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Abstract

Consideray, as, . .., a, € Nwith gcd(ay,...,a,) = 1. LetSbe{} ", a;x; | x; € No,i € [1,n]},
the numerical monoid generated by thie Then there exists a numbesuch thay € S andy > g =
yes.

Finding g is the classical Frobenius problem (sometimes called the Frobenius Coin-Change prob-
lem), a subject heavily studied in literature. In this paper, instead of numbirsse consider vectors
in Z". Using this approach, we generalize many one-dimensional theorems proven in earlier papers,
and prove new structural facts unique to higher-dimensional cases.

1 Definitions

LetV = {v1,...,vk} C Z". DefineSy,(v1,...,vk) to be the sefc;vi + - - - + cpvk|er, ..., cx €
No}. Slmllarly SGTSN(V;[, R 7Vk> = {01V1+' : '+C]ng’61, .o, Ck € N}, Sz(vl, cey Vk) = {61V1+
oo+ epviler, ..., e € Z} andSg(va, ..., vik) = {agvy + -+ apvi|ag, ..., ap € R}

We sayT’ C Z" is densdf there is somex € T such thatk +e; € T foralli = 1,...,r, wheree;
are the standard basis vectors. We'Bay 7" is volumeif it is not contained in anyr—1)-dimensional
subspace aR".

Define asimple condo be a set of the fornfa; vy + - - - + a,ve|ou, ..., ap € R} N Zj where
the vectorsvy, ..., v, are linearly independent ov&". We sayvi, ..., v, are the bounding vectors.
Definecone(a) fora € R" asthe sefa+ajvi + - - -+ apvi|ai,...,ar € Randay,...,ar > 0} N
7Z". Define theintcone(a) to be{a+ ayvy + - - -+ agvi|ag, ..., € Randay, ..., >0} NZ".
Similarly we definesimplecone(a) to be{a+a1vi+- - -+, ve|a, ..., € Randay,...,ar > 0}

Let RH € R" be the set of all points such that for alle RH and fori = 1,...,r there exist

T
al,...,ap € Rwitho; =0andq + > a;v; € Z7.
=1

We can define a vector relation whese< b if cone(a) O cone(b). This relation is clearly
reflexive and antisymmetric. Suppose that< as andas < az. Now there exist non-negative reals
o, .. .,ak,o/l, ...,ai’ suchthaty +a;vy + ...+ apvk = az andag + o/lvl +...+ a;ﬂvk = ag.
Adding these equations we see thatt (a; + a;)vy + ... + (ax + o, )vi = as. Thusa; < ag and
the relation is a partial ordering.



We will use S to refer to either one of the sef;, or Sy. Define a vectoa € RH to becomplete
in S if every vector inintcone(a) is in S. Definev € RH to be anf-vectorif v is complete inSy
and there is n@ < v such thata is also complete. Defing(vy, ..., vk), or thef-set as the set of
f-vectors. Definev € RH to be ag-vectorif v is complete inSy, and there is na < v such that
is also complete. Defing(vy, ..., vk), or theg-set as the set of g-vectors. alle Sy completea €
cone(v).

Letvl, ..., Vk € Z"andV =[vq,...,vy]|. We can select column vectors to form anx r matrix
in (¥) ways. Let m =(*). We will label their determinatesy, - - - , d,,. Defineged(vy, ..., vi) as
ged(vy, ..., vk) = ged(dy, . . ., dy). We defineged(V') asged (V') = ged(va, ..., vk).

LetV = {v1,va,...,vk}. Assumevy,va,..., v, € Z" are linearly independent. Let be the
matrix with columnsvy, va,...,v,. Letm(V,a) be the set of minimal vectors for the equivalence
classla),i.,ew € m(V,a) iff w € S,w =a mod (A4) and for allg = a mod (A) eitherw < qorw
is incomparable te; by cone partial ordering.

Let m(V) be all the minimal vectors. In other words(V') = |Jm(V,a) whena ranges through
all the equivalence classes.

We define a fundamental domain of a vector

fund(v) ={v + ZQZVI\QZER 0<a;<1foriell,r]}NZ".

Givenvy, ..., vy, IetP R" — R be defined a®;(a1v1 + ... + a,vy) = a4. {v1,...,ve}isan
R-basis forR” so the functlon is well defined. This function is also a homomorphism. Clearly for any

vectorv, we havev = Z( J(V)vi). LetVa = vi+ ...+ vy

For D, afinite subset oRH, we defindub(D) as a minimal vector itRH greater than or equal to
all vectors inD.

1.1 Cone Ordering

T '
Lemma 1. Assumex,y € R” in the simple cone, such that= > «;v; andy = > 3;v; where
=1 =1
a;,0; € Rg. x > yifand onlyif forallia; > 5;

,
Proof. Assumex > y. Thereforex € cone(y) hencex =y + > ~;v; wherev; € Ry Therefore
=1

T

x =Y (Bi+7)vi

=1

and by uniqueness of representatiofis+ ;) = «;. Hencea; = 5; + v, > ;.
Assume for alli € [1,r] we havea; > ;. Therefore there existg > 0 such thaty, = 3; + ;.

Hence .
x = Zazvl = Z Bi + i) Zﬂzvl + Z%VI y+ Y v
=1 =1

Hencex € cone(y), thereforex > y. O
Lemma 1 can also be written in the following form:

Lemma 2. Given a simple cones > y if and only if P;(x) > P;(y)fori=1,...,r



1.2 The f-set andg-set

Lemma 3. Letvy,..., vk € Z". Thenv is complete inSy, (v1, ..., vk) ifand only ifw = v + vy +
...+ vk is complete inSy(vy, . . ., vk).
Proof. “=" Let v be a complete vector ifiy,(v1,- .., vk). This means that all the lattice points in

intcone(v) are inSy,. Letu = w + Zle a;vi wWith o;; € R~ be a point inintcone(w). We have
u=v+ Zle(ai + 1)v;. If uis alattice point them — (vy + ... + vy) is also a lattice point. Since
v is complete andi — (vy + ...+ vi) = v+ S.¥_ a;v; € cone(v), it must also be irf,. So we
can writeu = % d;vi + (vi + ... + vi) for somed; € Ny. Thenu = 3% (d; + 1)v;. Since
d; + 1 € Nt follows thatu € Sy sow is complete inSy.

“<=" The proof goes similarly in the other direction. Letbe a complete vector ifix(v1, ..., Vk),
so all the lattice points imntcone(w) are inSy. Letu = v + Zle a;vi With a; € R< be a pointin
the interior ofcone(v). We haveu = W—Zle(aﬁl)vi. If uis alattice pointthem+(vi+. . .4+vk)

is also a lattice point. Since is complete and + (vq + ...+ vk) = W + Zle a;vi € cone(v),

it must also be inSy,. So we can writax = Ele divi — (v1 + ...+ vi) for somed; € N. Then

u= Zle(di — 1)v;. Sinced; — 1 € Ny it follows thatu € Sy, sov is complete inSy,. O
Lemma 4. Letvy,..., vk € Nj. Theng is in theg-set ofvy,...,vg ifand only iff = g + (vq1 +
...+ vg)isinthef-setofvy,..., vy.

Proof. “=-" By Lemma 3, sincegg is completef is also complete. We have to show that there exists
no vectora € Z", a < f which is complete ir6y. Suppose there is such anThena — (vq + ... +

vk) < g Is also complete by the same lemma. Contradiction beqaise theg-set so it is minimal.
Hencef is minimal so it is in thef-set ofvy, ..., vi.. The proof is similar in the other direction. [

1.3 Characterization of Density and Volume
Lemmab. Sis dense= e; € Sz forall i € [1,7].

Proof. “="If S is dense then there is sormec S such thatv +e; € S foralli € [1,7]. Then
eache; can be written as a linear combination of the vectoysith integer coefficients by taking
(v+e;) —v e Sy Hencee; € Sy foralli € [1,7].

“<="1If e; € 5z then there exist;; € Z such thak; = Zé‘?:lcijvj, foralli € [1,7].

Choosec; > ||, for all j € [1,k], i € [1,7]. Leta = 3% |cjvj, soa € S. Thena + e; =
Z?zl(cij +c¢;)vj. Sincec;; +¢; > litfollows thata+e; € Sforalli € [1,r]. HenceS is dense. [

Lemma 6. Letr > k. ThenS is not dense.

Proof. It has been proven by Novikov [3] that & is volume then- < k. Hence ifr > k, S is not
volume and cannot be dense. We give here another proof to this statement.

AssumesS is dense. Letd be the matrix with column vectorg,, ..., vyx. ThenA € M, x(Z).
From Lemma 5, sinc# is dense, every basis vector can be written as a linear combination with integer
coefficients of the vectorey, ..., vi. Hence there exists € M, «1(Z) ,i = 1,...,r such that
A- CcCl1 = €1
A- Cy = €2
A-cr=ep



We haveAC = I,, whereC' € M,(Z) is the matrix with the vectors; as columns. Since rank <
k < r det AC = 0, hence we cannot haweC = I,.. Contradiction, s& is not dense. O

Lemma7. S = Sy, (V) is volume if and only i§cd (V') # oo.

Proof. First, suppose thaf is volume. This means that there existectors inV which are linearly
independent. Thus, the matri¥ containing these vectors as columns has nonzero determinant. We
know that)M (or a permutation of its columns) appears in the list of matrices used to calgutgté).
Thereforeged(V') # oo since we know at least one of the matrices has nonzero determinant.

Now suppose thatcd(V') # co. That means there exists at least one maltfixn the list of matri-
ces used to calculated (V') which has nonzero determinant. The column vectors of the corresponding
matrix M must then be linearly independent oW, so we have at leastlinearly independent vec-
tors. However, we have at mostlinearly independent vectors iR", soV has rankr. Thus,S is
volume. O

1.4 Generalizing GCD to Vectors
Lemma 8. Supposé” = {vq, ..., vk} Withged(V') = d. Thende; € Sz(V) fori € [1,7].

Proof. Let My,...,M,, be the matrices that can be formed by choostngistinct columns from
V1, ..., Vk, and letd,, = |M,| for n € [1,m]. We will prove that fori € [1,r] andn € [1,m], we have
dne; € Sz(V). Ford, = 0the claim is trivial, so supposg, # 0. We haveM,, ! = ﬁadj(Mn). So
M, - adj(M,) = |My,|I, = d,I,. Becausedj(M,,) € M,(Z), the columns ofl,, I, are integer linear
combinations of the columns @ff,,. The columns of\/,, are inV and the columns of,, I, ared,,e;

which provesi,e; € Sz(V'). Becausel is an integer linear combination df, . . ., d,,, we know that
de; is an integer linear combination dfe;, . .., d,e; fori € [1,r]. Thus fori € [1,r], de; € Sz(V).
O

Theorem 1. S(V) is dense ifged (V) = 1.

Proof. Suppose that’ = {v1, ..., vi} with gcd(V) = 1. By Lemmas 8g; € S fori € [1,r]. By
Lemma5,5(V) is dense.

Next suppose (V') is dense. LeiM,. .., M, be the matrices that can be formed by choosing
distinct columns fronvy, ..., vk, and letd,, = |M,,| for n € [1,m]. LetW be ther x k matrix whose
columns arery, ..., vik. By Lemma 5g; can be written as an integer linear combinatior of. . . , vic

fori =1,...,r. Thus the exists a matri8 € My, (Z) such that?V B = I,.

If T'is a subset of1,.. ., k} with r elements, we writé/; for them x m matrix whose columns
are those columns 6# that have indices frorfi". Similarly, we write By for them x m matrix whose
rows are those rows d# that have indices frorit’. The Cauchy-Binet formula then states

\WB| = Z|WT| | Br|
T

whereT goes over all element subsets dfi, . . ., k}.

Thus|WW B is a linear combination of the determinants of the minor$iafthere the coeffients
are minors ofB and thus integers. BUW B| = 1 and the minors oV ared;,...,d,,, thusl =
ged(dy, ...y dp) = ged(vy, ..., vi) = ged(V). O

Note that this is a natural generalization of thelimensional case, in which case we have two
adjacent integers if if and only if the generators haged = 1 in the classical definition afcd.



Lemma9. LetV = {vq,...,vi}andW = {wq,..., wn} be two sets of vectors . Suppose that
Sz (V') C Sz(W). Thenged(W)| ged(V).

Proof. Let

[ Va, Vay --- Va, ]

be a matrix contributing tgcd(V'), where thev,,’s are vectors if/. Becausev,, € Sz(W), we
may write eachv,, as a lineafZ-combination of vectors ifi¥/, giving the form

[ dauwi Y agiwi ... >, apWwi |

where each sum is ovemwith 1 < 7 < [.

By this reasoning, we see that this determinant, used in the calculatgd df ), is a linear com-
bination of determinants used in the calculatiorged (7). Thusged(W) divides this determinant.
We can then conclude thgtd (1V) divides every matrix used in the calculationgefl(V'), which gives
us thatged(W)| ged(V).

O

Corollary 1. If Sz(V) = Sz(W), thenged(V') = ged(W).

1.5 Useful Lemmas

Following lemmas are for simple cones

T
Lemma 10. In a simple coneintcone(a) = {a+ Y a;viloy € R, € [1,r] andey > 0} () Z"
=1

Proof.

k
intcone(a) = {a+ Zaivﬂai e R,i € [1,k] anda; > 0} ﬂZT.

i=1

k
Let, h € intcone(a) andh = a + > a;v; . Henceh = h’ + h' whereh’ € simplecone(a) and
i=1
h" = Y a;vi with a; > 0. Butv; € simplecone(a) for i > r. Henceh € simplecone(a).
i>r

O
Lemma 11. fund(g) C intcone(g).
Proof. Using Lemma 10:
fund(g) ={g+ Zaivﬂai € R,a; € (0,1] fori [1,r]}ﬂZT C
i=1
{g+ Zaivﬂai € Ryo} ﬂ Z" = intcone(g)
i=1
O

Lemma 12. g € ¢(V) ifand only if fund(g) C S



Proof. Assumeg € ¢(V'). And for the sake of contradiction, assurfiend(g) ¢ S then there exists
w € fund(g) such thatw ¢ S. By Lemma 11w € fund(g) impliesw € intcone(g) therefore
w € S. Contradiction.

Assumefund(g) C S. Letw € intcone(g). Then, by Lemma 10,

,
w = Z%‘Vi wherea; € Rfori € [1,r].
=1
Let ¢;,7; be such thaty; = ¢; + v; wherec; € Ny, v; € Rand~; < 1fori € [1,r]. And let

.
w = Z%vi wherey; € R fori e [1,7].
i=1

.
Notew = w' + > ¢ivi =w' + w  withw' €.
=1
w' € fund(g) hencew’ € S hence(w’ +w") € S, thereforew € S. O

Theorem 2. If w' > w € Sandw’ =w mod (A) thenw' € S.

IS T
Proof. Letw’ = Y a;v; for o; € Randw = ) G;v; for §; € R. By Lemma 27¢; = o — 3; € Z.
i=1 i=1

k
Sincew € S thenw = ) b;v; whereb; € Z fori € [1, k]. Hence
i=1

W =w+ icivi = <§r:(bl + ci)vi> + ( Ek: bivi> .
i=1 i=1 i=r+1
Hencew’ € S. O
Corollary 2. If o' > w e m(V)andw’ =w mod (A) thenw’ € S.
Lemma 13. w € m(V) ifand only ifw — v; ¢ Sfori € [1,r] andw € S.

Proof. Letw € m(V). Assume that for somgw — v; € S. Thenw’ = w — v; = w mod (A) and
w’ < w. Contradiction by Theorem 2.
Letw; =w —v; ¢ Sfori € [1,r] andw € S. Assumeq = w mod (A) andq < w andq € S

Hence(w — q) € S(v1,...,Vy). SO(w — x) > v; for somei. Sow; = (w — v;j) > x andw; ¢ S,
contradiction to Theorem 2.
Thereforevq < w, q € S, together with the fact that € S we concludev € m(V). O

Lemma 14. If v € S, there existsv € m(V) withw = v mod (A).

Proof. Letw; = v. w1, wa,... wherew; — wi 1 = vy for somef (i) € [1,r] andVvj, w; € S. If
V(i) cannot be chosen, thatvg; — v; ¢ S Vj € [1,7], then by Lemma 13v; € m(V).
But [{x | 0 < x < v}| < oo so this must stop.

Lemma 15. If g’ € ¢(V), there existg < g’ such thafg € g(V).



Proof. LetT = {ve RH(c(V) | v < g'}. Tisfinite, since{x | —V4 < x < g'}| < oc.

Letg € T be minimal in T. Then there doesn'’t exist< g such thath € T, which means that
if h < g then eitheh ¢ ¢(V) orh ¢ RH, this fact together witlg € ¢(V) andg € RH implies
g€ g(V). O

Lemma 16. If a € cone(b), thenb < a.

,
Proof. Sincea € cone(b) it means thah = b + ) a;v; for somea; € R>. Letv € cone(a). Then
=1

v=a-+ Zﬁm for someg; € R>p. Hencev = b + Z(ﬂz + a;)vi. Sov € cone(b). Therefore
=1 =1
cone(a) C cone(b) and this implies thab < a.

O]

Lemma 17. If a € fund(b), thenb < a.

Proof. By definitiona € fund(b) means thah = b + > «;v;, for somea; € R>g. Hencea €
i=1
cone(b), sob < a by Lemma 16. O

Lemma 18.Ifa,b,c e R",thena<b «<— a+c<b-+ec.

Proof. It is sufficient to prove this in the forward direction. We have< b = cone(b) C cone(a).

Henceb € cone(a) sob = a + Zazvl, for somea; € R>p. Thenb+c=a+c+ Zalvl, hence
=1 =1
b + ¢ € cone(a+ c¢). Then by Lemma 16 it follows that +c¢ < b + c. O

Lemma 19. If a,b € R" andc € cone(0),thena<b =a <b +c.

Proof. We havea < b = cone(b) C cone(a). Henceb € cone(a) sob = a + Y a;vj, for
i=1

T
someq; € R>g. Sincec € cone(0) we can writec = ) G;v;, for someg; € R>o. We have
=1
T
b+c=a+ Y (a; + Fi)vi, henceb + ¢ € cone(a) and it follows thata < b + c. O
=1
Lemma 20. LetD = {di, ...,dm} Whered; € RH. Thenlub(D) is unique, and can be computed as
follows:

r

lub(D) = max (P;(d;))vi
L iellm]

Proof. Now for all j = 1,...,m we havez rrhax](PZ( y)vi = > (Pi(dy))vi = dj. Thus
i=1Y€ll,m =1

Z max ( P;(dj))v; is greater than or equal to all vectorsiin

i=1J€(L
Now supposew is greater than or equal to all vectorsfin For alli = 1,...,r and for allj =
1,....mwe haveP;(w) > P;(d;). ThusP;(w) > n??x](a.(dy)) - R—( Hi?x](a(dy))vi) -
yell,m ye|ll,m

(Z max. (Pp(dy))v ) Finally, we can conclude th@ H[llax](Pi(dj))Vi is the unique min-
z=1Y€ i=1J€
imum with the desired properties. O



1.6 Two Lemmas on Multiplying by D

We will assume thab is a honsingular matrix with rational coefficients:

Lemma 21. Suppose we have a cone generatedhy. . , vy with bounding vectors,, ..., v, iInZ".
Then the cone generated by, . . ., Duvi, whereD is nonsingular, has bounding vectdi®, . .., Dv,,.
Proof. First, we show thaDwv, ..., Dv, generate everything else. The points in the new cone have
the form

Z aiDvi = D( Z aivi)

1<i<n 1<i<n

whereq; andb; are nonnegative rationals, and in the second step we used the faet,that vy,
generate, ..., v,.

Now, it suffices to show that each of th; is actually a vertex on the convex hull 8 (Dwv, . .., Dv,).
If not, then without loss of generalitiv, can be written as a linear combination of the othes;, and
we have

Dv1 = Z aiDvi
2<i<k
wo= Y aws
2<i<k
a contradiction since the were vertices on the convex hull & (vy, ..., v,).

O]

The main use of this lemma is that we get a well-defined cone, so cone-ordering by inclusion still
makes sense. Knowing this, we show that:

Lemma 22. a < bin Sg(vy,...,v,)ifand only if Da < Dbin Sg(Dwvy, ..., Dv,).

Proof. This is really a problem of semantics. Note that the left-hand side simply means:

b—a= Z C;V;,
7
where thez; are nonnegative. This obviously implies:

Db — Da = Z c; Dv;,
A
which is just the right-hand side. The converse is almost identical (note we can inverfsisce
assumed to be nonsingular). O

These results tell us that the points in the two cones have the same partial ordering and very similar
structure.



1.7 G-vector test

Theorem 3. If g is complete theg € ¢g(V) ifand only if forall: = 1, ..., r there existy, ..., a;, €
R>p such thaty; = 0andg + Y a;v; € Z" — S.
i=1

Proof. Supposeg ¢ g(V'). Then there exist a complete poigt € RH with g < g. There exists

,
somei € [1,7], such thatP;(g') < Pi(g). Now for any vector inZ" of the formg + > o;v; with
i=1

T T
ag,...,ar € Ryganda; = 0we haveg+> aiv; > g +(Pz~(g)—Pi(g ))—l—Zaivi € intcone(g ) C
i=1 i=1

S. ThUSg+ Zaivi ¢ 7" — 8.
=1
Now supposg € g(V'). By Lemma 33, there exist, . .., ¢, € QsuchthatRH = {> q;c;vi|ci, ..., ¢ €

Z}. Fori =1,...,r we know thatg' = g — ¢;v; is not complete. Thus there existslglveotosﬁ 7",

with x ¢ S andx € intcone(g'). There existay,...,o, € Ry such thatx = g’ + zr:aivi.

Becausen; > 0 andx € RH, a; > ¢;. Butx ¢ intcone(g) soa; < ¢; anda; = qZ:IThus

x:g—qivi—l—iajvi:g—i— Zr: a;vy € Z" = S. O
=1 =Lt

1.8 Reduction by GCD
Lemma 23. LetD € M, «,(Z). Thenged(Dv1,...,Dvy) = |D|ged(v1,. .., V).

Proof. Letn = (ff) andMs, ..., M, be the matrices formed by takimgdistinct column vectors from
{v1,...,vk}. Now DM, ..., DM, are the matrices formed by takinglistinct column vectors from
{Dv1,...,Dvy}. Now

ged(Dvy, ..., Dvi) = ged(|DM;,...,|DM,])
|D| ged(| M, ..., |My|)
= ‘D’ng(VI,...,Vk).

O]

Let p be a prime number. Letbe maximal in[0, r] such that the firsj rows contain some entry
not divisible byp. Fori € [1, j], letc; be minimal so thap fv;.,. We say that matri¥” is in p-formif
the following conditions hold:

Dei<er<...<gj.

2) The last- — j rows have only entries that are multiplespof

Lemma 24. For anyV/, there exists am x r integer matrixA such thatAV is in p-form and A| = 1.

Proof. Left multiplying V' by an invertible matrix is equivalent to performing a series of elementary
row operations ori/, so all we must prove is thdt can be put in p-form using elementary row
operations. First will prove the lemma for a column matrix.

If p divides all entries} is already in p-form. Suppose that not all entries are divisible.bye
can permute the rows so that some entryjot divisible byp is at the top. Because / a, the sequence



0,a,2a,...,(p—1)ais a complete set of residues (mpJd Now for any entry below the first, we can

add it to a multiple otz so that the sum is divisible gy, Thus through elementary row operations we

can make all entries, besidesdivisible byp. ThusV can be put in p-form which proves the base case.
We will induct onk. The base case = 1 has already been proven. Suppose the lemma is true for

k — 1. First, we can perform elementary row operations so that thé left sub-matrix is in p-form.

Case 1, All entries in the first column are divisible fay

We can put the right x (k — 1) matrix in p-form through elementary row operations, by the inductive

assumption. These row operations will leave all entries in the first column divisilple Dis putslV’

in p-form.

Case 2, In the first column, only the top entry is not divisibleoby

We can put the lower rightr — 1) x (k — 1) matrix in p-form through elementary row operations on

the bottomr — 1 rows. These row operations will leave the botter 1 entries in the first column

divisible byp. This putsV in p-form, and proves the lemma. O

Lemma 25. Letp be a prime withp|d = ged(V). Then there exist” € M,,;[Z] and P € M,,|Z]
such thatV’ = PV’ and|P| = p.

Proof. By lemma 24, there exists ad € M, ..[Z] and such thatA| = 1 and AV is in p-form.
Suppose for contradiction that= r. Let M be ther x r matrix with columnsy,, , ..., v.,.. Evaluating
(mod p), M is upper triangular sQM | = vic,vac, - - - Ur, Z 0, because none afi.,, ..., v, are
divisible by p. Thus|M| cannot be divisible by. Butp|d = ged(vy,...,vk) and the columns
of M come fromvy, ..., vy, SOp must divide|M |, which is a contradiction. Thug < r, and all
entries in the bottom row oAV are divisible byp. Let B be the diagonat x r matrix with the
first » — 1 diagonal entries equal tb and the last diagonal entry equaljio Let P = A~'B and
V' = B1AV € M,»:[Q]. Left multiplying by B~! divides each entry on the bottom row by
p, thusV' = B YAV € M,,;[Z]. Also, |P| = |[A7'B| = |A|"YB| = 1 x p = p. Finally,
V = (A71B)(B~'AV) = PV’ which proves the lemma. O

Theorem 4. Letd be an integer such that |d. Then there exist’ € M,;[Z] andD € M, |Z]
such that’ = DV" and|D| = d andged(V') = <.
Proof. Let pi,...,p, be primes withd = p1ps...p,. We will induct onn. The base case = 1
is lemma 25. Suppose the theorem is truesfor 1. There exist matrice®’ € M,.,.[Z] andV" e
M,;|Z] such thatV = D'V" and|D'| = pips...pn_1. But by lemma 23pips...p, = d |
d=ged(V) =ged(D'V") = |D'| ged(V") = p1pa ... pu_1 ged(V"). Thusp,| ged(V"). By lemma
25, there exisV’ € M,;[Z] andP € M,,[Z] such thaty” = PV’ and|P| = p,. LetD = D'P.
Now |D| = |D||P| = (p1...pn_1)(pn) = d. ThusV = D'V" = D'PV’' = DV'. By lemma 23,

4 = gdll) _ gdDV) _ | p|&edt) — ged(V'), which proves the theorem. 0

d — d d

2 Unique g-vector

Lemma 26. Letv € RH such thatcone(v) C S. Then there exist¢’ € RH such thatv’ < v andv’
is complete.

Proof. Let < ¢q,...,c. > be the RH-coordinates of. Takev’ with the RH-coordinatesc ¢; —
1,...,c. — 1 >. We then have’’ < v. By the definition of RH-coordinates there are no lattice points
strictly in between the boundaries of the cones @indv’. Hencev’ is complete. O
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Theorem 5. Letg be ag-vector. Therg is the uniqueg-vector if and only if for alli € [1,r] there

existsw; = > «;v; € Z' withoy, ..., o € (0,1] anda; = 0 such thatfor allk € Z>o, g +k(Va —
j=1
vi)+wi € 5.

Proof. We will prove first that ifg is ag-vector satisfying the condition above, thgiis unique.

Assume there exists anothetvector, call itg’. Sinceg andg’ are both minimal complete they
are not comparable. So there exisindm integers,1 < I,m < r such thatP(g) > F(g’) and
Prn(g) < Prn(g)

Forl as above there exist vectaig = g + k(Va — vi) + wy such that for alk > 0, ax, & S.

Forj # [ we haveP;(ax) = P;(g) + k + P;(wj). Choosec € Z such thatc > mjax(Pj(g’) —

P;(g)). ThenPj(ac) = Pj(g) + ¢+ Pj(w;) > P;(g’) for j # 1, by the choice of, andFj(a.) =

P/(g) > P(g'). Hencea. € intcone(g’). Buta. ¢ S sog’ is not complete. It follows thag is the

unigueg-vector.

In the other direction we will prove the contrapositive. lgebe ag-vector. There exists some
T

i, i € [1,r] such that for allw, = > a;v; € Z" with o; = 0 anda; € (0,1],j # i there exists
j=1

ko € ZZO such thaig + ka(VA - Vi) +wq € S.

,
There are a finite number of points of the foly a;v; € Z" with o; = 0 andey; € (0,1], 5 # 4,
j=1

specifically at mostlet(A). Let ky,q, be the maximunk, over all points of this form. Lev =
g+ kmax(VA - Vi)-
We will prove thatcone(v) C S. We haventcone(v) C intcone(g) C S.
Letw € dcone(v). We can consider two cases.wf= v + ) 3;v; with 3; > 0 and3; = 0 for
j=1
somej # i. We haveP;(w) = P;(v) + 3; = P;j(8) + kmax + 3; > P;(g) for all j # i. We also have
Py(w) = P;(v) + 8; > Pi(v) = P;(g). Thereforew > g, sow € intcone(g) C S.

If w=v+ > Bjv;with §; = 0thenP;(w) = Pi(v) = Pi(g). We havew = g + gz (Va —
j=1

vi) + Y B;v;. By our assumption there existg such thatw’ = g + kg(Va — vi) + > Gjv; € S.
j=1 j=1

We then havev — w’ = (ke — kg)(Va — vi). Sincekg < ke, andw’ € S it follows thatw € S.
So we haverone(v) C S.

Hence by Lemma 26 we can find another veotbr< v such thatv’ is complete. SaP;(v') <
P;(v) = P;(g) forall < € [1,7]. By Lemma 15 there existg' < v’ such thafg’ is ag-vector. Since
Pi(g') < Pi(v') < Pi(g) we cannot havg’ = g. We cannot havg’ < g becauseg is minimal
complete. So there exists anotlevectorg’. O

3 Minimal Elements in Sublattices of Congruence Classes

3.1 ModA

LetV = {vy,..., vk} with S dense. LetA be ther x r matrix with columnsvy, ..., v;.

Consider the setlZ". Now for anywy,we € Z" we haveAZ" C 7", Awy1 + Awg = A(wy +
wa) € AZ", A0 + Awy = Awy andAw;y + A(—wq) = A0 € AZ". Addition is component-wise
and thus is commutative and associative. TA4S is a normal subgroup &". We define two vectors
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wy andwsg to be congruent mod (A) if wy andws are in the same coset @f' /AZ". Notice that
vi=0fori=1,...,r.

Lemma 27. Letx,y € Z{ such thatk = Y a;vi,y = > Bivi, Witha,, 5; € Rp. If x =y mod (A)
=1 i=1
then for alli, o; — 3; € Z.

Proof. If x =y mod (A) then by definitionk — y = iaivi with a; € Z. Since the representation
of x — y as alinear combination of;, vy, ..., v, iS unli(::ﬁJe, for all io; — 5; = a;. O

It can also be written as:
Lemma 28. If w = w thenP;(w) — Py(w') € Zfori=1,...,r.

Theorem 6. Suppose thal’ = {v1,...,vy4+1}, thatS is dense, and thafvy, ..., v, } are linearly
independent. Letl be ther x r matrix with columnsvy, ..., v,. Then{0,vyi1,2vyy1,..., (|JA| —
1)vy41} is a complete set of coset representativeFfgtAZ". Also|A| is the smallest positive integer
such thaf A|v,11 =0 mod (A).

Proof. S is dense, s& contains a complete vector, sgy Now for any residue, say, there exists a
vectorv in the interior ofcone(g) such thatv = a. Becauseg is completey € S hence there exist
€1,-..,¢41 € Ny such thatv = ¢1vy + ... + ¢41vey1. Evaluating this equationmod (A) have
a = ¢,11Vyry1- Thus each residue is congruent to some non-negative integer multiple Of

Now Zv,1 is homomorphic map dE, sendingdl to v, 1, thusZv,1 is a cyclic group mod (A)
generated by, ;. Becaus&.v, 1 contains all residues, the period®¥,, is the order o%. We
know that|A| # 0 becausd” spansR” overR, so{vy,-- -, v,} must be linearly independent ov&r
Hence the order of” /AZ" is | A| by Theorem 3.3 in [2], and now there dté| residues. Therefore
{0,vyi1,2veta, ..., (JA] — 1)vey1} is a complete set of coset representativeZfofAZ", and|A| is
the smallest positive integer such thatv,;1 =0 mod (A). O

Theorem 7. Letvy, ..., vy, w be vectors irZ” such that{vy, ..., v,} are linearly independent. Let
A be ther x r matrix with columnsvy,...,v.. Then 4] is the smallest positive integer

ged(vi,..n, Ve, W)
Al _
SUCh thatmvr+1 =0 mod (A)
Proof. Letd = ged(vy, ..., vy, w). Now by Theorem 4, there exist a matdxandvy, ..., v,, w'
such thatD| = d, Dw' = w, andDv; = v; fori € [1,7]. Let A’ be ther x r matrix with columns
vy,...,v.. From the wayD was chosen, we know thatd(v},...,v.,w') = 1. ThusifS’ is
generated by, ...,v,,w , thenS’ is dense. By theorem &, = |A'| is the smallest positive integer
such thamw' € A'Z. Now we haveaw’ € A'Z < Dnw € DA'Z < nw € AZ. Now the
minimal positive integer such thatw € AZ is
" A _ |DJ|A] _ |A|

n=|Al

W) |D]ged(vy, ..., vi,w')  ged(ve, ..., Ve, W)

B ged(vy,...,v
which proves the theorem. O]
Suppose that’ = {vq, ..., vk}, whereSg(V) C Sr(v1,...,Vy).
Split S into equivalence classesnod (A), the fundamental domain. In each equivalence class we
have a sublattice on which the restriction of our partial ordering is still well-defined. For each of the

|A| equivalence classes, take an element ofinimal in the equivalence class. Label these elements
Wi, ..o WAL

12



3.2 Results regarding equivalence classes
Theorem 8. If w € m(V') then3 a; € Ny, i € [r + 1,k] , a; < (JA| — 1) such that

k
w = E a; Vi

i=r+1

wherevy, va, ..., v, form a simple cone and, 1, vry2, . . ., vk are inside the cone generated by
the firstr vectors.

k
Proof. First, let's prove thaty = > a;v; for a; € Np.
1=r+1

k
Letw € m(V). Sincew € S thenw = Y a;v; with a; € Ny for i € [1, &].

=1
Assumed;j such thatl < j <r anda; > 0
Consider

a; € Ny impliesw' € S. Also

Which implies thatv = w' mod (A) . And, reordering the terms

r
/
w=w + E a; Vi
i=1

we concludes € condw’) hencew’ < w. Now sincea; > 0 thenw' # w hencew’ < w which is a

contradiction tav € m(V).
k
Now if w € m(V'), we can writev = > a;v; with a; € Ny
i=r+1
Assume thaBj such thau; > |A|. Letw' be

k k
W =w—|Alv; = ( > aivi> —|Alvj = Yo avi | +(a—|A)v;

i=r+1 i=r+1ij
Sincea; > | A| then the coeficients af areN, sow’ € S. And by reordering
w=w +|A]v;
hencew € condw’) implyingw’ < w. Since
w—w =|Alv; £0,
we know thatv # w', hencew’ < w and by Theorem 6, we know that
W =w-— |Alvi =w mod (A).
Thereforew’ = w mod (A),w’ € S andw’ < w which is a contradiction. Henckj with 1 < j < r

such that; > |A| O

13



k
This theorem can also be written as:ufe m(V) thenw = > a;v; for a; € Zyy fori e
i=r+1
[r + 1, k|, because; < |A| — 1 anda; € No.

Corollary 3. |m(V)| = [Um(V,a)| = > |m(V,a)| < |A|*~" wherea ranges through theA|
equivalence classes.

Proof. |m(V)| = |Um(V, a)| by definition. And because(V, a) (\m(V,b) = 0fora b mod (A)
we can conclude that Jm(V, a)| = > |m(V, a)| wherea ranges through thigd| equivalence classes.

k
By Theorem 8 Every € m(V') can be written as) = a;v; With a; € Zj4. Letf : m(V) —

i=r+1
k
Zl’j‘r wheref(w) = (ar4+1,ar42, . .., a) anda; € Zj4 wherew € m(V) andw = Y a;v;
1=r+1
k
If w," € m(V)and f(w) = f(u') thenw = > a;v; = &'. So fis injective. Therefore
1=r+1

m(V)| < |Z857] = |A]F.

O
Corollary 4. |m(V,a)| is finite.
Proof. m(V,a) < 3" |m(V,a)| < |A|*~" wherea ranges through all the equivalence classés:—"

is a finite number. Therefora(V, a) is finite. O

Corollary 5. If w e m(V)then3a; € No,i € [r+1,k],a; < (¢ 1) such that

ng(Vl 7"'7V!‘7Vj) o

k
w = Z a; Vi
i=r+1
Proof. By Theorem 7 we can changé| to d#l‘ and the proof works the same then Theorem
ged(ve,...,Vr,Vj)

8. O

4 Constructing g(V) from m(V)

This is a direct generalization of a result in [1] which states:
For eachi in [0,a1), letr; be the smallest element 6f(as, . .., ax) with r; = max(r;). Then
K3

g(S) = Tmaz — A1.
Theorem 9. If g € g(V) then there exisby, . .., wja| € m(V'), a complete set of residue classes, such
thatg + Va = lub(ws,. .. 7W|A|).

Proof. Letry,...,r|a| € R" such thatfund(g) = {g + r1,...,g + r|a|}. By the definition of
fund(g), we have0 < P;(r;) < 1foralli € [1,r] and allj € [1,]|A|]. By Lemma 11, we have
g +r; € S, and thus there exists a minimal vecigre m(V') such that; = g + r; andw; < g + 1.

Sinceg € ¢g(V), g — ¢;v; is not complete foi = 1,...r. By Lemma 11 there exists some real
numbersyy, ..., a, € (0, 1] such that

r
X=g—qVi+ Zayvy ¢ZS.
y=1

14



Becausex ¢ fund(g), we haved < «; < ¢; ando; € ¢;,Z soa; = ¢; and Pi(x) = P;(g). But
x+v; € fund(g), so there exist somee [1, |A|] such thak+v; = g+r;. We haveu; = g+r1; = x,
so there exist integexs, . . ., ¢, such thaty; + c¢;vy + ... + ¢, vy = x. Butx ¢ S, so one of the;;
must be negative. Thug £ x while w; < x + v;. By Lemma 2 we havé’ (w;) < P(x + v;) for all
l=1,...,r. We haveP;(wj) > P;(x). Combining these we have

Py(x) = Py(wj) < 0 < Pi(x + vi) — Pi(wj)

whereP;(x + vi) — P;(wj) € Z by Lemma 28. S@;(wj) = Pi(x + vi) = Pi(g+ Va).
Forallj =1,...,|A| we have

Pi(g+Va) > Pi(g+vj) > Pi(wj).

Thus
Pi(g+Va) > Em[la‘iu(ﬂ(wy)) > Pi(wj) = Pi(g +Va)
Y )
and thus .
+Va = max (Py(wy))vx = lublwi,...,wal),
g+Va x:ﬁ’G[l"A”( (wy)) (w1 A])
proving the Theorem. O

Corollary 6. Foranyg € g(V), we haveg + Va < lub(m(V)).

Proof. There exists a subsgtvy, ..., wjs |} of m(V) such thalg + Va = lub(ws,...,wja|). Now
lub(m(V)) > wj forall j € [1,|A]] and sog + Vo = lub(wy, ..., wja)) < lub(m(V)). O

5 Boundingg(V)

Although we are now able to bound the size of vectorg(ivi), we need to know properties of(V)
beforehand, which might be difficult to compute. The following theorem gives us a way to bound
vectors ing(V') by looking atV” alone:

Theorem 10. For anyg € g(V), we haveg < lub((|A] — 1)ve41,..., (JA| = 1)vk) — Va.

Proof. Supposev € m (V). By Lemma 8, we know that there exist non-negative integers, . . . , ¢
With w = ¢, 41veg1 + ... + ¢ vk. Suppose for the sake of contradiction that, + ... 4+ ¢, > |A|.
Consider the sequenée&= {0, Vyi1, .-+, Cr+1Ver+1s Crp1Vrt1 + Vet2s -« o Crp1Vpg1 + oo+ CEVK )
The sequence is strictly increasing, and thus it has a complete ordering. It has af Jeastterms,
S0 some two are congruent mag( Leta, b € U such thaa > b anda = b. Noww — ais clearly in
Ssow—(a—b) € S.Butw >w — (a—b) andw = w — (a — b), which contradicts the minimality
of winits residue class. Thus 1 + ...+ ¢ < |A| — 1.
Next, we will prove thato < lub((|A| — 1)vey1, ..., (JA] — 1)vk). Now we have

Pi(w) = Picr41Ves1 +...+cpvi)
CT+1P'L'(VI'+1) +... .+ Ck:P'i(Vk)

(eren t.. -t ep) max (Pi(vy))

Al-1 Pi(v;
(14] = 1) max_ (Fi(vs))

Al — 1) Py(v;
jer[ggfk}((l | —1)Pi(vj))

IN A
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By Lemmas 2 and 20 we have < [ub((|A| — 1)vyt1,...,(J4| — 1)vk) and thuslub(m(V)) <
lub((|A] = 1)vys1, ..., (JA| — 1)vk) by the definition ofub. Finally, by Corollary 6, we conclude that
for any vectorg € g(V') we haveg < lub(m(V)) — Va < lub((|A] — 1)ves1,. .., (JA] = Dvi) —
Va. O

The theorem is an-dimensional generalization of a result of Schur [8] in 1935. Whea 1 it
becomes Schur’s bound exactly, and whes r + 1 the bound is achieved by Theorem 18.

6 Saturation

6.1 v-directed Sets andv-directed Lattice Sets

First, we define theay alongv to be the raw = R™v in the same direction of, starting at the origin.
Now, we define ther-directed sefv] of a set of vector¥ asvN V. Similarly, define thes-directed
lattice set{v} to bev N S(V).

Lemma 29. For a nonzerov, there exists an invertible linear transformatidn: R™ — R" which
induces a monoid isomorphisii between lattice points on andNj,.

Proof. Since there are only a finite number of lattice pointsvothere exists a unique “first” nonzero
lattice pointw on v such that there are no lattice points of the faxm, « € (0, 1). There is a unique
invertible linear transformatiof : R” — R” which sendsw toe; = (1,0,...,0).

Supposew’ = (x + y)w, wherez is integral andy € (0,1). This is equal tartw + yw. aw
has integral coordinates, anav does not by definition ofv. Thus,w’ cannot be an integral point.
Therefore, any lattice point onis an integral multiple ofv, and will be subsequently sent Byto the
lattice pointae; for somea € N.

T~ will sendae; to aw, also a lattice point. So the lattice points on the two lines are in bijection.
But there is also a natural isomorphigitbetween points of forme; andNy, so we are done via the
compositionl” = ¢o T.

Both isomorphisms clearly preserve addition properties, so the result is not merely a bijection but

a monoid isomorphism, as desired. O
Corollary 7. Suppos€v} is generated by, v, ..., uxv, u; € N, then there is a monoid isomorphism
between{v} and the one-dimensional monoidi¥ generated byu, . .., ug).

This means thafv} has a semigroup structure identical to that of the one-dimensional Froebenius
problem. So we can give a well-defined “Frobenius vector{fof. Definefrob({v}) as the preimage
of g, whereg is the generalized Frobenius numiégf{v}) of the image of v} after applyingl”.

Inspired by the above lemma, we define the first nonzero lattice point in the directicto dfe the
minimal unitalongv. The set of minimal units along each bounding vector of the cone constitute the
minimal unit set

By Corollary 7 above, we also how have an intuitive notion of the lattice points along eaeh ray
So it makes sense to say that a veetore v comes “before” a vectdiv € v if a < b, and “after” if
a > b.

6.2 Saturation

Now, define a directed sét]| to befull if {v} C S([v]); in other words, for all vectorsr € {v}, w
can be written as a nonnegative linear combination oktuirected set of” alone.
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Finally, we define a set of vectols to besaturatedif for all vectorsv € V, thev-directed sefv]
is full.

For example} = {(3,0), (4,4), (5,5), (0,3)} is not saturated sindd, 3) € S(V)N{(4,4)}, but
(3,3) ¢ S([4.4]).

Lemma 30. Given a set of vector¥, there existd”’ O V which is satuated. Furthermorg/’\V'| <
o0, S(V') = S(V),andg(V') = g(V).

Proof. We constructl’’. Throughout this process, we will only add 6 vectors already ir6 (V).
ThusS(V) > S(V’). SinceS(V) c S(V’) trivially, S(V) = S(V’). Consequentlyy(V) = g(V').

Supposédv] is full for v € V’. Then adding more vectors fros1{V’) = S(V) into V'’ will make
[v] still full, since any linear combination

a1V1+...+anvn—|—b1v’1+...+bmvin

wherev; € V andv] € V\V’ can be written as an integral linear combination of justitfie by
substitutingv; = > ¢;v;, Wherec; € Ny exist sincev; € S(V).

Therefore, it suffices to show that we can make any directes&ill by adding vectors ir6 (V')
to V'. Since the number of directed sets is finite, repeating the process for all such sets credités a set
which is saturated. New directed sets will also not be created, since we only add vectors in the same
directions as vectors we already have.

By Lemma 29, we know that the points v} have a semigroup structure and are eventually
periodic after some well-defineth-ob({v}).

Add to V' all vectors in{v} between0 and frob({v}). Now, take any vector i{v}. Ifitis
betweer0 and frob({v}), we have already added it. If it is aft¢grob({v}) along the ray, we can
write this vector as some nonnegative linear combination of vectors b¢fotg{v}). Thus,[v] is
full. All of the vectors we added are ifi, so.S also remains constant, as desired.

Repeating the process for &il] finishes our algorithm. Note again that this process is finite since
there are only a finite number of directed set¥irand no new ones are introduced in the process since
any added vector is already in an existing directed set. O

Thus, in the above example, we note tf{8t 0)] and[(0, 3)] are full, but[(4,4)] is not. The points
in [(4,4)] N S are exactly(a, a), wherea is integral and at least. We can just inser(3, 3) to get
{(3,0),(0,3), (4,4),(5,5), (3,3) }, which is saturated.

Lemma 31. Supposé’ is saturated. Therfrob({v}) foranyv € V is notinS(V).

Proof. Suppose it were it (V). Then sincé/ is saturated, it must be a nonegative linear combination
of elements inv| alone. Howeverfrob({v})'s imageg after the isomorphism in Lemma 29 is the
Frobenius number of a set of numbeé¥s This Frobenius number is not in the image{ef}. Since

we have an isomorphism betweén} and N, g's preimage, akgrob({v}), is notin{v}. Thus, this
vector is not inS. O

We will show an application of the lemma through an intuitively true theorem:

Theorem 11. Suppose that’ = [vq] U ... U [v;], thev; linearly independent. Then

g(V)={Y_ frob({vih)}.

1<i<r
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Proof. Supposew € {v;} for somev;. Supposew € S(V). By the assumptions is a bounding
vector ofV/, so it must be a nonnegative linear combination of elemeritg jralone. SJ/ is saturated.

Take ther bounding vectors for the cone which constitute the minimal spanning set, and denote
themwsy, ..., wy, respectively.

SinceV is saturated, we know thgt-ob({v}) foranyv € V is notinS by Lemma 31. Any vector
has a unique representation as a linear combination abth8upposew is complete, and equals

a1W1 + aogWa + ...+ @, Wy,

where theu; are nonnegative integers. We claim that> 7"(frob({w;})). If not, then the cone
atw fails to contain any of the lattice points with contributi®( frob({w;})) in thew; direction.

So all complete points have eaeh > T"(frob({w;})) for all i. However, any point satisfying
these conditions are complete, singe> T"( frob({w;})) means we can get any integer lattice point
with ana;w; contribution by our isomorphism. So, any complete vector is in the cone of

ZT’(frob({wi})wi = Zfrob({wi})>

which is itself a complete vector. So it is the unique element ofjtket. O

7 Hyperplanes Containing Lattice Points

In cones of dimension, simple or not, the bounding hyperplanes are created by the origin and
vectors that have at least one other lattice point on them. We wish to understand the structure of all
hyperplanes parallel to one of these.

Inspired by these hyperplanes, we call a hyperplati®nal (the intuitive meaning of this will
become clear) if it passes through either

e 1 lattice vectors linearly independent oy or
e r — 1 lattice vectors linearly independent our plus the origin.

Lemma 32. A hyperplane
{(z1,...,2n)|T101 + 2202 + ... + 20, = d,a; # 0,d € 7},
is rational only if all a; are rational.

Proof. The hyperplane goes through in either casategral pointspy,...,p.. Suppose thap;, =
(pit, - - -, pir). Consider

P .- pir| a1 d
Pr1 --- Drr Qr d
Notice this exactly characterizes the conditions we have - the matrix takes the dot product between
the points and the coefficients of our plane.

1The seemingly different definitions can be reconciled via the natural projection from the affineRspageA” to the
corresponding subset of the projective spR¢ewith the map¢ : (a1,...,a,) — (1,a1,...,a,). Then the two definitions
become equivalent - the image of the hyperplane updemtainr linearly independent lattice vectors.
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Now, if the vectors are all linearly independent, then the leftmost madrikey create is invertible.
We may find the inversa/ ! of the left matrix)/. This must have rational values sinké& contained
integral values. Multiplyd/ —! on both sides to get

ar d

Sinced is rational, and\/ ~! contains rational numbers, theare rational.

In the second case, we have- 1 linearly independent vectors and a row(. Without loss of
generality, this is the final row. By plugging in the origin to the hyperplane equation, we sele=that
This means we can scale any of theo be rational.

Since the space spanned by thel vectors does not have full rank, afié, . .. , e, } form a basis,
at least one; is linearly independent with the — 1 vectors. Now, scale; to be rational. We know
that

a1 *04+...+a;x1+...a, %0
takes the rational value;. Therefore, we may replace tlterow in the matrix M by e; =
(0,...,1,0) and the corresponding number in right-hand-side vectar; ty get

pir --- Pl o--- Pir| |1 0
o ... 1 ... 0 ar a;
By the same reasoning as the first case, we can invert the left matrix and conclude that &l the

have to be in fact rational.
O

Corollary 8. A hyperplane is a rational hyperplane if and only if it has the form

{(z1,...,2n)|z101 + 2202 + . . . + 210, = d, a; # OVi},

whered and theq; are all integral, andged(ay, . . ., a,)|d.

Proof. Supposef is rational. Then the; have to be all rational, and we may multiply both dyé&s
andd by the Icm of the denominators and assume they are integral. Since we knd&gleais through
at least one integral point, we know an integral linear combination o {fggvesd. But this means
ged(ay, ..., ar)|d.

Now supposé{ has a form where thé and theq; are all integral, angcd(ay, . . ., a,)|d. Then we
know it goes through at least one lattice point. Suppose that

ayr + ...+ ary, =d.

There are two cased:# 0, ord = 0.
In the case wheré # 0, note that

al(yl+ai)+a2y2+---+az’(yz’_a1)+---+aryr = a1y1 + @y + ...+ ary, +ai1a; — a;a1
= d7
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so(y1 + ai, y2,-..,Yi —ai,...,y,) is also a lattice point o/ for all i # 1. Consider the matrix
formed by thesé + (r — 1) = r vectors:

U1 Y2 Y3 e Yr
Y1 +az Y2 —ax Y3 Yr
Y1 +as Y2 Yys—ar ... Yr
| Y1 + ar Y2 Y3 cee Yr— a1

Subtract the first row from the other rows to get

(v v2 ys ... Y]
ay —aip 0 e 0
as 0 —ay ... 0
| O 0 0 —ar |
This matrix has determinant
yi(—a1)" ' = yoas(—a1) " —ysaz(—a1)" T — . ypar(—a1) ? = (—a1) (a1 — asye — ... — aryy).

If the original vectors were linearly dependent, this value would be zero. But we already know
thata; # 0, sOayy1 + ... + a,y, = d would have to be), a contradiction. So we havelinearly
independent vectors and hence a rational hyperplane.

In the case wheré = 0, by the same reasoning(if, .. .,y.) € H, we also know that every row
of
[ wn Y2 Ys oo Y]
y1ta2 y2— a1 Y3 Yr
Y1+ a3 Y2 Yy —ar ... Yr
Y1+ ar Y2 Y3 cee Yr — a1
is on H. But we know in particular that one choice @f, . .., y.) is just(0,...,0). Set they;'s to
0’s to get:
0 0 0 0
as —ap 0 0
as 0 —aj 0
(079 0 0 Lo.o —aq

Note thata; # 0, and for the rightmost — 1 coordinates, there is only one vector with a nonzero
value in that coordinate, namelya;. So for some linear combination of the botters- 1 vectors to
be0, every coefficient used must Be Thus, the bottom — 1 rows form linearly independent vectors,
and again we have a rational hyperplane.

O
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Figure 1: RH is represented by the intersections of the dark lines, which are evenly spaced.

Corollary 9. The set of rational hyperplanes parallel to

H={(z1,...,2y)|x101 + 2202 + ... + 20, = d,a; # OVi,{d,a1,...,a,} CZ}

are exactly those with the form

{(x1,...,2p)|7101 + 2202 + ... + 200, = d', ged(ay, . .., a,)|d'}.

This means that each family of parallel rational hyperplanes are equidistant from each other with a
structure isomorphic t@.

In particular, we have a notion of the “closest” rational hyperplane parallel to a rational hyperplane
H in one of two directions.

Lemma 33. Given a simple cone generateddy. . . , v,., there existiy, ..., a, € Q suchthatRH =
{2199 ciaivilcl, ... cp € L}

Proof. Each pointinRH is the intersection of rational hyperplanes, each of the foffp = {z|P;(x) =
d;}. There is some integef; for which there exist exactly; rational hyperplanes parallel t#; be-
tweenH; and the hyperplangz| P;(x) = 0} (counting both hyperplanes). Then this point is exactly of
the form{}>", ... (fi — D)a;vi| f1, ..., fr € Z}, wherea,;v; is the unique vector which is the distance
between two adjacent rational hyperplanes parallél tin the direction of;.

On the other hand, any point of the given form is the intersection of sog@respondingH;,
since we can just pick thH; to be the rational hyperplane such that it has- 1 rational hyperplanes
between it and the hyperplane going through the originR$bis exactly characterized by the given
form. O

Now, we can refer to each point iRH by a set ofRH-coordinates(cy, ..., c,) defined as in
Lemma 33. The corresponding point is simply

/
E CiVi,
1<e<r

wherev] = a;v;. The transformation from the cartesian coordinates toRfi&-coordinates is
clearly an affine transformation iR".
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8 Integral g-vectors

Do we keep this section? It really depends on if you care about intggrattors at all. lronically |
use a couple of these for my theorems - but they are not that necessary.

8.1 Minimal Fundamental Domain

Recall that the first lattice vector in the direction of each of the bounding vegtors. , v, of a simple
cone create the minimal spanning 3¢S = {v{,...,v.}. Now, we may define a domain using these
vectorg. Call this theminimal fundamental domaimNotice that the fundamental domain can naturally
be divided into minimal fundamental domains.

8.2 Whenged(MS) =1

Whenged M S = 1, we have from Theorem 6 that the minimal fundamental domain contains a single
lattice point. This case has many interesting properties.

Lemma 34. Suppose andb are simple cones; andb integral vectors. Thenone(a) N cone(b) =
cone(c), wherec is also an integral vector.

Proof. (Yan is Lazy) O

Lemma 35. A complete integral vectay is an integralg-vector if and only if there are no integral
g-vectors in its reverse minimal fundamental domain.

Proof. O

The main structural fact df whereged (M .S) = 1 is thatS (V') is isomorphic taS(V’), whereV’
hasr bounding vectors along the axes, giving a cone in the shaé of

Note that in particular the classickidimensional case always hasl(MS) = 1.

The most important facet of this case is:

Lemma 36. Whenged(MS) = 1, RH = 7.

Theorem 12. Whenged (M S) = 1, the set of integrag-vectors is the set gf-vectors.

8.3 Correspondence

Theorem 13. There is a many-to-one mapwhich sends any integrgtvector to ag-vector, with fibres
of cardinality at mosgcd (M S).

9 Constructing V to Tailor a Specific g-set
9.1 The General Case

Call a condegal if each of its bounding hyperplanes are rational. Clearly all cones arising from a set
of vectors with integral coordinates are legal, since each bounding hyperplane goes through the origin
andr — 1 other integral points.

2This requires generalizing the notion of “mod A’ to domains of our choice. This footnote will serve as a reminder.
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Figure 2: Ongj-vector includes more than one integgayectors in its cone.

Lemma 37. Given a legal simple con€ and a set of vectorsG = {g1,...,gn} C RH, there exists
some set of vectofig with coneC' such thatG C ¢(V') if and only if:

1. Supposing thag; has RH-coordinates(g;1, . . . , gir), We havey;; > —1 for all (i, j);
2. for all i and a bounding hyperplan# of g;,

0,...,0)U (U intcone(g;)) 2 (Z" N H N cone(g;));

Proof. =

We construct such ®. First, we want it to hav€’ as its cone.

Now, for each bounding hyperplaigof eachg;, by hypothesis there exists at least one lattice point
am g, in (Z" N H N cone(gi) which is not the origin, and is also not contained jn,; intcone(g;).

Choose eack; large enough so that for any of the finite choices of the ordered(p&ig;), we
haveam g, = >_; an,g,;vj, Whereap g, ; < 1. Hence, it is impossible to choose nonnegative integral
coefficientscy, . .., ¢, suchthaug g, j = > ) cxVk.

Now, for each vector inz, add toV" all | A| lattice points in its fundamental domain. Since we
know that theg;; are at least-1, lattice points in thentcone(g;) will have only nonnegativek H -
coordinates, and therefore be in our cone. Call these vectors

Vil, .-+, V1JA[p V21, -3 V2|A]5 -+ -5 Vhl - -+, VhIA]s

where thelA| points in the fundamental domain gf arevi; throughv; 4. Note that some two
vi;'s might be identical.

We assert that every elemesit € G is in the g-set. Sincgund(g;) € S(V), g; is complete by
Lemma 11. It now suffices to show thgtis minimal. We prove by contradiction.

Suppose for contradiction that there is some complete vegtterR H with g; in its cone. We may
assume thag’ is on one of the bounding vectorsafne(g;), andg’ is one fundamental distance away
from g;. Without loss of generality, suppose this vector is parallettpandg’ has R H-coordinates

<gi1 - 17gi27 R 7gir>'
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SetH to be the rational hyperplangzx, ..., z,)|x1 = g;1}. By assumption, there exists some
vectorp = ap g, in the interior of H N cone(g;) such thatp is not inintcone(g;), j # i. p €
intcone(g'), sop € S(V). Therefore,

p= Z bivi + Z bijvij,
i i

where theh; andb;; are nonnegative integers. O

If by, # 0 for some(k, ), we would havep € cone(via) C intcone(gk). However, this would
meanp € intcone(gxk). This is impossible fok = i sincep is on the boundary ofy. This is also
impossible fork # i by the choice op. So,b; = 0 for all (k, 1), and we know that we may write

p=> bivi
i

where the; would be nonnegative integers. Recall that our choice; ohade it so that this would
not be possible for any points of the fougy 4, , one of which being. So we have a contradiction.

<: Suppose the first condition is violated, and sogfie< —2. Thenintcone(g;) N H, where
H = {(h1,...,h)|h; = g;j + 1}, will contain (infinitely many) lattice points. But these lattice points
are notincone(0), and so cannot be elements%fThis meang; cannot be complete, a contradiction.

Suppose the second condition is violated. Then for sofheg;) we have that

0,...,0)U (U intcone(g;)) O (Z" N H N cone(g;).

However, since theg; are complete, the lattice points [Jintcone(g;) all have to be inS.
(0,...,0) is also always inS. This means that there is some bounding hyperplangfavith all
lattice points inS, meaningg; cannot be g-vector. So we have a contradiction yet again.

9.2 When|V|=r+1

Theorem 14. Leta = (ay,...,a,) € Z". There exists a vector sét of r 4+ 1 vectors with a simple
cone andy(V') = {a} ifand only ifa; = 1 (mod 2) for somei.

Proof. Suppose that; =1 (mod 2) for somei. Without loss of generality, assume that 1.
Note thatZ" = |J S({*e1, tes,...,£e,}), one orthant for each choice of signs before ¢he
Take an orthant that lies in (it could be one of several). Suppose the corresponding spanning set is
{Vl = blel,Vz = bgez, ey Vp = brer},

where each; is +=1. We claim that the vectors

V={2v1,ve,...,Vvr,Ver1 = (@+2vi +Vva + ... +v;)}
has gcdl. Furthermoreg(V') = {a}.

To see this, first observe that 1 € cone(a). Also,a € Sg+(v1,..., vy by construction and
subsequently is also ifig+ (2v1, ..., vy).
Note that
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0 =1 0
[2v1 vr] = :
0 0 +1
is a matrix with determinant-2, and
a2 0 ... O
ap+1 +1 ... 0
[Vr—‘,—l Vo Vr} = : . . .
a1 0 ... =+1

is a matrix with determinant-(a; + 2). These are relatively prime, ged(V) = 1 and we may
use Theorem 18 to get that theset contains the unique element

g = (\det([2v1 Vo ...Vr])|—1)Vr+1—2V1—V2—...—Vr
= (2|-1)(a+2vi+ve+...vy) =2V — Va2 — ... — Vg

= a7

as desired.

Now suppose(V) = {v1,...,ver1} = {a}, a has integral coordinate¥; is dense, an& has a
simple cone generated 8y, . .., v.. We claim that has at least one coordinate whichigmod 2).
Suppose otherwise. Then,

a=(|det([vi va ...vi])|=D)vey1—Vvi—va—...— vy

must have only even coordinates. There are two cases, depending on the parity of the determinant
of D = [Vl Vo ... Vr}.

If det(D) is odd, ther(|det([v1 v2 ...vy])|—1)vy41 hasalleven coordinates. Label the coor-
dinates ofato beay, . .., a, respectively. Similarly label the coordinates of eagho bev; 1,...,vj,.
We then have,; =3, ;. vi; (mod 2) for all i. This means that each row 6f has an even number
of odd integers.

Put D in 2-form via elementary row operations. By Lemma 23, with only row operations we may
get a matrix4 with AD = D’ having only even entries under the diagonal datd D) = det(D’).

However, row operations do not change the fact that every row has an even number of odd integers,
so the number of odd integers in the last row/@f must be even. Since that row has the first 1
numbers even, the last entry in the row must also be even, givirggrow of even numbers and hence
even determinant. ThereforB, also has even determinant, a contradiction.

On the other hand, suppodet(D) is even, ther(|det(D)| — 1)v,11 has coordinates with the
same parity as that of,1. Thereforep,, 1) ; = > ;<. vij (mod 2).

Now consider theyed(V). There are("t') = r + 1 matrices involved. One of them is juft,
which has even determinant.

The othen- matrices take the form

[Vl Vj Vr+1],
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wherev; is missing from the columns. Now, when takgmod 2), the determinant of this matrix
is equal to the determinant of

v1,1 --- Uj1 0 .. Upgll v11 ... Uj1 ... Zlgigr Vi,1
v1,2 ... UJA"Q cee Urg1,2 V1,2 -.. Uj2 ... Zlgigr Vi 2
Uly -oo Ujp oo Upglyp Uiy oo Ujp ... Zlgigr Vi r
= [Vl ‘;j V1+V2+...+Vr].

Elementary row/column operations of the matrix viewéthod 2) do not change the determinant
(mod 2); that is to say, they do not change the parity of the determinant. We may subtract one copy of
each of the first — 1 columns from the last to get

[vl O T ™ Vj].

The leftr — 1 columns of the matrix are the vectovs, . .., v;, missingv;. Since the rightmost
column isvj, this matrix has exactly the columns bfup to a permutation, which has determinant
(mod 2) by assumption. Therefore, any of thenatrices found this way hasdividing the determi-
nant. We then conclud® gcd(V"), which contradicts thalt” must be dense fay(V') to be defined.

[

Corollary 10. Any vectorg which is not the origin irZ” can be made to be the unique element of the
generalized>-set for some set of vectova

Proof. If there is an odd coordinate g we just use the theorem. Otherwise, sigce (g1,...,9r)
has at least one nonzero coordinate, we may write ki{(a5, .. ., g..), whereged(gy, ..., g.) = 1 and
k € N. Therefore, at least one of is odd, and{g/k} = g(V’) for someV’. V = kV' suffices by
Theorem 22. O]

9.3 Whenr + 1 Vectors do not Suffice
First, we prove a general result indimension:

Lemma 38. If k£ fg € Ny, then the seV = {ay, ... a1}, Where

ag = k

ap = g+1
ag = g+2
ap, = g+k

has the following properties:

1. g(ag,...,ax) =g;

2. For anym > g, there exists: > m such that if we writen = Zogigk b;a;, b; nonnegative
integers, the@lﬁgk b; > 1;
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3. take integraln > g. There exists a way to write = Zogigk b;a;, b; nonnegative integers, and
Di<i<kbi = 1

Proof. 1. Take anyr > g. n has some residu€ (mod k). If n’ # 0, thenn > g + n’/, which is
inV.n—(g+n') = bk for someb € Ny. Sincek € V,n € S(V). Now, if g € S(V), then
g = >, ¢a; ¢; € Ng. Clearlyc; = 0fori > 1, sog = bk for someb € Ny, a contradiction
sincek fg.
2. Simply take some > m such that: # 0 (mod k). Then to writen = ). ¢;a;, multiples of
a1 = k alone cannot suffice, so we need at least one of the others. d;hreig, for somes.

3. In the construction of our solution for the first part of this lemma, we used only one multiple of
g +n' andb multiples ofk. Thus, we have. = ba; + a; for somei, which haszlgigk ¢; equal
to 1 for k£ fn, and0 otherwise.

O

Theorem 15. Letg = (g1,...,9r), gi € Z. If k does not divide somg, then there exists+ k vectors
formingV such thaty(V') = {g}.

Proof. Without loss of generality, suppose that{g;. Similar to before, take an orthant thaties in
(it could be one of several). Suppose the corresponding spanning set is

{Vl = blel,Vz = bgez, ceey Vp = brer},

where each; is 1. We claim that the sét” of vectors

]{VI,
V2,
Vr,
Veri = (8+Vvi+ve+...+vy)
Vet = (g+2V1+V2+...+Vr)
Vetk = (8+hkvi+va+...+ V)
has gcdl. Furthermoreg(V) = {a}.
To see this, first observe that,; € cone(a). Also,a € Sg+(v1,..., vy by construction and
subsequently is also i+ (2v1, ..., vy).
Note that
+k 0 0
0 =1 0
[le e Vr] = . :
0 0 +1

is a matrix with determinantk. Now, for somel < i < k — 1, we haveged(g + i, k) = 1, where
the sign fori is the same sign ag = +e;. Thus,
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gti 0 ... 0
gl £1 ... 0
[Vr—i-i Vo ... vr]: : : . :
gtl 0 ... £1

is a matrix with determinant(g; & ¢). These are relatively prime, ged(V') = 1.

Now, we claim that this is the uniqugvector. Note that sincgcd(M.S) = 1, we only have to
consider integral vectors by Corollary 12. First, we claim gat complete. Any integral point in its
interior is of the form(g; + a1b1, g2 + agbs, ..., g, + arb,, Wherea; € N. By part(3) of Lemma 38,
any vector of the forng; 4+ nby, g2 + bo, ..., g- + b, iSin S, wheren > 0. Thus, by usinga, . .., vy,
any integral vector ifintcone(g) is also inS.

Suppose there is another complete vegfor= (¢}, ..., g.). By part(1) of Lemma 38, we need
to haveg| > ¢g;. By part(2) of the same Lemmay, > g; for anyi # 1 since for arbitrarily bign,
there is some: such that we need at least ong,j, j > 1, to get all the points irone(g’) with the
first coordinater > m. Sinceg, > g; for all 7, g’ € cone(g), sog’ is not minimal. Thereforeg is the
unique element of the-set. O

As an example of this, considér= 5. We then know that we can make any integral vector the
unigueg-vector using some orthant as the cone with 5 vectors. The only vectors which we cannot
construct such & for with this method must havecd(1,2,3,4,5) = 60 dividing every coordinate.
Also, note that one direction of Theorem 14 is an immediate corollary of Theorem 15 in thie ca&e

9.4 The3r Bound

There is another way to bound the number of vectors need&d Rosales, et al. proves in [10] that:
Theorem 16. Any integerm is equal tog(V') for a set of number¥ of cardinality at mos8.

With this, we can show:
Theorem 17. Any integral vector can be made to be unigueector for somé” with 3r vectors.

Proof. Suppose we want = (ay, ..., a,) to be the uniqug-vector. Again, take an orthant thaties
in, with the corresponding spanning set

{blel, b2e2, ey brer},

where each; is £1.
By Theorem 16, for eachfrom 1 to » we may find a se¥/; of at most3 vectors such that the

vectors are of the form bie;, . . ., kjbie;, j < 3, with g(k1, ..., kj) = a;.
Take the seV’ to be the union of all;, which have at mosir elements. The result is immediate
by Theorem 11. O

Thus, we have two bounds on the number of vectors necessary to make a vector thgweicioe.
Neither is better than the other in every case.
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10 Generalizations of 1-D Theorems
10.1 Thek=r+1case

In the caser = 1 this next result reduces to a classical result about the Frobenius number of two
relatively prime numbersg(ay,a2) = (a1 — 1)(a2 — 1) — 1 which is due to Sylvester [6]. In 2003,
Simpson [5] proved a result which is almost exactly the same as the following Theorem.

Suppose that = r + 1 so thatV = {v1,...,ve1+1}. Suppose furthef is dense, andy is a
simple cone generated by, . .., v,. Let A be ther x r matrix with columnsvy, ..., v,.

Theorem 18. g(v1,...,ve+1) = {(JA| = 1)ves1 — Va}

Proof. First we will prove thaig = (|A| — 1)vy+1 — VA is complete. Leh be a vector in the interior
of cone(g). By Theorem 6 there exists an integer; € [0, |A| — 1] such that,1v,4+1 = a, hence
there exist integers,, . . ., ¢, such that

C1V1+ ...+ Cr41Vr41 = A,

Because € intcone(g) we know that there exist positive real numbetss. . . , ;- such that
a=g+o1vy +...+ o,y

Combining these two representations dowe find that

cavi+...+eve+ (A =1)vepr > avi+...+6Ve+cp1Ves
= a
= gtavi+...+aVvy
= (g —Dvi+...4+ (. = D)ve+ (|A] = 1)vps1.

Thuse; > o; — 1 fori = 1,...,r. Butqa; is positive and; is an integer so we now have > 0 for

i =1,...,r. Finally, becausa = c¢;v1 + ... + ¢,+1vr+1 We havea € S. Thereforeg is complete.
Suppose for contradiction that for sondg ..., d, € Ny with at least one ofl, ..., d, equal to

zero, we havg+d;v1+...+d, vy € S. Sowe have a solutiofty, . ..,c.41) € Ng“ to the equation

c1v1+ ...+ 1 Vep1 = (‘A’ — 1)Vr+1 —VaA+divi+...+dpvy,
and thus to
cavi+...+eve+Va+(crp1+1—|A)Vep1 =divi + ... + dpvy.

Evaluating mod (A) we have(c,+1 + 1 — |A])vyy1 = 0. Thus|A| dividesc,11 + 1 and because
¢r+1 > 0we haver, 1 +1 > |A|. Because, 1 +1—|A| >0, (¢;4+1+1—]A|)ves1 can be written as
a non-negative linear combinationef, ..., v,.. Nowvyq,..., v, is a basis for vector spad®. Thus

cavi+ ...+ ve+ Va+ (crp1+1—|A])Vesa

can be uniquely written as a real linear combinatiowgf. . . , v. This linear combination must have
positive coefficients becauseis non-negative fof = 1,...,r and(¢,+1 + 1 — |A|)ve+1 > 0. But
we also have

civi+ ...+ ve + Va+ (1 + 1= [A)veyr = diva + ...+ dpve,
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which is a contradiction because onedgf. . . , d, is zero. Thereforg + divy + ... + d, vy &€ S.
Finally we will prove that ifa € RH is complete, them > g. Suppose for contradition that
is a complete vector witlh ? g. Becausea andg are incone(0), we know that there exist non-

negative realsyy, . . ., a., 04/1, ce o/r such thatv;vi + ...+, vy = a ando/lvl +...+ o/rvr =g.
Becausea # g there is somg € [1,r| such thaty; < oz] Letd,,...,d, € Ny such thatl; = 0 and
oz; +d; >a;fori=1,... rwithi £ j. Now we have

g+divi+..+dove—a = (&) +d))vit...+ (o +dy)ve—a = (aj+di—ay)vi+. . .+ (o, +dr—n ) Ve

which has positive coeffients. Thgs-div1+...+d, vy € intcone(a). Butg+divi+...+d, vy € S,
which contradicts the completenessanfThus ifa is complete, them > g. This shows thag is the
unigue minimal complete vector. Therefgr@’) = {g}. O

10.2 The Linear Case

Letvy,...,ve,w € Zj. Supposew € con€0,{vy,...,v;}). Letk € N. LetV = {v; + jw |
0<i<r0<j<klandV' ={vq,...,vp,wh

Theorem 19. Suppose that” is dense. Ler = {c;vi+...+¢ve—=Va+(|A|-1)w|c1, ..., € Ny
a+...+te = LW%J + 1}. Nowg(V) = G.

Proof. First we will prove thatS(V') is dense. Lef\/ be the set of matrices with columns frovh
Let M’ be the set of matrices with columns froth. Let A € M. The columns ofd are integer
linear combinations of vectors i7i’. Because determinants are multi-lingdt| is an integer linear
combination of the determinants of matriceslifi. BecauseS(V) is dense]l can be written as an
integer linear combination of determinants of matricedfnThus1 can be written as an integer linear
combination of determinants of matricesifi . Soged(V') = 1 andS(V') is dense.

Next we will prove that all vectors ity are complete. Leg € G andcy, ..., ¢, € Ny with

g=cvi+t...+¢ve—Va+ (A -1)w

|A] -2
ci+...+¢c = ? + 1.

Letb € intcone(g). Becausd’ is dense, there exists an integerc [0, |A| — 1] such thab = mw
mod (A). Thus we can express

and

! 7
b-—mw=c¢vi+...+cVy

for some integers, , . .., c.. Now we have
1> s~

cllvl—l—..ﬂ—c/rvr = b-—mw

> b— (|4 - 1w

€ intcone(g — (|A] — 1)w)
intcone(civy + ...+ ¢ ve — V).

Thus fori = 1,...,r we havec, > ¢; — 1, and thus:; > ¢;. If we add these inequalities we see
that

/ / |A| — 2
c+...+c 2+ e = A + 1.
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Letn = ¢, + ...+ c,. Consider all sums af vectors inV. The sums form the set
S ={divi+...+dpve +jwldy, ... dr,j € Nody + ...+ dr =n,0 < j < nk},

whereS’ C Sy, by definition. But we have
nk=(c,+...+¢)k> Q'A’k_ QJ +1>k > <|A’k_2>k > |A| -2,

sonk > |A| —1. Thusb = ¢;v1 +... + ¢, v, +mw € S andb € S. Thereforeg is complete which
proves that all vectors i&¥ are complete.

Lemma39.LetH = {c1vi+ ...+ v+ (Al = D)w|c1,...,ep €Zcr+ ...+ ¢ < L'A‘k_QJ}.
Now H N Sy, = 0.

Suppose for the sake of contradiction that H can be written as the sum afvectors inV.
Case 1p < [‘A‘T_QJ:
Allvectors inV are congruenttoone 6f w, ..., kw mod (A), soais congruenttoone @f, w, ..., nkw.
We havenk < | A2 ), < 4225 — | 4| — 2. Thusa # (|4| — 1)w. But this contradicts the fact that
all elements off are congrent t¢|A| — 1)w. Thusa cannot be written as the sumfvectors inV.
Case 2p > | 222 ]:
Because € H, there exist integers;, ..., c, withe; + ... + ¢, < UA'T_QJ such that

a=cvi+...+eve+ (JA — Dw.
Becausea is the sum of: vectors fromV it can be written
a:cllvl—l—...—&—c;,vr—i—mw

with ¢},...,¢c.,m € Ny and¢; + ... + ¢. = n. Taking both representations af mod (A4) we

» T

know thatmw = a = —w. Thus|A| dividesm + 1. Becausen is non-negative, we conclude that
m > |A| — 1. Now we have

avi+...+eve > cavit+...+eve+ (JA - 1)w —mw
= a—-mw

= cllvl +...+ c;,vr.
Thusc; > c; fori € [1,r]. Adding these- inequalities we have

Al =2 Al -2
R Pl

which is a contradiction. Therefogecannot be written as the sum ofvectors in/. Hence for any
a € H we havea ¢ Sy,.

Next we will prove that for ang € G we haveg € g(V'). Because of the analogous definitions of
G andH we haveg + Va — v; € H and thugg + Va — v; € Sy, fori € [i,7]. We have proved that
g is complete and now by Theorem 3, we have g(V). ThusG C g(V).

Jch+...+cT2c/1+...+c;:n>L

Lemma 40. Let¢y,...,c,,m € Z with m < |A| and at least one oéy,...,c, negative. Then
a=cvi+...+cve +mw & Sy,.
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Proof. Suppose for the sake of contradiction that Sy,. Thus there exist'l, e ,c;, m’ € Ny such
that
a=cvy+...+tcve+mw.

But
O=a—a=mw-—mw=(m —m)w,
and thug A| dividesm' — m. Thus for some integer we havem’ — m = k|A|. Butm < |A] andm/
is positive, sd: > 0. By Theorem §A|w = 0. Thus for somel,, ..., d, € Ny, we have
divi+ ...+ dvy = |Alw.

Now
Vit ... Aevi+tmw—mw = a—(m+klA)w

= avi+...+eve+mw—mw —k(divy + ...+ dvy)

= (c1 —kdi)vi+...+ (¢ — kd;)vy.
Thusc; = ¢; — kd; for i € [1,r]. But for somej € [1,r], we havec; < 0. Sincek andd; are
non-negativec; is negative, which is a contradiction. Thaisz Sy, . ]

Finally, we will prove thaty(V') C G. We will do this by showing thag ¢ G impliesg ¢ g(V).
For some real, ..., o, we have

g=a1vi+...+avy + (A — D)w.
Let
a=(la]+D)vi+...+ (o] + Dve + (A = D)W

and
b=|ai]vi+...+ |ap]ve + (|4 — Dw.

Now g € cone(b) anda € intcone(g).

Case l]ai] + ...+ ] +r < |22
Now a € H by the definition ofH soa ¢ S, andg is not complete, thug ¢ g(V).

Case 2p; < —1 for somej € [1,7]:

Now | a; | 41 is negative andr < |A|, so by Lemma 40a ¢ S. Thusg is not complete ang ¢ g(V').
Case3|ai] + ...+ oy +7 > [‘A‘T”J andag,...,q, > —1:

There exist integers, . .., ¢, such that-1 < ¢; < |a;| fori € [1,r] and

Al -2
ci+...+¢c +r= T .

Let
g =cC1v1+...+CVp.

Nowg' € G and thugg’ is complete. Als@ < b < gsog & g(V).
Thereforeg ¢ G impliesg ¢ g(V'). Thusg(V) C G and finallyg(V') = G.
]

This result directly generalizes the 1-D result in [4] which computes the Frobenius number for
the case when the numbers form an arithmetic progression. The result statgsithet + w, m +
2w,...,m+ (k—1Lw) =m|[2=2] + (m — w.
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10.3 Another Linear Case

If we letn = 1, the following Theorem reduces to Theorem 18.

Theorem 20. Letvy,..., vy, w € Z" such thatvy, . .., v, form a simple cone. Let
V=A{vi,...,vr,a1W,...,cnW}
wherecy, ..., ¢, € Nwith ey, ..., ¢y, |A] relatively prime. Suppose further th8(V') is dense. Now

we havey(V) = {g(c1, ..., cn, |A])W + |A|lw — V o } Whereg is the Frobenius function.

Proof. Let V' = {v1,...,ve,w}. Because:yw,...,c,w are multiples ofw, we haveSy (V) C
S;(V'). By Theorem 7)Alw = 0 so|A|w is an integer linear combination of, ..., v, and thus
|Alw € Sz(V). Butcy,...,c, |A| are relatively prime, thusv can be written as an integer linear

combination ofe;w, . .., c,w, |A|lw and thusw € Sz(V). ThusSz(V') ¢ Sz(V) andSz(V') =
S7(V), so we can conclude th&t(V') is dense. By Theorem 6A|w is the smallest multiple o
congruent td.

Letm € m(V). By Lemma 8, there existy, ..., a, € Ny such thatm = > a;,c;w € Zw. Thus

=1

m(V) C Zw andm(V) is completely ordered. Thus each congruence class has a unique element in
m(V).

Suppose for contradiction thafcy, . . ., ¢, |[A|)w € Sn(V). Thenthere existy, ... a,,b1,...,b, €
Ny such that

I n
gler, ... cn, AW = Z%Vi + Zaz‘cz*w.
=1 =1

T T

Now we can see tha} _a;v; is a multiple ofw, so there exists somé € N with dw = > a;v;.

=1 i=1
But dw = 0 so by Theorem 64| dividesd. But nowg(cy, ..., cn, |A|)w is a positive non-negative
integer linear combination afiw, ..., c¢,w, |A|w, which contradicts the definition of the Frobenius
function. Thusy(cy, ..., cp, |A|)w & Sn(V).

Let d € N be greater thag(ci,...,c,,|A|). By Theorem 6,A|w is congruent tad and thus

|Alw € Sy(V). But now by the definition of the Frobenius function, we see tlwaican be written as

a non-negative integer linear combinationcotv, . . ., ¢, w, | A|w. Thusdw € Sy(V).
In particular
g(clv <3 Cn, |A|)W + |A|W € SN(V>a
and thus
glciy ... cn, |[A)W + |[Alw € m(V).
Because
are all inSy(V'), we see thag(cy, . .., ¢, |A|)w + |A|w is the maximal element im (V).
Supposeg € g(V). By Theorem 9, there exists a complete set of residyes. . ,w 4| such that
g = lub(wy,...,wja|) — Va. But each congruence class has a unique elememnt(Iri) so one of
w1, ..., wia| isequaltog(cy, ..., cn, |A[)w + [Alw. Thus

g = lub(w1,...,wja]) = Va =g(c1,. .., cn, [A )W + [A|W — VA,

Thereforeg(V') = {g(c1,...,cn, |A])W + |Alw — Va }.
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11 Multiplying by d
Theorem 21 is a generalization of a Theorem published by Johnson [9] in 1960.

Theorem 21. LetV = {vq,..., vk} andV’ = {vi,..., Ve, dVyi1,...,dvi} Whered € N. Suppose
thatS(V') andS(V') are dense. Now(V) — Vo = dg(V') — V4.

Before proving this Theorem, we will first prove several Lemmas.

Lemma 41. Let G be a finite additive group and let € N. Now let¢ : G — G be defined by
¢(g) = dgforall g € G. Theng is an automorphism if and only (6(G), d) = 1.

Proof. Supposep is an automorphism. Nower(¢) = {0}. Suppose for the sake of contradiction
that there exist a primg with p|o(G) andp|d. By Cauchy’s Theorem, there existyyac G with
o(g) = p. Now ¢(g) = dg = 0. But nowg € ker(¢) thuso(g) = 1, which is a contradiction. Thus
(o(G),d) = 1.

Now suppose thab(G),d) = 1. Letg € G with g # 0. We haven(g)|o(G) so(o(g),d) = 1. Also
o(g) # 1s00(g) fd. Thusdg # 0andg & ker(¢). Thusker(¢) = {0} and¢ is an automorhism. [J

We are assumin@(V’) to be dense, so we need multiplication dyo be an automorphism of
Z" /A. By Lemma 41, this is exactly whepl| andd are relatively prime.

Lemma 42. If wy,...,wa| € m(V) is a complete set of residues, ther= lub(w1, ..., wja|) — Va
is a complete vector.

Proof. Letv be some vector iffund(g). There exists g € [1,|A|] such thaty; = v. Now P;(v) >
Pi(g), and

Pi(w;) < max(Pi(w1),...,F(wal)
= Pz(lub(wl),,Pz(w|A|))
= Pi(g+Va)
= P(g) +1.

Now for all: € [1,r] we have
Pi(v) - Pi(w;) > Pi(g) - (Pi(g) + 1) = 1.

But by Lemma 28,P;(v) — Pj(w;) € Z, so Pi(v) > P;(wj). Thusv > wj andv € S. Thus
fund(g) C S, and by Lemma 11g is a complete vector. O

We have

gcd(V,) =gcd(vi, ..., Ve, dVyy1, ..., dvi)|ged(dvy, ... dvg) =d - ged(va, ..., vik) =d,
andgcd(V") divides|A|, soged(V') = 1 andS(V') is dense.
Lemma 43. dm(V) = m(V").

k
Proof. Supposev € m(V). By Lemma 8, there exist,1,...,c; € Ny such that Y ¢;v; = w.
1=r+1
k
Now dw = 3 cidvi € S(V'). There exist some’ € Q" such thatdw' € m(V'), dw' = dw,
i=r+1
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k
anddw’ < dw. By Lemma 8, there exist,,...,c, € Ny such that . c,dv; = w'. Now
i=r+1
/ k / ’ / ’ /
w= Y ¢viw <w andw =w. Becausew € m(V'), we must havelw = dw € m(V").
i=r+1
Now supposev ¢ m(V).

k k
Caselw ¢ S(V). Foralle,41,...,c; € Nowe have > ¢v; # w, thus > ¢dv; # dw and
i=r+1 i=r+1
by the converse of Lemma 8 we have ¢ m(V").

Case 2w € S(V) with w not minimal in its residue class. Let be a vector inn(V) withw' < w

k

andw’ = w. Now there exist,,1,...,c;, € Ny such that 3 cidv; = w'. Nowdw e S(V'),
i=r+1

dw' = dw, anddw’ < dw. Thusdw ¢ m(V"), which proves the lemma. O

Lemma 44. If g — V is complete inS(V), thendg — V 4 is complete inS(V").

Proof. Supposg—V 4 is complete. Leg' —V A be avector iy (V) withg < g. By Theorem 9 there
exist a complete set of residues,, ..., wja| € m(V), such thag' = lub(wy, ..., wya|). Thusg >
wj for j € [1,|A|]. Alsodg > dg > dwj, thusdg > lub(dws, ..., dw|s|). By Lemma 43 we have
dwj € m(V") for j € [1,|Al], and thus by Lemma 42 we havg — VA > lub(dwy, ..., dw|a|) — Va
is complete inS(V"). O

Lemma 45. Letg € Z'. If dg — Vo € S(V'), theng — V5 € S(V).

Proof. There existy,...,c; € Ngwith ¢, ..., ¢ > 1, such that

dg =c1vi+... + Ve + Gp1dves1 + ...+ Vi

Now
C1 Cp
g = EVI +...+ EVI‘ + Cr41Ve41 + ...+ CpVKk,

SO
g € intcone(Cr41Vyt1 + - - - + CkVK).

Alsodg = ¢, +1dvey1 + . . . + crdvy, and because multiplication layis an automorphism of residue
classes, we havg = ¢, 1Vri1 + ... + ¢ vik. Thus by Lemma 28; € Nfor all i € [1,7], and thus
g—VaeSV). O

And now we are ready to prove Theorem 21.

Proof. Suppose — Va € g(V). By Lemma 44/dg — V 5 is complete |n9( "). By Theorem 3, for

alli € [1,7] there existvy, ..., a, € R>q such thaty; = 0andg — Va + Zaivi isin Z" but not in
i=1

S(V). By Lemma 45(g — VA+ZaZdv1§ZS( "). Now by Theorem 3, we havég — Vo € g(V'),

which proves the first dlrectlon
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Now supposdg—Va € g(V’). By Theorem 9 there exist a complete set of residugs. . ., dw|a| €
m(V') such thatdlg = lub(dws, .. ., dw|a|). Now

lub(w,...,wa) = Y maz(Pi(wi),..., P(wa)vi

1
= 8lUb(dw17 ooy dw)a))

Thus by Lemma 42g — V5 is complete. There exigf withg — Vo € g(V) andg’ < g. By the
first direction, we know thaflg' — V5 € g(V'). Butdg' — Va < dg —Va € g(V'), sog = g.
Thusg — VA € g(V), which proves the second direction. O

12 Generalized Problem for Non-dense Situations

As a natural generalization of our problem, it makes sense to consider the caseg-d(ién# 1.
Call points of the form{a|(intcone(a) N Sz(V)) C S(V)} generalized-complet@nd the set of
all such points” (V). We defineG(V'), thegeneralized;-setas

{min(a € ged(V)RH|a € C(V))},

the set of minimums determined with respect to cone inclusion. Note that this is analogous to
definition ofg(V') as

{min(a € RH|a € c¢(V))},

wherec(V) is the set of complete points. Furthermore, it is clear that whel) = 1, g(V') =
G(V).

Bridging the gap betweef (V') andg(V) is not difficult since we have already done enough work
to show the preservation of cone inclusion under multiplication of a matrix.

Theorem 22. Suppose that’ = DV’, where|D| = ged(V'). ThenG (V') = Dg(V").

Proof. ConsiderG € G(V). Itis an element ied(V)RH, so multiplying byD~! gives an element
g € RH. Note thatSz (V) = DZ" by Lemma??. We claim thaty € ¢g(V’). If not, there is some’
which is complete and hag > ¢’. However, by Lemma 227 = Dg > Dg'. Sinceqg’ is complete,
(intcone(g')NZ") C S(V'). Thus,

(intcone(Dg' YN DZ") < S(DV')

SinceDy’ € ged(V)RH, Dy’ is a generalized-complete vector, contradicting the fact¢hats
minimal.

The other direction is almost identical. dfe g(V'), thenDg = G € ged(V)RH. If G ¢ G(V),
then there is som&’ which is generalized-complete and las> G'. Sog = D~'G > D~'G’. Since
G’ is generalized-complete,
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(intcone(D™'G"YND™1Sz(V)) < S(D7'V)
(intcone(D™'G"YN D~'DZ") < S(D7'V)
(intcone(D~'GYNZ") < S(V').
SinceD~'G’' € RH, DG’ is complete, ang cannot have been minimal. O

We recall that the classical problem, where finding gkget of V' = {a1,...,a,} is finding their
Frobenius number. We have only defined the problem wheltl’) = 1. Suppose we relax this
condition and allowged (V') = k, k < co. Then:

Corollary 11. Suppose = 1,V = {ay,...,a,}, andged(V) = k. ThenG(V) = {k x frob(V')},
whereV’ = {a1 /k,...,an/k}.

So, in thel-d case, we can still get generalized Frobenius numbes the sole member of our
g-set. We denote this number By ob(V).

For example, whely = {10, 14}, Sz (V) = {2a,a € Z}. frob(V) = 26, since any even number
greater thar26 can be generated by, but26 cannot.
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