(x− a0)(x− a1) · · · (x− ak−1)
n!Z

.

We can extend these conclusions further, but first a definition.

Definition 1.12. Let {ai,k}∞i=0 be a sequence in Z that, for each prime p dividing k!S , is
termwise congruent modulo νk(S, p) to some p-ordering of S.

The purpose of defining such a sequence is that, usually, there is no particular ordering
of elements in S that satisfies the p-ordering requirements for all primes p less than some
fixed integer (let alone all primes). This sequence at least gives an ordering respecting the
idiosyncrasies that exist between p-orderings of primes under a certain bound. But now we
state the theorem.

Theorem 1.13. The set {
(
x
n

)
S
}∞n=0 forms a basis for the Z-module Int(S,Z), where(

x

n

)
S

=
(x− a0,n)(x− a1,n) · · · (x− an−1,n)

n!S
.

As I don’t intend to offer a proof of this theorem, the interested reader can see [4] for
more details (see [4, Theorem 23]). For our purposes, the most important feature of this
theorem is that it presents an instance, a context, in which the generalized factorial function
reveals itself. (And it, of course, has historical significance, as these leading coefficients were
the inspiration for Bhargava’s theory).

The purpose of this paper is to further the theory already established by Bhargava.
Three general areas of interest will be examined: (i) what are necessary conditions on
a factorial sequence, (ii) criteria for !-equivalence of subsets in Z, and (iii) the theory of
generalized binomial coefficients.
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2 Necessary Conditions on Factorial Sequences

Before proceeding further, it would be best to mention a case which isn’t mentioned explic-
itly in Bhargava, that in which S ⊆ Z is a finite subset. This undoubtedly yields different
results. For instance, if |S| = n, then the construction of the p-ordering must begin repeat-
ing elements after the (n− 1)st step (so the product, (ak − a0)(ak − a1) · · · (ak − ak−1) = 0,
for k ≥ n). As a result, the definition of the generalized factorial function,

k!S =
∏
p

νk(S, p) =
∏
p

wp((ak − a0) · · · (ak − ak−1)),

seems to lose meaning for k ≥ n. I think it would make the most sense to regard k!S as
equalling 0 for k ≥ n (as this stipulation would preserve n!Sm!S | (n+m)!S). But this does
little to illuminate the structure of Int(S,Z), since

(
x
k

)
S

is undefined for k ≥ n. Because
of its somewhat “diseased” nature, the finite case will be occasionally ignored (though not
without warning). Thankfully however, the generation of the factorial sequence for finite
subsets lends itself well to programming (see Appendix for such a MAPLE creation).

The following theorem describes an extremely important property of generalized factorial
functions. Its usefulness cannot be understated.

Theorem 2.1. [4, Lemma 13] Let S ⊆ T . Then n!T |n!S, ∀n ≥ 0.

Proof. Though Bhargava proves this in his paper, there is a rather clever proof involving
what we know about integer-valued polynomial rings which is perhaps a bit more direct.
Since S ⊆ T , Int(T,Z) ⊆ Int(S,Z) (since a polynomial that is integer-valued for all integers
in T must be integer-valued for any subset, S, of T ). Now {

(
x
i

)
S
}∞i=0 is a Z-basis for

Int(S,Z). The most pertinent characteristic of
(
x
i

)
S

is that its leading coefficient is 1
i!S

.
Since Int(T,Z) ⊆ Int(S,Z),

(
x
n

)
T

can be expressed as a linear combination of
(
x
i

)
S

’s with
integer coefficients (where 0 ≤ i ≤ n). So,(

x

n

)
T

= zn

(
x

n

)
S

+ zn−1

(
x

n− 1

)
S

+ · · ·+ z1

(
x

1

)
+ z0

(
x

0

)
S

.

¿From the fact that the leading coefficient of
(
x
n

)
T

(a polynomial of degree n) is 1
n!T

and
that the leading coefficient of the degree-n term on the right side is zn

n!S
(from zn

(
x
n

)
S

), it
must be that 1

n!T
= zn

n!S
. Or in other words, znn!T = n!S . Therefore n!T |n!S = αn, for all

n ≥ 0.

This makes intuitive sense since if we have more elements from which to choose (as we would
with T ), the likelihood of finding a more minimizing element in a p-ordering is increased.

We can readily recognize 1, 1, 2, 6, 24, 120, 720, . . . as the factorial sequence for Z; and
with a bit more familiarity with generalized factorial functions, we can recognize 1, 2, 8,
48, 384,. . . as the factorial sequence for 2Z. But for an arbitrary infinite integer sequence,
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α0, α1, α2, . . . , how do we know whether there exists an S ⊆ Z such that the above is its
factorial sequence? To this effect, the following is a list of conditions on α0, α1, α2, . . . which
are necessary for the existence of such an S.

Theorem 2.2. Let α0, α1, α2, . . . be an infinite sequence of integers. If there exists an
S ⊆ Z such that the above is its factorial sequence (i.e., n!S = αn), then the following are
necessary:

i) αiαj | αi+j, for i, j ≥ 0.

ii) α0 = 0!S = 1

iii) n! | n!S = αn, for all n ≥ 0.

iv) Let α1 = 1!S = l. Then lnn! | αn, for all n ≥ 0. (And this is the strongest claim we
can make, given only the value for α1.)

v) Let α1 = 1!S = l = pβ1
1 p

β2
2 · · · p

βu
u and α2 = 2!S = l2m22!, where m22! = rγ1

1 r
γ2
2 · · · r

γv
v

(with p, r ∈ P). Then considering all q ∈ P, where wq(l) = qβ and wq(m22!) = qγ,∏
q|m2

q-l

q
γbn

2
c+b n

2q
c+b n

2q2
c+··· ∏

q|m2

q|l

q
(2β+γ)bn

2
c+b n

2q
c+b n

2q2
c+···

∏
q-m2

q|l

qnβ · νn(Z, q)
∏
q-m2

q-l

νn(Z, q) | n!S = αn .

Proof. i) This is a result of Bhargava (see [4, Theorem 8]).
ii) We have defined 0!S to be 1 for all S ⊆ Z, so no proof is needed.
iii) This is a special case of Theorem 2.1 above. Here we just allow that T = Z.
iv) Let α1 = 1!S = l. Now if l = 1, then we need to prove that 1nn! = n! | n!S . But this

is merely a restatement of (iii), so we are done. So let l = pβ1
1 p

β2
2 · · · p

βu
u , where the pi’s are

distinct primes with βi ≥ 1. Choose an arbitrary prime divisor, pi, of l (where pβii | l but
pβi+1
i - l). Let a0, a1, a2, . . . be a pi-ordering for S. Since ν1(S, pi) = pβii , pβii | (a − a0)

for all a ∈ S. In other words, ∀a ∈ S, a ≡ a0 ≡ bi(mod pβii ) where 0 ≤ bi < pβii is fixed. So
generally, ∀a ∈ S

a ≡ b1(mod pβ1
1 )

a ≡ b2(mod pβ2
2 )

...

a ≡ bu(mod pβuu ).
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So by the Chinese Remainder Theorem, there exists a b such that

a ≡ b(mod pβ1
1 p

β2
2 · · · p

βu
u ),

or
a ≡ b(mod l).

The largest set in which this holds is obviously T = lZ + b, so S ⊆ T . From [4, Example
17], we have that n!T = lnn!. Therefore by Theorem 2.1, lnn! | n!S = αn, for all n ≥ 0.

(v) Let 1!S = l = pβ1
1 p

β2
2 · · · p

βu
u and 2!S = l2m22!, where m22! = rγ1

1 r
γ2
2 · · · r

γv
v (with

p, r ∈ P). There are four types of primes, q, to consider.
a) Consider those q such that q | m2 but q - l. Let q be an arbitrary prime of this

type, where ν2(S, q) = qγ . So for a q-ordering of S, beginning a0, a1, a2, . . . , we have that
wq((a2 − a1)(a2 − a0)) = qγ . It must be that wq(a2 − a1) = qγ and wq(a2 − a0) = 1 or vice
versa, since if q | (a2 − a1) and q | (a2 − a0), then q | (a1 − a0). In this case, q | l, which
violates our assumption about q. So if a1 ≡ c(mod qγ) and a0 ≡ d(mod qγ), we have that,
∀s ∈ S, s ≡ c or d(mod qγ). The largest subset, T , such that ∀t ∈ T , t ≡ c or d(mod qγ) is
T = (qγZ+ c) ∪ (qγZ+ d).

Now we construct the q-ordering for T .
Claim: c, d, qγ + c, qγ + d, 2qγ + c, 2qγ + d, . . . is a q-ordering for T . Generally, if n is

even, an = n
2 q

γ + c, and if n is odd, an = n−1
2 qγ + d.

Since verifying this claim is rather tedious, the proof of it is left to the Appendix (Notes
A.1).

With the q-ordering constructed, we can solve for νn(T, q). We need to consider sepa-
rately the cases in which n is even and when n is odd.

If n is even,

νn(T, q) = wq((
n

2
qγ + c− n− 2

2
qγ − d)(

n

2
qγ + c− n− 2

2
qγ − c) · · ·

(
n

2
qγ + c− d)(

n

2
qγ + c− c)).

And since wq(kqγ + (c− d)) = 1, ∀k ∈ Z,

= wq((
n

2
− n− 2

2
)qγ · · · (n

2
− 1)qγ(

n

2
)qγ) = q

nγ
2 wq(

n

2
!)

= qγb
n
2
c · qb

n
2q
c+b n

2q2
c+b n

2q3
c+··· = q

γbn
2
c+b n

2q
c+b n

2q2
c+b n

2q3
c+···

.

(For explanation of why wq(n2 !) = q
b n

2q
c+b n

2q2
c+b n

2q3
c+···, see Notes A.2 in Appendix.)
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If n is odd,

νn(T, q) = wq((
n− 1

2
qγ + d− n− 1

2
qγ − c)(n− 1

2
qγ + d− n− 3

2
qγ − d) · · ·

(
n− 1

2
qγ + d− d)(

n− 1
2

qγ + d− c))

= wq((
n− 1

2
− n− 3

2
)qγ · · · (n− 1

2
− 1)qγ(

n− 1
2

)qγ) = q
(n−1)γ

2 wq(
n− 1

2
!)

= qγb
n−1

2
c · qb

n−1
2q
c+bn−1

2q2
c+bn−1

2q3
c+··· = qγb

n
2
c · qb

n
2q
c+b n

2q2
c+b n

2q3
c+···

= q
γbn

2
c+b n

2q
c+b n

2q2
c+b n

2q3
c+···

.

(For explanation of why b n
2qr c = bn−1

2qr c, see Notes A.3 in Appendix.)
Thus ∀n ≥ 0, we have that

νn(T, q) = q
γbn

2
c+b n

2q
c+b n

2q2
c+b n

2q3
c+···

.

And since S ⊆ T , νn(T, q) | νn(S, q) or

q
γbn

2
c+b n

2q
c+b n

2q2
c+b n

2q3
c+··· | νn(S, q).

b) Consider those q such that q | m2 and q | l. Let q be an arbitrary prime of this type,
where ν1(S, q) = qβ and ν2(S, q) = q2β · qγ . So for a q-ordering of S beginning a0, a1, a2, . . . ,
we have that wq(a1 − a0) = qβ and wq((a2 − a1)(a2 − a0)) = q2β · qγ . It must be that
wq(a2 − a1) = qβ+γ and wq(a2 − a0) = qβ or vice versa. This is because qβ | (a2 − a1)
and qβ | (a2 − a0) (else ν1(S, q) < qβ, which is a contradiction); and if qβ+1 | (a2 − a1) and
qβ+1 | (a2−a0), then a1 ≡ a0(mod qβ+1) (which implies that qβ+1 | wq(a1−a0) = qβ , another
contradiction). So if a1 ≡ c(mod qβ+γ) and a0 ≡ d(mod qβ+γ) (where wq(c− d) = qβ), we
have that, ∀s ∈ S, s ≡ c or d(mod qβ+γ). The largest subset, T , such that ∀t ∈ T , t ≡ c or
d(mod qβ+γ) is T = (qβ+γ

Z+ c) ∪ (qβ+γ
Z+ d).

Similar to the above case, c, d, qβ+γ +c, qβ+γ +d, 2qβ+γ +c, 2qβ+γ +d, . . . is a q-ordering
for T . This can be shown in a proof analogous to that for the above, so we leave the details
to the reader. In order to determine νn(T, q), we must again consider the parity of n.

If n is even,

νn(T, q) = wq((
n

2
qβ+γ + c− n− 2

2
qβ+γ − d)(

n

2
qβ+γ + c− n− 2

2
qβ+γ − c) · · ·

(
n

2
qβ+γ + c− d)(

n

2
qβ+γ + c− c))
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= wq((
n

2
qβ+γ − n− 2

2
qβ+γ)(

n

2
qβ+γ − n− 4

2
qβ+γ) · · · (n

2
qβ+γ − qβ+γ)(

n

2
qβ+γ)) ·

wq((
n

2
qβ+γ − n− 2

2
qβ+γ + (c− d))(

n

2
qβ+γ − n− 4

2
qβ+γ + (c− d)) · · ·

(
n

2
qβ+γ − qβ+γ + (c− d))(

n

2
qβ+γ + (c− d))).

And since, wq(kqβ+γ + (c− d)) = qβ,

= wq((
n

2
− n− 2

2
)qβ+γ · · · (n

2
− 1)qβ+γ(

n

2
)qβ+γ) · qβ

n
2 = q

n(β+γ)
2 wq(

n

2
!) · q

nβ
2

= q
n(2β+γ)

2 wq(
n

2
!) = q(2β+γ)bn

2
c · qb

n
2q
c+b n

2q2
c+b n

2q3
c+···

= q
(2β+γ)bn

2
c+b n

2q
c+b n

2q2
c+b n

2q3
c+···

.

If n is odd,

νn(T, q) = wq((
n− 1

2
qβ+γ + d− n− 1

2
qβ+γ − c)(n− 1

2
qβ+γ + d− n− 3

2
qβ+γ − d) · · ·

(
n− 1

2
qβ+γ + d− d)(

n− 1
2

qβ+γ + d− c))

= wq((
n− 1

2
qβ+γ − n− 3

2
qβ+γ)(

n− 1
2

qβ+γ − n− 5
2

qβ+γ) · · ·

(
n− 1

2
qβ+γ − qβ+γ)(

n− 1
2

qβ+γ)) ·

wq((
n− 1

2
qβ+γ − n− 1

2
qβ+γ + (d− c))(n− 1

2
qβ+γ − n− 3

2
qβ+γ + (d− c)) · · ·

(
n− 1

2
qβ+γ − qβ+γ + (d− c))(n− 1

2
qβ+γ + (d− c))).

= wq((
n− 1

2
− n− 3

2
)qβ+γ · · · (n− 1

2
− 1)qβ+γ(

n− 1
2

)qβ+γ) · qβ
n−1

2

= q
(n−1)(β+γ)

2 wq(
n− 1

2
!) · q

(n−1)β
2 = q

(n−)(2β+γ)
2 wq(

n− 1
2

!)

= q(2β+γ)bn−1
2
c · qb

n−1
2q
c+bn−1

2q2
c+bn−1

2q3
c+··· = q(2β+γ)bn

2
c · qb

n
2q
c+b n

2q2
c+b n

2q3
c+···
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= q
(2β+γ)bn

2
c+b n

2q
c+b n

2q2
c+b n

2q3
c+···

.

Thus ∀n ≥ 0, we have that

νn(T, q) = q
(2β+γ)bn

2
c+b n

2q
c+b n

2q2
c+b n

2q3
c+···

.

And since S ⊆ T , νn(T, q) | νn(S, q) or

q
(2β+γ)bn

2
c+b n

2q
c+b n

2q2
c+b n

2q3
c+··· | νn(S, q).

c) Consider those q such that q - m2 and q | l. So let q 6= 2 be a prime of this type,
where ν1(S, q) = qβ and ν2(S, q) = q2β (q = 2 is a special case which will be treated
later). So, for a q-ordering of S beginning a0, a1, a2, . . . , we have that wq(a1 − a0) = qβ

and wq((a2 − a1)(a2 − a0)) = q2β. It must be that wq(a2 − a1) = qβ and wq(a2 − a0) = qβ,
since qβ | (a2 − a1) and qβ | (a2 − a0) (else ν1(S, q) < qβ, which is a contradiction). So the
strongest statement we can make is that ∀a ∈ S, a ≡ a0 ≡ a1 ≡ b(mod qβ). The largest
subset, T , such that ∀t ∈ T , t ≡ a0 ≡ a1 ≡ b(mod qβ) is T = qβZ + b. Since S ⊆ T , we
have that ∀n ≥ 0,

νn(T, q) = qnβ · νn(Z, q) | νn(S, q).

Now let q = 2, where ν1(S, 2) = 2β and ν2(S, 2) = 22β · 2 = 22β+1. So for a 2-ordering
of S, beginning a0, a1, a2, . . . , it must be that w2(a2 − a1) = 2β+1 and wq(a2 − a0) = 2β or
vice versa. This is because 2β | (a2 − a1) and 2β | (a2 − a0) (else ν1(S, 2) < 2β , which is a
contradiction). So, if a1 ≡ c(mod 2β+1) and a0 ≡ d(mod 2β+1) (where wq(c− d) = qβ), we
have that ∀s ∈ S, s ≡ c or d(mod 2β+1). The largest subset, T , such that ∀t ∈ T , t ≡ c or
d(mod 2β+1) is T = (2β+1

Z+ c) ∪ (2β+1
Z+ d). Consider the set 2βZ+ c.

Claim: 2βZ+ c = (2β+1
Z+ c) ∪ (2β+1

Z+ d) = T .
Now, let t ∈ 2βZ + c. So t ≡ c(mod 2β) and either t ≡ c(mod 2β+1) or t ≡ c +

2β(mod 2β+1). Since d ≡ c(mod 2β) and d 6≡ c(mod 2β+1), d ≡ c + 2β(mod 2β+1). So
either t ≡ c(mod 2β+1) or t ≡ d(mod 2β+1). Thus t ∈ (2β+1

Z+ c)∪ (2β+1
Z+ d). Therefore

2βZ+ c ⊆ T .
Now, let t ∈ (2β+1

Z+ c) ∪ (2β+1
Z+ d). So t ≡ c(mod 2β+1) or t ≡ d(mod 2β+1). Since

c ≡ d(mod 2β), t ≡ c(mod 2β), leaving t ∈ 2βZ+ c. Thus T ⊆ 2βZ+ c.
This proves T = 2βZ+ c. So since S ⊆ T ,

νn(T, 2) = 2nβ · νn(Z, 2) | νn(S, 2),

which is in the same form as the above. Therefore ∀n ≥ 0, and all q such that q - m2 and
q | l, we have that

qnβ · νn(Z, q) | νn(S, q).

d) Consider those q such that q - m2 and q - l. Let q be an arbitrary such prime. The
largest set in which q - m2 and q - l is Z, itself. Thus ∀n ≥ 0 and all q such that q - m2 and

12



q - l, we have that

νn(Z, q) | νn(S, q).

Since all types of primes, q, have been considered, we are in position to make a statement
about n!S . ¿From the above cases, we have that∏

q|m2

q-l

q
γbn

2
c+b n

2q
c+b n

2q2
c+··· ∏

q|m2

q|l

q
(2β+γ)bn

2
c+b n

2q
c+b n

2q2
c+···

∏
q-m2

q|l

qnβ · νn(Z, q)
∏
q-m2

q-l

νn(Z, q)

∣∣∣∣∣∣
∏
q∈P

νn(S, q) = n!S = αn,

which completes the proof.

Using Theorem 2.2(iii) (n!|n!S , ∀n ≥ 0), we can express n!S as a multiple of n! (i.e.,
n!S = a · n!, a ∈ Z+). Alternatively, we can denote n!S as

n!S = s(n) · n!,

where s : Z+ −→ Z
+ is determined by S. (This is a notation which will be useful later in

the thesis.)
In observing Theorem 2.2(iv) and (v), it might appear that something more general

could be said. For instance, if we were given α0, α1, α2, . . . , αk, then there would be some
X such that X|αn, ∀n ≥ 0, where X isn’t something trivial. However the proof for the case
in which k = 2 should perhaps imply that, as k increases, the situation becomes daunting
rather quickly (indeed, the types of primes that would need to be considered doubles with
each increment of k). Also, those certainties about residues in S, which arose when k = 1 and
2, are generally lost as k increases. To demonstrate, let α1 = l, α2 = l22!, and α3 = l3m33!.
Let q 6= 2, 3 be a prime such that q|m3 and q|l, where ν1(S, q) = qβ, ν1(S, q) = q2β,
and ν1(S, q) = q3β+δ. So, for a q-ordering of S, beginning a0, a1, a2, a3 . . . , we have that
wq(a1− a0) = qβ, wq((a2− a1)(a2− a0)) = q2β, and wq((a3− a2)(a3− a1)(a3− a0) = q3β+δ.
It must be that qβ divides each of wq(a3− a2), wq(a3− a1), and wq(a3− a0) (else we would
contradict the fact that wq(a1−a0) = qβ). Now either wq(a3−a0) = qβ or wq(a3−a1) = qβ,
since if qβ+1 divided both of these terms, then qβ+1 would divide wq(a1 − a0) (which is
another contradiction). Assuming that wq(a3−a0) = qβ (and with it already provided that
qβ divides both wq(a3−a2) and wq(a3−a1)), qδ needs to be “distributed” between wq(a3−a2)
and wq(a3 − a1). Unfortunately, there are no indications as to how this distribution should
be performed. Though even if the distribution was known, it’s difficult to see what new
information could be gleaned about the residues in S.

Perhaps there is something worthwhile to be said, but there seem to be many other
more interesting problems worthy of attention.
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3 !-Equivalent Subsets

Definition 3.1. S and T ⊆ Z are said to be !-equivalent if ∀n ≥ 0, n!S = n!T .

Perhaps the most exciting problem associated with these factorial functions has been
the search for necessary and sufficient conditions on S and T ⊆ Z to provide that they
are !-equivalent sets. Since the presence or absense of particular residues (or groups of
residues) in a set is so intimately connected with that set’s factorial function, it would
seem that a necessary and sufficient condition for !-equivalence would have to concern itself
with relationships between residue classes. Something like prime-power equivalence (which
means, for a given residue b modulo pr, ∃s ∈ S, such that s ≡ b(mod pr) iff ∃t ∈ T , s.t.
t ≡ b(mod pr)) is a sufficient though not necessary condition for !-equivalence. To see this,
consider 2Z and 2Z + 1. Both share the same factorial function, n!2Z = n!2Z+1 = 2nn!,
though are clearly not prime-power equivalent. In an effort to find a condition weak enough
to be implied by n!S = n!T , the conjecture below was arrived upon (but a quick definition
is needed first).

Definition 3.2. S(mod pr) = {0 ≤ a < pr|∃s ∈ S s.t. s ≡ a(mod pr)}.

Conjecture 3.3. Let S, T ⊆ Z be infinite. The following two statements are equivalent:

i) n!S = n!T , ∀n ≥ 0

ii) νk(S(mod pr), p) = νk(T (mod pr), p), ∀r ≥ 1, k ≥ 0, p ∈ P.

As it’s presented as a conjecture, it hasn’t yet been verified, at least not in the general
case. However, (ii) ⇒ (i) can be proven, as it is below (with the aid of number of lemmas).

Lemma 3.4. If S ⊆ Z is infinite, then ∀n ∈ N, ∃r ∈ N such that |S(mod pr)| ≥ n.

Proof. Since S is infinite, we can select 2n distinct elements from S. It must be that at
least n of these are positive or at least n are negative. Without loss of generality, let there
be m ≥ n elements which are positive and collect these into a set W . (The argument for a
surplus of negatives is essentially identical.) Select the greatest element in W and denote it
wmax. Choose an r ∈ N such that pr > wmax. So ∀w ∈W , 0 < w < pr, and thus each w ∈W
is member of a distinct residue class modulo pr. Therefore, |S(mod pr)| ≥ m ≥ n.

Lemma 3.5. If si 6≡ sj(mod pr) and si ≡ s′i(mod pr), then wp(si − sj) = wp(s′i − sj).

Proof. Assume instead that wp(si−sj) 6= wp(s′i−sj). Without loss of generality, let wp(si−
sj) > wp(s′i − sj), where wp(si − sj) = pl, l < r. So sj ≡ si(mod pl) and sj 6≡ s′i(mod pl).
Thus si 6≡ s′i(mod pl), but since l < r and si ≡ s′i(mod pr), this is a contradiction. Therefore
wp(si − sj) = wp(s′i − sj).
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Lemma 3.6. Let S = {s0, s1, . . . , si, . . . , sn} ⊂ Z. If si is such that si 6≡ sj(mod pr),
∀sj 6= si ∈ S, and si ≡ s′i(mod pr), then for S′ = {s0, s1, . . . , s

′
i, . . . , sn}, νk(S, p) =

νk(S′, p), ∀k ≥ 0.

Proof. Without loss of generality, let s0, s1, . . . , si, . . . , sn be a p-ordering for S.
i) Verify that s0, s1, . . . , s

′
i, . . . , sn is a p-ordering for S′.

a) Claim: s0, s1, . . . , si−1 are the first i elements in a p-ordering. Else let the first
forced “deviation” occur at the ath step in the ordering (i.e., wp((sa−sa−1) · · · (sa−s1)(sa−
s0)) > wp((sb−sa−1) · · · (sb−s1)(sb−s0)), where b > a). If sb 6= s′i, then s0, s1, . . . , si, . . . , sn
cannot be a valid p-ordering for S (since wp((sa−sa−1) · · · (sa−s0)) > wp((sb−sa−1) · · · (sb−
s0)), where b > a).

If sb = s′i,

wp((sa − sa−1) · · · (sa − s1)(sa − s0)) > wp((s′i − sa−1) · · · (s′i − s1)(s′i − s0))

> wp((si − sa−1) · · · (si − s1)(si − s0)).

So again, s0, s1, . . . , si, . . . , sn cannot be a valid p-ordering for S. Thus s0, s1, . . . , si−1 are
the first i elements in a p-ordering.

b) Claim: s′i is an acceptable next element in a p-ordering beginning like the above. Else
∃ i < c ≤ n such that

wp((sc − si−1) · · · (sc − s1)(sc − s0)) < wp((s′i − sa−1) · · · (s′i − s1)(s′i − s0))

< wp((si − sa−1) · · · (si − s1)(si − s0)).

So again, s0, s1, . . . , si, . . . , sn cannot be a valid p-ordering for S. Thus s′i is an acceptable
next element.

c) Claim: si+1, si+2, . . . , sn finishes the p-ordering. Otherwise, let the first forced devia-
tion occur at the dth step. So wp((sd−sd−1) · · · (sd−s1)(sd−s0)) > wp((se−sd−1) · · · (se−
s1)(se − s0)), where e > d. But

wp((se − sd−1) · · · (se − s′i) · · · (se − s1)(se − s0)) <
wp((sd − sd−1) · · · (sd − s′i) · · · (sd − s1)(sd − s0))

wp((se − sd−1) · · · (se − si) · · · (se − s1)(se − s0)) <
wp((sd − sd−1) · · · (sd − si) · · · (sd − s1)(sd − s0)).

So again, s0, s1, . . . , si, . . . , sn cannot be a valid p-ordering for S. Thus s0, s1, . . . , s
′
i, . . . , sn

is a p-ordering for S′.
ii) Verify that νk(S, p) = νk(S′, p), ∀k ≥ 0. If k > n, then νk(S′, p) = 0 = νk(S, p). If

k ≤ n, then

νk(S′, p) = wp((sk − sk−1) · · · (sk − s′i) · · · (sk − s1)(sk − s0))
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= wp((sk − sk−1) · · · (sk − si) · · · (sk − s1)(sk − s0)) = νk(S, p).

This completes the proof.

Theorem 3.7. Let S, T ⊆ Z be infinite. If νk(S(mod pr), p) = νk(T (mod pr), p), ∀r ≥ 1,
k ≥ 0, p ∈ P, then n!S = n!T , ∀n ∈ N.

Proof. Let n ≥ 0, p ∈ P be arbitrary. By Lemma 3.4, ∃ l ∈ N such that
∣∣S(mod pl)

∣∣ > n.
And from the premise, we have that

∣∣T (mod pl)
∣∣ =

∣∣S(mod pl)
∣∣ > n. Now if S(mod pl) =

{r0, r1, . . . , rm} (where m ≥ n), then ∃A = {a0, a1, . . . , am} ⊆ S such that

a0 ≡ r0(mod pl)

a1 ≡ r1(mod pl)

...

am ≡ rm(mod pl).

By applying Lemma 3.6, we get that νk(S(mod pl), p) = νk(A, p), ∀k ≥ 0. So specifically,
νn(S(mod pl), p) = νn(A, p) and since A ⊆ S, νk(S, p) | νk(A, p). Let νk(A, p) = pγ .

Similarly, if T (mod pl) = {u0, u1, . . . , um}, then ∃B = {b0, b1, . . . , bm} ⊆ T such that

b0 ≡ u0(mod pl)

b1 ≡ u1(mod pl)

...

bm ≡ um(mod pl).

Here νn(T (mod pl), p) = νn(B, p), and since B ⊆ T , νk(T, p) | νk(B, p). From our initial
assumption, we have that νk(B, p) = νn(T (mod pl), p) = νn(S(mod pl), p) = νn(A, p) = pγ .
There are two cases to consider.

a) γ < l. Let a0, a1, . . . , an be the first n-steps in a p-ordering for A. Denote A′ =
{a0, a1, . . . , an}, where obviously νn(A′, p) = νn(A, p). Now let s0, s1, . . . , sn be the first
n-steps in a p-ordering for S. Again denote S′ = {s0, s1, . . . , sn}, where νn(S′, p) = νn(S, p).

Claim: si 6≡ sj(mod pl), ∀i 6= j.
Now assume that there are si, sj ∈ S′ (where j > i) such that si ≡ sj(mod pl). So

νj(S′, p) = wp((sj − sj−1) · · · (sj − si) · · · (sj − s1)(sj − s0)) ≥ pl. Thus pl | νj(S′, p) |
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νn(S′, p) = νn(S, p). So since νn(S, p) | νn(A, p), pl | νn(A, p) = pγ . However, γ < l, which
is a contradiction. So it must be that si 6≡ sj(mod pl), ∀i 6= j.

Given that si 6≡ sj(mod pl), ∀i 6= j, we have that

s0 ≡ r′0(mod pl)

s1 ≡ r′1(mod pl)

...

sn ≡ r′n(mod pl)′

where {r′0, r′1, . . . , r′n} = R′ ⊆ S(mod pl), with the ri’s distinct. By Lemma 3.6, νn(R′, p) =
νn(S′, p) = νn(S, p) and since R′ ⊆ S(mod pl), νn(A, p) = νn(S(mod pl), p) | νn(R′, p) =
νn(S, p). Therefore, along with νn(S, p) | νn(A, p) from above, νn(S, p) = νn(A, p) =
νn(S(mod pl), p). Using an analogous argument, we have that νn(T, p) = νn(B, p) =
νn(T (mod pl), p). Thus when γ < l, we have that νn(S, p) = νn(S(mod pl), p) = νn(T (mod pl), p) =
νn(T, p).

b) γ ≥ l: Consider the set S(mod pγ+1). Again if S(mod pγ+1) = {q0, q1, . . . , qw}
(where w ≥ n), then ∃ C = {c0, c1, . . . , cw} ⊆ S such that

c0 ≡ q0(mod pγ+1)

c1 ≡ q1(mod pγ+1)

...

cw ≡ qw(mod pγ+1).

So νn(S, p) | νn(C, p) = νn(S(mod pγ+1), p). Again let S′ be defined as above.
Claim: si 6≡ sj(mod pγ+1), ∀i 6= j.
Again assume there are si, sj ∈ S′ (where j > i) such that si ≡ sj(mod pγ+1). So

νj(S′, p) = wp((sj − sj−1) · · · (sj − si) · · · (sj − s1)(sj − s0)) ≥ pγ+1. Thus pγ+1 | νj(S′, p) |
νn(S′, p) = νn(S, p). So, since νn(S, p) | νn(A, p), pγ+1 | νn(A, p) = pγ . However, this is a
contradiction. So it must be that si 6≡ sj(mod pγ+1), ∀i 6= j.

Given that si 6≡ sj(mod pγ+1), ∀i 6= j, we have that

s0 ≡ v′0(mod pγ+1)
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s1 ≡ v′1(mod pγ+1)

...

sn ≡ v′n(mod pγ+1)′

where {v′0, v′1, . . . , v′n} = V ′ ⊆ S(mod pγ+1), with the vi’s distinct. By Lemma 3.6,
νn(V ′, p) = νn(S′, p) = νn(S, p) and since V ′ ⊆ S(mod pγ+1), νn(C, p) = νn(S(mod pγ+1), p) |
νn(V ′, p) = νn(S, p). Therefore, along with νn(S, p) | νn(C, p) from above, νn(S, p) =
νn(C, p) = νn(S(mod pγ+1), p). Again using a similar argument, we have that νn(T, p) =
νn(T (mod pγ+1), p). Thus when γ ≥ l, νn(S, p) = νn(S(mod pγ+1), p) = νn(T (mod pγ+1), p) =
νn(T, p).

With both cases considered, we have that νn(S, p) = νn(T, p). And since n ≥ 0 and
p ∈ P were both arbitrary, n!S = n!T , ∀n ≥ 0. This completes the proof.

Again this only proves the conjecture in one direction; however if one of our sets is Z,
itself, the conjecture does hold.

Theorem 3.8. Let S be infinite. The following two statements are equivalent:
i) n!S = n!, ∀n ≥ 0
ii) νk(S(mod pr), p) = νk(Z(mod pr), p), ∀r ≥ 1, k ≥ 0, p ∈ P.

Proof. (ii) ⇒ (i): This has already been proven generally.
(i) ⇒ (ii): Let it be that n!S = n!, ∀n ∈ N. Suppose instead that ∃r ≥ 1, k ≥ 0,

p ∈ P s.t. νk(S(mod pr), p) = νk(Z(mod pr), p). Since Z(mod pr)) contains all residues
modulo pr, it must be that there is an 0 ≤ i < pr such that ∀s ∈ S, s 6≡ i(mod pr)).
So S ⊆ T = {z ∈ Z | z 6≡ i(mod pr)}. From above, we have that 0, 1, 2, 3, . . . is a valid
p-ordering for Z. Since 0, 1, 2, . . . , i − 1 ∈ T , it should be obvious that the sequence,
0, 1, 2, . . . , i− 1, is valid for the first i− 1 steps in a p-ordering for T . However since i 6∈ R,
the ordering cannot continue without alteration.

Claim: There is a p-ordering for T such that t0, t1, t2, . . . , tpr−2 are all in the interval
[0, pr − 1].

See Appendix for proof of claim (Notes A.4).
Given the above p-ordering, a beginning in which all integers in the interval [0, pr − 1]

except i have been used, we must minimize wp((tpr−1−(pr−1))(tpr−1−(pr−2)) · · · (tpr−1−
(i+ 1))(tpr−1− (i− 1)) · · · (tpr−1− 1)(tpr−1− 0)) for the (pr − 1)th step. Since 6 ∃t ∈ T such
that t ≡ i(mod pr), any choice for tpr−1 must be congruent to some integer in the interval
[0, pr − 1] modulo pr.

Now

wp(p!) = wp((pr − (pr − 1))(pr − (pr − 2)) · · · (pr − i) · · · (pr − 1)(pr − 0))
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= pr · wp((pr − (pr − 1))(pr − (pr − 2)) · · · (pr − (i+ 1))(pr − (i− 1)) · · · (pr − 1))

= pr · wp((pr − 1− (pr − 2))(pr − 1− (pr − 3)) · · · (pr − 1− i) · · · (pr − 1))

= pr · wp((pr − 1)!).

And since wp(p!) ≤ wp((tpr−1 − (pr − 1))(tpr−1 − (pr − 2)) · · · (tpr−1 − i) · · · (tpr−1 −
1)(tpr−1 − 0)), we have that

pr · wp((pr − 1)!) ≤ wp((tpr−1 − (pr − 1))(tpr−1 − (pr − 2)) · · ·

(tpr−1 − i) · · · (tpr−1 − 1)(tpr−1 − 0))

pr · νpr−1(Z, p) ≤ wp(tpr−1 − i) · wp((tpr−1 − (pr − 1))(tpr−1 − (pr − 2)) · · ·

(tpr−1 − (i+ 1))(tpr−1 − (i− 1)) · · · (tpr−1 − 1)(tpr−1 − 0))

pr · νpr−1(Z, p) ≤ wp(tpr−1 − i) · νpr−1(T, p).

And since it has been assumed that n!S = n!T = n!, νpr−1(Z, p) = νpr−1(T, p). So

pr ≤ wp(tpr−1 − i).

But since 6 ∃t ∈ T such that t ≡ i(mod pr) and with tpr−1 ∈ T , we have a contradiction.
Therefore (ii) must hold. This completes the proof.

4 Results Concerning Generalized Binomial Coefficients

¿From above, notice that
(
n
k

)
2Z

=
(
n
k

)
Z

=
(
n
k

)
(i.e., the

(
n
k

)
E

are merely the binomial
coefficients we are already familar with). It would seem to be worthwhile to determine for
which subsets, S,

(
n
k

)
S

=
(
n
k

)
. More generally, we would like to determine conditions on

subsets S and T of Z which provide that
(
n
k

)
S

=
(
n
k

)
T

. To this effect, we have the following
theorem.

Theorem 4.1. Let S and T be subsets of Z. The following two statements are equivalent:

i)
(
n
k

)
S

=
(
n
k

)
T

, for all n ≥ k ∈ Z.

ii) Let 1!S = l and 1!T = l′. Then n!S = ln ·mn · n! and n!T = (l′)n ·mn · n!, for all
n ∈ Z+ (where mn ∈ Z+ is dependent on n and S or T ).
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Proof. (i)⇒ (ii) Assume that the property described in (i) holds for S and T . By employing
a previously introduced notation (n!S = s(n) · n!, where s : Z+ −→ Z

+ is dependent on S),
we have that for n ≥ k: (

n

k

)
S

=
(
n

k

)
T

⇒

n!S
k!S(n− k)!S

=
n!T

k!T (n− k)!T
⇒

s(n)n!
s(k)k! · s(n− k)(n− k)!

=
t(n)n!

t(k)k! · t(n− k)(n− k)!
⇒

s(n)
s(k) · s(n− k)

=
t(n)

t(k) · t(n− k)
⇒

s(n) · t(k)t(n− k) = t(n) · s(k)s(n− k).

By substituting, we get that s(a + b) · t(a)t(b) = t(a + b) · s(a)s(b), for all a, b ∈ Z+.
Now given that s(1) = l and t(1) = l′, we have from a previous result that s(i) = li ·mi

and t(i) = (l′)i ·m′i. Now, we need to show that mi = m′i. We use induction. The initial
case, i = 1, has already been provided, as m1 = m′1 = 1. Assume that the property holds
for i = j; so we must show that it holds when i = j + 1. Using the above formula, we have
that:

s(j + 1) · t(j)t(1) = t(j + 1) · s(j)s(1) ⇒

lj+1mj+1 · (l′)jmj · l′ = (l′)j+1m′j+1 · ljmj · l ⇒

lj+1(l′)j+1mj ·mj+1 = lj+1(l′)j+1mj ·m′j+1 ⇒

mj+1 = m′j+1.

So we have that n!S = ln ·mn · n! and n!T = (l′)n ·mn · n!, for all n ∈ Z+.
(ii) ⇒ (i) Let S and T be such that n!S = ln ·mn · n! and n!T = (l′)n ·mn · n!, for all

n ∈ Z+ (where 1!S = l, 1!T = l′). Then, for an arbitrary n, k ∈ N (n ≥ k),(
n

k

)
S

=
n!S

k!S(n− k)!S
=

lnmnn!
lkmkk! · ln−kmn−k(n− k)!

=
ln ·mnn!

ln ·mkmn−kk!(n− k)!
=

mnn!
mkmn−kk!(n− k)!

,

and similarly, (
n

k

)
T

=
n!T

k!T (n− k)!T
=

(l′)nmnn!
(l′)kmkk! · (l′)n−kmn−k(n− k)!

=
(l′)n ·mnn!

(l′)n ·mkmn−kk!(n− k)!
=

mnn!
mkmn−kk!(n− k)!

.

So, since n and k are arbitrary in N, we have that
(
n
k

)
S

=
(
n
k

)
T

, for all n ≥ k ∈ Z.
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While this is a mildly interesting result in itself, it also gives us the following corollary.

Corollary 4.2. Let S be a subset of Z. The following statements are equivalent:

i)
(
n
k

)
S

=
(
n
k

)
, for all n ≥ k ∈ Z.

ii) Let 1!S = l. Then n!S = ln · n!.

iii) S is !-equivalent to lZ+ b, where b ∈ Z.

Proof. (i) ⇒ (ii) This is merely an application of the above theorem (letting T = Z). Since
n!Z = n!, mn = 1 for all n ∈ N, hence the result in (ii).

(ii)⇒ (iii) This is rather easy to show as we know from Bhargava ([4][Example 17]) that
n!lZ+b = ln · n!. Thus n!lZ+b = n!S , ∀n ∈ N, meaning S and lZ+ b are !- equivalent.

(iii) ⇒ (i) Since S and lZ + b are !-equivalent we have that n!S = n!lZ+b = ln · n!. So
m′n = 1 = mn, ∀n ∈ N, again leaving this proof to be just an application of the above
theorem.

Pascal’s triangle has been an important tool for determining (or at least visualizing)
properties concerning the binomial coefficients. Given our improved grasp of the generalized
coefficients, it would seem that the construction of a “generalized” Pascal’s triangle would
be a useful endeavor. The triangle can be defined in the obvious way:(

0
0

)
S(

1
0

)
S

(
1
1

)
S(

2
0

)
S

(
2
1

)
S

(
2
2

)
S(

3
0

)
S

(
3
1

)
S

(
3
2

)
S

(
3
3

)
S

.

...

Since we’ve stipulated that 0!S = 1 for all subsets,
(
n
0

)
S

=
(
n
n

)
S

= 1 for all n. This is in some
ways unfortunate, since it restricts Pascal’s Identity (

(
n
i

)
S

+
(
n
i+1

)
S

=
(
n+1
i+1

)
S

, for n, i ≥ 0)
to only those subsets, S, such that

(
n
k

)
S

=
(
n
k

)
. The following lemma makes this evident.

Lemma 4.3. The identity,
(
n
i

)
S

+
(
n
i+1

)
S

=
(
n+1
i+1

)
S

, holds only for those subsets, S, for
which

(
n
i

)
S

=
(
n
i

)
Z

, ∀n, i ≥ 0.
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Proof. Let Pascal’s Identity hold for the binomial coefficients of a set S ⊆ Z. Now suppose
that ∃n, i ∈ N such that

(
n
i

)
S
6=
(
n
i

)
Z
. Let a be the least integer such that ∃b ∈ N where(

a
b

)
S
6=
(
a
b

)
Z
. Since

(
n
0

)
S

=
(
n
n

)
S

= 1 for all S ⊆ Z, b 6= 0 and a 6= b. So both
(
a−1
b−1

)
S

and(
a−1
b

)
S

are well-defined. And since a− 1 < a,
(
a−1
b−1

)
S

=
(
a−1
b−1

)
Z

and
(
a−1
b

)
S

=
(
a−1
b

)
Z
. Since

Pascal’s Identity holds, (
a

b

)
S

=
(
a− 1
b− 1

)
S

+
(
a− 1
b

)
S

=
(
a− 1
b− 1

)
Z

+
(
a− 1
b

)
Z

=
(
a

b

)
Z

.

But this is a contradiction. Therefore, it must be that
(
n
i

)
S

=
(
n
i

)
Z
, ∀n, i ≥ 0.

Additionally, there doesn’t seem to be any obvious way to “tweak” the property so that
it might hold generally. Again, this is unfortunate since many of the interesting properties
of Pascal’s Triangle are founded upon this rule. Despite this, there is at least one property
of Pascal’s Triangle which remains valid.

Theorem 4.4. Let n, 0 < k < n ∈ N. On the generalized Pascal’s Triangle for a subset S,
the product of the six entries surrounding

(
n
k

)
S

is a perfect square.

Proof. To prove this, we must show that(
n− 1
k − 1

)
S

·
(
n− 1
k

)
S

·
(

n

k − 1

)
S

·
(

n

k + 1

)
S

·
(
n+ 1
k

)
S

·
(
n+ 1
k + 1

)
S

= a2,

where a ∈ Z. So(
n− 1
k − 1

)
S

·
(
n− 1
k

)
S

·
(

n

k − 1

)
S

·
(

n

k + 1

)
S

·
(
n+ 1
k

)
S

·
(
n+ 1
k + 1

)
S

=

s(n− 1)(n− 1)!
s(k − 1)(k − 1)!s(n− k)(n− k)!

· s(n− 1)(n− 1)!
s(k)k!s(n− k − 1)(n− k − 1)!

·

s(n)n!
s(k − 1)(k − 1)!s(n− k + 1)(n− k + 1)!

· s(n)n!
s(k + 1)(k + 1)!s(n− k − 1)(n− k − 1)!

·

s(n+ 1)(n+ 1)!
s(k)k!s(n− k + 1)(n− k + 1)!

· s(n+ 1)(n+ 1)!
s(k + 1)(k + 1)!s(n− k)(n− k)!
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=
s(n− 1)

s(k − 1)s(n− k)
· s(n− 1)
s(k)s(n− k − 1)

· s(n)
s(k − 1)s(n− k + 1)

·

s(n)
s(k + 1)s(n− k − 1)

· s(n+ 1)
s(k)s(n− k + 1)

· s(n+ 1)
s(k + 1)s(n− k)

·

(n− 1)!
(k − 1)!(n− k)!

· (n− 1)!
k!(n− k − 1)!

· n!
(k − 1)!(n− k + 1)!

·

n!
(k + 1)!(n− k − 1)!

· (n+ 1)!
k!(n− k + 1)!

· (n+ 1)!
(k + 1)!(n− k)!

= (
s(n− 1)s(n)s(n+ 1)

s(k − 1)s(k)s(k + 1)s(n− k − 1)s(n− k)s(n− k + 1)
)2 · b2

= (b · s(n− 1)s(n)s(n+ 1)
s(k − 1)s(k)s(k + 1)s(n− k − 1)s(n− k)s(n− k + 1)

)2 = a2.
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A Appendix

Notes A.1. To verify the p-ordering we use induction. We can choose a0 arbitrarily, so
choose c.

P (1): Now since q - (d−c), d minimizes wq(a1−c). So we may justifiably choose a1 = d.
P (n)→ P (n+ 1): n may be even or odd, so we must consider both cases.
Let n be even. So the q-ordering (up to the nth step) is c, d, . . . , n2 q

γ + c. We need to
show that n

2 q
γ + d is an adequate choice for an+1, by showing that it minimizes wp((an+1−

n
2 q

γ − c) · · · (an+1 − d)(an+1 − c)). Now an+1 must be of the form vqγ + c or uqγ + d. If
an+1 = vqγ + c,

wp((vqγ + c− n

2
qγ − c) · · · (vqγ + c− d)(vqγ + c− c)) =

wp((vqγ + c− n

2
qγ − c) · · · (vqγ + c− qγ − c)(vqγ + c− c)),

since wp(vqγ + c− iqγ − d) = 1, ∀i ∈ Z. Continuing,

wp((vqγ −
n

2
qγ) · · · (vqγ − qγ)(vqγ)) = wp(v(v − 1)(v − 2) · · · (v − n

2
) · q

γ/(n+2)
2 )

= q(
γ/(n+2)

2
) · wp(v(v − 1)(v − 2) · · · (v − n

2
)).

This is minimized by v = n+2
2 , so here we have q(

γ/(n+2)
2

) · wp((n+2
2 )!).

Now if an+1 is of the form uqγ + d,

wp((uqγ + d− n

2
qγ − c) · · · (uqγ + d− d)(uqγ + d− c)) =

wp((uqγ + d− n− 2
2

qγ − d) · · · (uqγ + d− qγ − d)(uqγ + d− d)) =

wp((uqγ −
n− 2

2
qγ) · · · (uqγ − qγ)(uqγ)) =

wp(u(u− 1)(u− 2) · · · (u− n− 2
2

) · q
γ/n

2 ) =

q(
γ/n

2
) · wp(u(u− 1)(u− 2) · · · (u− n− 2

2
)).

This is minimized by u = n
2 , so here we have q(

γ/n
2

) · wp((n−2
2 )!). This is clearly less than

q(
γ/(n+2)

2
) · wp((n+2

2 )!), so the best choice for an+1 is n
2 q

γ + d.
Let n be odd. Here we would need to show that n+1

2 qγ + c is an adequate choice for
an+1. This can be shown using a proof analogous to the one above, so let it be accepted
without explicit demonstration. With this, the inductive proof is complete. Thus c, d, qγ +
c, qγ + d, 2qγ + c, 2qγ + d, . . . is a valid q-ordering for T .
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Notes A.2. It should be fairly apparent that wq((an − an−1) · · · (an − a1)(an − a0)) = qα,
where

α = |{ai ≡ an(mod q)|0 ≤ i < n}|+
∣∣{ai ≡ an(mod q2)|0 ≤ i < n}

∣∣
+
∣∣{ai ≡ an(mod q3)|0 ≤ i < n}

∣∣+ · · · .

And since |{i ≡ n(mod qr)|0 ≤ i < n}| = b nqr c, we have that wq(n2 !) = q
b n

2q
c+b n

2q2
c+b n

2q3
c+···.

Notes A.3. Let n be odd. Assume instead that b n
2qr c 6= b

n−1
2qr c. Thus ∃m ∈ Z such that

n− 1
2qr

< m ≤ n

2qr

n− 1 < 2qrm ≤ n

So it must be that n = 2qrm, but n is odd, which is a contradiction. Therefore b n
2qr c =

bn−1
2qr c.

Notes A.4. The following constuction is a valid p-ordering to the (pr − 2)nd step: Let the
first i − 1 steps be determined as above. (Note that if i = pr − 1, then we already have a
p-ordering to the (pr − 2)nd step, so no further construction is needed.)

Let pu1 be the greatest power of p less than pr − i. Let i ≡ bu1(mod pu1). Then the ith
element will be pr − pu1 + bu1 . For i < j < pr − pu1 + bu1 , the jth element will be j.

Let pu2 be the greatest power of p less than pr − (pr − pu1 + bu1) = pu1 − bu1 . Let
i ≡ bu2(mod pu2). Then the (pr− pu1 + bu1)th element will be pr− pu2 + bu2 . For pr− pu1 +
bu1 < j < pr − pu2 + bu2 , the jth element will be j.

...

Let puk+1 be the greatest power of p less than pr − (pr − puk + buk) = puk − buk . Let
i ≡ buk+1

(mod puk+1). Then the (pr − puk + buk)th element will be pr − puk+1 + buk+1
. For

pr − puk + buk < j < pr − puk+1 + buk+1
, the jth element will be j.

...

When pr − (pr − pul + bul) = pul − bul < p, we have that for pr − pul + bul ≤ j < pr − 1,
the jth element is j + 1. And this completes the p-ordering to the (pr − 2)nd step.

The acceptability of the first i− 1 steps has already been noted. Now induction should
be done on j to establish the rest of the claim.
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P (i): We begin with the ith element. We may assume that i 6= pr−1, since we are then
already provided a p-ordering to the (pt−2)nd step (namely, 0, 1, 2, . . . , i−1). So in choosing
the ith element, we are looking to minimize wp((ai− (i−1))(ai− (i−2)) · · · (ai−1)(ai−0)).
There are two cases to consider–when u1 > 0 and when u1 = 0.

Let u1 > 0. Consider the element pr − pu1 + bu1 . Now wp((pr − pu1 + bu1 − (i −
1))(pr − pu1 + bu1 − (i − 2)) · · · (pr − pu1 + bu1 − 1)(pr − pu1 + bu1 − 0)) = pα, where α =
|{n ≡ pr − pu1 + bu1(mod p) | 0 ≤ n < i}|+

∣∣{n ≡ pr − pu1 + bu1(mod p2) | 0 ≤ n < i}
∣∣+· · ·+∣∣{n ≡ pr − pu1 + bu1(mod pr−1) | 0 ≤ n < i}

∣∣. (No other terms are needed since there is no
n in our interval such that n ≡ pr − pu1 + bu1(mod pr).)

So for pv where u1 < v < r, pr − pv ≤ i, pr − pu1 + bu1 < pr; thus bp
r−pu1+bu1

pv c = b ipv c.
Now |{n ≡ pr − pu1 + bu1(mod pv) | 0 ≤ n < i}| ≤ bp

r−pu1+bu1
pv c, so

|{n ≡ pr − pu1 + bu1(mod pv) | 0 ≤ n < i}| ≤ b i
pv
c.

For py where 1 ≤ y ≤ u1, i ≡ pr − pu1 + bu1(mod py). Thus

|{n ≡ pr − pu1 + bu1(mod py) | 0 ≤ n < i}| = |{n ≡ i(mod py) | 0 ≤ n < i}| = b i
pv
c.

Together we have that pα ≤ p
b i
p
c+b i

p2
c+···+b i

pr−1 c = νi(Z, p). And since νi(Z, p)|pα, pα =
νi(Z, p). Thus, pr − pu1 + bu1 minimizes.

Let u1 = 0 (thus pr − p ≤ i < pr − 1). Consider i+ 1. Since i 6= pt − 1,

wp((i+ 1)!) = wp(i!)

wp((i+ 1− i)(i+ 1− (i− 1)) · · · (i+ 1− 1)(i+ 1− 0)) =

wp((i− (i− 1))(i− (i− 2)) · · · (i− 1)(i− 0))

wp(i+ 1− i)wp((i+ 1− (i− 1))(i+ 1− (i− 2)) · · · (i+ 1− 1)(i+ 1− 0)) =

wp((i− (i− 1))(i− (i− 2)) · · · (i− 1)(i− 0))

wp((i+ 1− (i− 1))(i+ 1− (i− 2)) · · · (i+ 1− 1)(i+ 1− 0)) =

wp((i− (i− 1))(i− (i− 2)) · · · (i− 1)(i− 0)).

And since i minimizes, so does i+ 1. P(i) has now been established.
P (j-1)→ P (j) (i ≤ j − 1 < pt − 2): j is one of the following types:

(a) i < j < pr − pu1 + bu1
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(b) j = pr − puk + buk

(c) pr − puk + buk < j < pr − puk+1 + buk+1

(d) pt − p+ b1 ≤ j < pt − 1.

If j is of type (a), then we are are attempting to minimize

wp((aj − (j − 1))(aj − (j − 2)) · · · (aj − (i+ 1))(aj − (pr − pu1 + bu1))(aj − (i− 1))
· · · (aj − 1)(aj − 0)).

Now consider aj = j. Since i ≡ pr − pu1 + bu1(mod pr), j 6≡ i(mod pr+1), and j 6≡
pr − pu1 + bu1(mod pr+1), wp(j − i) = wp(j − (pr − pu1 + bu1)). So

wp((j − (j − 1))(j − (j − 2)) · · ·
(j − (i+ 1))(j − (pr − pu1 + bu1))(j − (i− 1)) · · · (j − 1)(j − 0))

= wp((j − (j − 1))(j − (j − 2)) · · · (j − (i+ 1))(j − i)(j − (i− 1)) · · ·
(j − 1)(j − 0)) = wp(j!).

Thus j minimizes.
If j is of type (b), then we are are attempting to minimize

wp((aj − (j − 1)) · · · (aj − (pr − puk + buk)) · · · (aj − (i+ 1))
· (aj − (pt − pu1 + bu1))(aj − (i− 1)) · · · (aj − 1)(aj − 0)).

Consider aj = pr− puk+1 + buk+1
, where puk+1 is the greatest power of p less than pr− (pr−

puk + buk). Here

wp((pr − puk+1 + buk+1
− (j − 1)) · · · (pr − puk+1 + buk+1

− (pr − puk + buk))

· · · (pr − puk+1 + buk+1
− 1)(aj − 0)) = pβ,

where

β =
∣∣{n ≡ pr − puk+1 + buk+1

(mod p)|0 ≤ n ≤ pr − puk + buk , n 6= i}
∣∣+∣∣{n ≡ pr − puk+1 + buk+1

(mod p2) | 0 ≤ n ≤ pr − puk + buk , n 6= i}
∣∣+

· · ·+
∣∣{n ≡ pr − puk+1 + buk+1

(mod pr−1) | 0 ≤ n ≤ pr − puk + buk , n 6= i}
∣∣ .

First, since i ≡ pr − puk + buk(mod puk) and i 6≡ pr − puk+1 + buk+1
(mod puk),∣∣{n ≡ pr − puk+1 + buk+1

(mod pv) | 0 ≤ n ≤ pr − puk + buk , n 6= i}
∣∣ =∣∣{n ≡ pr − puk+1 + buk+1

(mod pv) | 0 ≤ n < pr − puk + buk}
∣∣ ,
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∀v ≥ 1.
So for pv where uk+1 < v < r, pr − pv ≤ pr − puk + buk , p

r − puk+1 + buk+1
< pr; thus

bp
r−puk+1+buk+1

pv c = bp
r−puk+buk

pv c. Now

∣∣{n ≡ pr − puk+1 + buk+1
(mod pv) | 0 ≤ n < pr − puk + buk}

∣∣ ≤ bpr − puk+1 + buk+1

pv
c,

so
∣∣{n ≡ pr − puk+1 + buk+1

(mod pv) | 0 ≤ n < pr − puk + buk}
∣∣ ≤ bpr−puk+buk

pv c. For py where
1 ≤ y ≤ u1, pr − puk + buk ≡ pr − puk+1 + buk+1

(mod py). Thus∣∣{n ≡ pr − puk+1 + buk+1
(mod py) | 0 ≤ n < pr − puk + buk}

∣∣ =
|{n ≡ pr − puk + buk(mod py) | 0 ≤ n < pr − puk + buk}| =

bp
r − puk + buk

pv
c.

Together we have that

pβ ≤ pb
pr−puk+buk

p
c+b

pr−puk+buk
p2

c+···+b
pr−puk+buk

pr−1 c = νpr−puk+buk
(Z, p).

And since νpr−puk+buk
(Z, p)|pβ, pβ = νpr−puk+buk

(Z, p). Thus, pr − puk+1 + buk+1
minimizes.

If j is of type (c), then we are are attempting to minimize

wp((aj − (j − 1))(aj − (j − 2)) · · · (aj − (pr − puk+1 + buk+1
)) · · ·

(aj − (i+ 1))(aj − (i− 1)) · · · (aj − 1)(aj − 0)).

Now consider aj = j. Since i ≡ pr − puk+1 + buk+1
(mod puk+1+1), j 6≡ i(mod puk+1+1), and

j 6≡ pr − puk+1 + buk+1
(mod puk+1+1), wp(j − i) = wp(j − (pr − puk+1 + buk+1

)). So

wp((j − (j − 1))(j − (j − 2)) · · · (j − (pr − puk+1 + buk+1
))

· · · (j − (i+ 1))(j − (i− 1)) · · · (j − 1)(j − 0)) =
wp((j − (j − 1))(j − (j − 2)) · · · (j − (i+ 1))(j − i)(j − (i− 1)) · · · (j − 1)(j − 0))

= wp(j!).

Thus j minimizes.
Let j be of type (d). We need to minimize

wp((aj + 1− j)(aj + 1− (j − 1)) · · · (aj − (i+ 1))(aj − (i− 1)) · · · (aj + 1− 1)(aj + 1− 0)).

Consider j + 1. Since j 6= pt − 1,

wp((j + 1)!) = wp(j!)
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wp((j + 1− j)(j + 1− (j − 1)) · · · (j + 1− i) · · · (j + 1− 1)(j + 1− 0)) =

wp((j − (j − 1))(j − (j − 2)) · · · (j − 1)(j − 0))

wp(j + 1− i)wp((j + 1− j)(j + 1− (j − 1)) · · · (j + 1− 1)(j + 1− 0)) =

wp((j − (j − 1))(j − (j − 2)) · · · (j − 1)(j − 0))

wp((j + 1− j)(j + 1− (j − 1)) · · · (j + 1− 1)(j + 1− 0)) = wp(j!).

And since wp(j!) is minimal, j + 1 minimizes.
Thus P (j-1)→ P (j) (i ≤ j − 1 < pt − 2) has been established. Therefore the p-ordering

is valid.
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The following is a MAPLE program which determines the factorial sequence for a finite
S ⊆ Z. genfactall(S) generates this factorial sequence, whereas pordering(p,S) generates a
p-ordering for a given p. All other functions below are subsidiary.

> with(numtheory):

> orderprod:=proc(A,r)
> local n,i,prod;
> n:=nops(A):
> prod:=1:
> for i from 1 to n do
> prod:=prod*(r-A[i]):
> od:
> RETURN(prod):
> end:

> pfactorset:=proc(S)
> local n,i,j,T;
> T:={}:
> n:=nops(S):
> for i from 1 to n do
> for j from 1 to n do
> if i=j then
> T:=T:
> elif S[i]-S[j]=-1 then
> T:=T:
> else
> T:=T union factorset(S[i]-S[j]):
> fi:
> od:
> od:
> RETURN(T):
> end:

> powerp:=proc(p,x)
> local pow,y;
> pow:=0:
> y:=x:
> while member(p,factorset(y)) do
> pow:=pow+1;
> y:=y/p;
> od:
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> RETURN(p∧pow):
> end:

> nextpick:=proc(p,A,R)
> local a,n,b,i;
> n:=nops(R):
> a:=R[1]:
> b:=powerp(p,orderprod(A,R[1])):
> for i from 1 to n do
> if powerp(p,orderprod(A,R[i]))¡b then
> b:=powerp(p,orderprod(A,R[i])):
> a:=R[i]:
> else
> b:=b:
> a:=a:
> fi:
> od:
> RETURN(a):
> end:

> func:=proc(p,A,R,k)
> local ans,b,B,S,i;
> B:=A:
> S:=R:
> for i from 1 to k-1 do
> b:=nextpick(p,B,S):
> B:=B union {b}:
> S:=S minus {b}:
> od:
> ans:=powerp(p,orderprod(B,nextpick(p,B,S))):
> RETURN(ans):
> end:

> genfact:=proc(S,k)
> local T,A,R,n,m,i,kS;
> n:=nops(S):
> kS:=1:
> if k>=n then
> kS:=0:
> else
> T:=pfactorset(S):
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> m:=nops(T):
> A:={S[1]}:
> R:=S minus {S[1]}:
> for i from 1 to m do
> kS:=kS*func(T[i],A,R,k):
> od:
> fi:
> RETURN(kS):
> end:

> pordering:=proc(p,S)
> local A,R,O,n,b,i;
> A:={S[1]}:
> R:=S minus {S[1]}:
> n:=nops(R):
> O:=[S[1]]:
> while n>0 do
> b:=nextpick(p,A,R);
> R:=R minus b;
> A:=A union b;
> n:=nops(R);
> O:=[op(O),b];
> od:
> RETURN(O):
> end:

> genfactall:=proc(S)
> local n,A,k;
> n:=nops(S):
> A:=[genfact(S,1)]:
> for k from 2 to n-1 do
> A:=[op(A),genfact(S,k)]:
> od:
> RETURN(A):
> end:
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