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Abstract. We are interested in being able to pinpoint the existence of f -

invariant δ-scrambled sets in the turbulent stratification presented by Block
and Coppel[1] which builds on Sarkovskii’s Ordering. In this paper, we give the

properties which guarantee that map of odd period will admit an f -invariant

δ-scrambled subset. We also demonstrate that any map f which admits such a
set has the property that f2 is turbulent. We follow with independent proofs

that f -invariant δ-scrambled sets exist in all maps that are strictly turbulent,

and that maps with f -invariant δ-scrambled sets have periodic points of period
2k for every k > 0.

1. Introduction

Throughout this paper, let f : I → I be continuous where I is an interval in R.

Definition 1.1. The point x is a fixed point f if f(x) = x. The point x is a
periodic point of period n if fn(x) = x.

As presented by Devaney [2], Sarkovskii was able to demonstrate when the exis-
tence of points with certain periods in a map imply the existance points with other
periods for continuous maps in some interval of R.

The following is Sarkovskii’s Ordering of the natural number:

3 B 5 B 7 B ... B 2 ∗ 3 B 2 ∗ 5 B ... B 22 ∗ 3 B 22 ∗ 5B

... B 23 ∗ 5 B ... B 23 B 22 B 2 B 1

Theorem 1.2. [2] Suppose f : I → I is continuous. Suppose f has a periodic point
of period k. If kB ` in the above ordering, then f also has a periodic point of period
`.

Notice that maps with a periodic point of period 3, have periodic points of all
other periods.

Definition 1.3. A map f : I → I is turbulent if ∃ compact subintervals J and K
with at most one common point where

J ∪K ⊆ f(J) ∩ f(K).

f is strictly turbulent if J and K can be chosen disjoint.

We can now define a chaotic map in the sense used by Block and Coppel [1].
1
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Theorem 1.4. [1] The following conditions are equivalent for f :
(1) f has a periodic point whose period is not a power of 2
(2) fm is strictly turbulent for some positive integer m
(3) fn is turbulent for some positive integer n

Definition 1.5. [1] A map f is chaotic if any of the above conditions hold for f .

Let Sk denote the set of maps f for which fk is strictly turbulent, Tk the set of
maps f for which fk is turbulent, Pk the set of maps with periodic points of period
k, and K the set of all chaotic maps. With this notation, Block and Coppel [1] used
Sarkovskii’s Ordering to come up with the following turbulent stratification.

S1 ⊂ T1 ⊂ P3 ⊂ P5 ⊂ ... ⊂ S2 ⊂ T2 ⊂ P6 ⊂ P10 ⊂
... ⊂ S4 ⊂ T4 ⊂ P12 ⊂ P20 ⊂

... ⊂ K ⊂ ... ⊂ P8 ⊂ P4 ⊂ P2 ⊂ P1

We looked at the above stratification to investigate where specific sets might be
in this stratification.

Definition 1.6. A set S ⊂ I is δ-scrambled if for δ > 0, S is uncountable, and
i. ∀s1, s2 ∈ S,

(1) lim sup
n→∞

(d[fn(s1), fn(s2)]) ≥ δ

(2) lim inf
n→∞

(d[fn(s1), fn(s2)]) = 0

ii. ∀s ∈ S and for any periodic point z,

(3) lim sup
n→∞

(d[fn(s), fn(z)]) ≥ δ

Definition 1.7. A set S ⊂ I is f-invariant if for any s ∈ S, f(s) ∈ S.

Our goal is to say where in the turbulent stratification maps must admit δ-
scrambled and f -invariant sets. It is well known that all chaotic maps admit a
δ-scrambled set, but it was not previously known if they would admit one which is
additionally f -invariant. We attacked this problem from two angles. First, tried to
prove that certain positions in the turbulence stratification forced maps to admit
f -invariant δ-scrambled sets, such as maps that are strictly turbulent or of odd
period. Second, we tried to determine where in the stratification maps which admit
δ-scrambled f -invariant sets were forced to be by that property.

2. Existence of f-Invariant δ-Scrambled Sets in Maps which Admit
Points of Odd Period

It was shown by Harrison-Shermoen [4] that ∀ strictly turbulent maps ∃ an f -
invariant δ-scrambled set , and by B-S Du [3] that ∀ turbulent maps there exists
an f -invariant δ-scrambled set . We begin with an investigation into the properties
under which we know that a map of odd period admits an f -invariant δ-scrambled
subset instead of a f2-invariant δ-scrambled set.

In the setup for this characterization, we will draw on a proof of Sarkovskii’s
Theorem which appears in Devaney [2]. For two closed intervals I1 and I2 we say
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I1 → I2 if and only if I2 ⊂ f(I1). Let x ∈ I be a periodic point of period n, where
n is the minimum odd period of a point under f . ∀i ∈ [1, n] ∪ Z+ let xi be the
points in the orbit of x, enumerated from left to right. Choose the largest i for
which f(xi) > xi. Let I1 be the interval [xi, xi+1]. Then we must have I1 ⊂ f(I1),
so I1 → I1. Because n is odd, n 6= 2, so f(I1) 6= I1. Thus there must be some
other such interval of the form [xj , xj+1]. Let Ω2 be the union of intervals of this
form that are covered by f(I2). Let some interval of this form be called I2 ⊂ Ω2,
and observe that I1 → I2. Recursively let Ωk+1 be the union of intervals of the
form [xj , xj+1] covered by the image of some interval in Ωk. Note that if Ik+1 is
any interval in Ωk+1, there is a collection of intervals I2, ...Ik with Ij ⊂ Ωj which
satisfy I1 → I2 → ... → Ik → Ik+1. Because there are finitely many such xjs, there
is some k for which Ωk = Ωk+1. Because xj has period n for all j ≤ n, we know
that Ωk contains all intervals of [xj , xj+1]. Because n is odd, there are more xis
on one side of I1 than the other, so at least one must change sides under f , which
means that there is some Ij for which I1 ⊂ f(Ij). Now consider a chain of intervals
of the form I1 → I2 → ... → Ij → I1, where all of the intervals are chosen distinct.
By Devaney [2], these conditions mean that j = n − 1. Let this chain determine
the names of the n− 1 base intervals we will use in this proof. We know that each
point in Ii has a pre-image in Ii−1 mod n and that each point in I1 has a pre-image
in I1.

Let ai ∈ [1, n − 1] ∩ Z+,∀i ∈ Z+. Given compact intervals I1, I2, I3, ...In−1, let
Ia1a2 be the compact subinterval of minimum length for which Ia1a2 ⊂ Ia1 , f(Ia1a2) =
Ia2 . Recursively define Ia1a2...an as the compact subinterval of Ia1a2...an−1 of mini-
mum length for which f(Ia1a2...an) = Ia2...an .

Definition 2.1. Let Σn be the space of infinite binary strings (a1a2...) with ai ∈
[1, n− 1] ∩ Z+

Definition 2.2. Let σ be the shift operator on a binary string α = (a1a2a3...) ∈ Σn

such that σ(α) = (a2a3...).

Definition 2.3. For α ∈ Σn, define Iα as
∞⋂

n=1
Ia1a2...an

.

Because Iα is the nested intersection of countably many compact intervals, Iα is
either an interval or a point. Consider the case where Iα is a point. Observe f(Iα) =

f(
∞⋂

n=1
Ia1a2...an

) ⊂
∞⋂

n=0
f(Ia1a2...an

) =
∞⋂

n=1
Ia2...an

= Iσ(α). But by uniform continuity,

we can see that Iσ(α) is also a point, so in fact f(
∞⋂

n=0
Ia1a2...an) =

∞⋂
n=0

f(Ia1a2...an).

Observe that all we know about the intervals we are using is that ∀i ∈ [1, n−1]∩
Z+, Ii has a pre-image in Ii−1, and I1 has an additional pre-image in I1. Therefore,
the only strings of the above type of either finite or infinite length which we may be
sure exist by construction of the above intervals have the property that if ai = h,
ai+1 = (h− 1 mod n− 1) if h 6= 1, else ai+1 may equal 1 or n− 1.

Proposition 2.4. If f admits a periodic point of period n, and ∀k ∈ [1, n − 1] ∩
Z+, Ik may be picked so that one or more of the following conditions hold:
(1): I1111... is a point

(2): clo(int[I1\int(I1111...)]) is connected
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(3): WLOG assume I2 is to the right of I1, then ∃x ∈ I1\intI1111... s.t. f(x) >
max I1111..., f(x) = max I2

Then f admits an f-invariant δ-scrambled set.

Proposition 2.5. If none of the above properties hold for f , then f admits an
f2-invariant δ-scrambled set.

We will begin by proving the first proposition, and then sketch to the second.

Lemma 2.6. If (1) does not hold but either (2) or (3) does, we may select J ⊂ I1

for which J → J and J → I2, for which if we reassign I1 = J , (1) will hold for the
new I1.

Proof. Assume (2) holds. Then let J =clo(int[I1\int(I1111...)]), and note that J is
a compact interval. Because I1 → I1, I1 → I2, and I1111... is invariant under f , we
know that the parts of I1 whose image covers J and I2 are in J . Thus J → J and
J → I2.
Now assume that (3) holds and (2) does not. Let y = min{x ∈ I1\intI1111...|x >
min I1111..., f(x) = max I2}. Then let z = max{x ∈ I1\intI1111...|x > min I1111..., x ≤
y. Then let J = [y, z]. By continuity, J → J, J → I2.

�

Redefine I1 as J , changing the definition of Iα as necessary.
Let v ∈ (0, 1). ∀i ∈ Z+ ∪ {0}, let vi be the ith digit after the decimal place in

the decimal expansion of v, that is, vi = b(10i ∗ v mod 10)c. Let ti be the string of
ones of length b10i ∗vc. Let r = (n−1)(n−2)(n−3)...(1)(1), that is, the decreasing
string beginning with n−1 and ending with 11. Let wi be a string of ones of length
i. Then let ui = rwirwir · · · rwir, so that wi is repeated i times. Consider the set:

S
′
= {Iα|α = (t1u1t2u2t3u3t4u4...), µ(Iα) = 0}

Observe that α has no adjacent js, where j 6= 1, which means that α ∈ Σn. Clearly,
S
′
is uncountable, as its composition encodes uncountably many irrational numbers

as long strings of ones, and there cannot be uncountably many intervals within a
finite interval, so there must be uncountably many singletons. For each α ∈ S

′
, let

vα, tαi , uα
i be the numbers or sequences v, ti, and ui respectively for that particular

α.
Let S = {fn(s)|n ∈ Z+ ∪ {0}, s ∈ S

′}. By construction, S is uncountable and
f -invariant.

Lemma 2.7. Let k1, k2 ∈ Z+ ∪ {0}. Given distinct strings σk1(α) and σk2(β) for
which Iα, Iβ ∈ S

′
,∃ some n ∈ Z ∪ {0} for which σk1+n(α) begins with (n− 1)(n−

2)(n− 3)...(1)(1) and σk2+n(β) is a string of ones of length n + 1.

Proof. If α 6= β, ∃j ∈ Z+ for which vα
j 6= vβ

j . Without loss of generality say vα
j ≥ vβ

j .
Then ∀i ≥ j, |ti| is greater in α than in β. Whatever the initial displacement of
the strings at this point, from now on there will be longer strings of ones in the α
string than in the β string. That is, there is some integer j2 for which if σk1+n1(α)
is the first character of the string uα

j2
and σk2+n2(β) is the first character of the

string uβ
j2

, then n1 > n2. Redefine k1 as k1 + n2, and redefine k2 as k2 + n2. As
the gaps between the sequences get arbitrarily large, we will be able to pick some i

after this point for which the entire run tβi uβ
i will line up entirely with ones from α.
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Now pick an n to advance the beginnings of the sequences to the n − 1 beginning
uβ

i and the condition will be fulfilled.
If α = β, let k = |k1 − k2| pick some j ∈ Z+ for which |tj | ≥ k + h. Then if we

pick an n which advances us to the beginning of this subsequence in the string that
is further ahead, we still have at least h ones left at the beginning of each sequence,
fulfilling the condition. �

Lemma 2.8. Let k1, k2 ∈ Z+ ∪ {0}, and let h ∈ Z+. Then, given distinct binary
strings α, β ∈ S

′
, ∀h ∈ Z+, ∃ an n for which the next h characters of both σn+k1(α)

and σn+k2(β) are all one.

Proof. Let j = |k1 − k2|. Repeat the steps in the previous Lemma to redefine the
sequence so that without loss of generality α’s sequences of ones are longer. Then
we will again be able to pick some i after this point for which the entire run tβi uβ

i

will line up entirely with ones from α. If |tβi | ≥ j + h, pick an n which advances
the sequence to the first character of tβi and the condition will be fulfilled. Else,
because the sequence of lengths tβi is strictly increasing we will eventually be able
to find another such tβi for which the property holds. �

Lemma 2.9. Let i, j, j2, k ∈ Z+ ∪ {0}, l ∈ [1, n− 1] ∩ Z+, α ∈ S
′
, and z ∈ I s.t. z

is periodic of period k. Then let zi = f i−1(z). Now we may pick some n ∈ Z+ for
which fn(z) = zk and fn+j(Iα) begins with l.

Proof. Pick some i ∈ Z+ ∪ {0} for which k divides n + i, i > kn. Let l2, i3, i4 ∈
[1, n− 1] ∩ Z+. Then pick some n which advances α to the beginning of the string
ui. Then every n + i times we iterate f , we will move all the zks forward by one
relative to the string α. In particular, by the time we have iterated fk(n+ i) times,
we will have lined up each element in the interval ui with a zk at least once. By
construction, k(n + i) < i(n− 1 + i), the size of the interval, so we do not leave the
interval during this process. Then for some n2 ≤ k(n + i) by iterating fn2 times
after the first n, we will line up an l with zk. �

Now we are ready to prove the first proposition.

Theorem 2.10. If f admits a periodic point of period n, and ∀k ∈ [1, n−1]∩Z+, Ik

may be picked so that one or more of the following conditions hold:
(1): I1111... is a point

(2): clo(int[I1\int(I1111...)]) is connected

(3): WLOG assume I2 is to the right of I1, then ∃x ∈ I1\intI1111... s.t. f(x) >
max I1111..., f(x) = max I2

Then f admits an f-invariant δ-scrambled set.

Lemma 2.11. Given two points fk(Iα), f j(Iβ) ∈ S such that α 6= β and ε ∈ R+,
∃n ∈ Z+ such that d(f j+n(Iα), fk+n(Iβ)) ≤ ε.

Proof. Without loss of generality assume j < k.
Because I111... is a point, the sequence of intervals Ia1a2...an

where ai = 1 ∀i ∈ Z+

has length converging to zero as n approaches infinity. Then given any ε ∈ Z+,
we may find an i ∈ Z+ for which the length of Ia1a2...an

is less than ε∀n ≥ i
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By lemma, pick some n1 ∈ Z+ for which the first i terms of σn+k1(α) are 1 and
overlap with the first i terms of σn+k2(β). Then d(f j+n(Iα), fk+n(Iβ)) ≤ ε, where

n =
∞∑

h=1

nh. Because ε and the starting points were arbitrary, this proves that

lim inf
n→∞

(d[fn(s1), fn(s2)]) = 0. �

Now we will divide into cases based on the period of n:

Case I: n = 3.

We will begin by restricting what we mean by I1 and I2.
Case I A: min(I

′

1) < min(I
′

2). Let a = max{x ∈ I1|f(x) = max(I2)}. Then let
b = min{x ∈ I1|f(x) = a, x > a}. Redefine I1 = [a, b], and observe that we still
have I1 → I1 and I1 → I2.

Case I B: min(I
′

1) > min(I
′

2). Let b = min{x ∈ I1|f(x) = min(I2)}. Then let
a = max{x ∈ I1|f(x) = a, x < b}. Redefine I1 = [a, b], and observe that we still
have I1 → I1 and I1 → I2.

If d(I1, I2) = 0, let δ = min{d(I211, I1), d(I12, I2), µ(I1), µ(I2)}. If d(I1, I2) > 0,
let δ = min{d(I12, I2), d(I211, I1), µ(I1), µ(I2),

d(I0,I1)
3 }.

Then δ > 0 iff min{d(I12, I2), d(I211, I1)} > 0.

Lemma 2.12. d(I211, I1) > 0

As above, I1 = [a, b], let I2 = [c, d].
Case I a: a < min(I2).

Proof. We know f(b) = a, and that ∀x ∈ I1\b, f(x) 6= a, so b ∈ I11. Because I11

is a subinterval of I1,min(I11) > a.We know that f(c) ≤ a, so c /∈ I211. Because
f is uniformly continuous, and d(min(I11), a) > 0, we know that d(I211, c) > 0.
Then because c is the closest point in I2 to I1, we have that d(I211, I1) > 0, which
completes the proof. �

Case I b: a < min(I2).

Proof. We know f(a) = b, and that ∀x ∈ I1\a, f(x) 6= b, so a ∈ I11. Because I11

is a subinterval of I1,max(I11) < b.We know that f(d) ≥ b, so d /∈ I211. Because
f is uniformly continuous, and d(max(I11), b) > 0, we know that d(I211, d) > 0.
Then because d is the closest point in I2 to I1, we have that d(I211, I1) > 0, which
completes the proof. �

The proof that d(I12, I2) > 0 is similar.

Lemma 2.13. Given two points fk1(Iα), fk2(Iβ) ∈ S such that α 6= β, ∃n ∈ Z+

such that d(fk1+n(Iα), fk2+n(Iβ)) ≥ δ.



A LOOK AT f-INVARIANT δ-SCRAMBLED SETS 7

Proof. By Lemma 1, pick some n for which σk1+n(α) begins with 211 and σk2+n(β)
begins with 1. Then by definition and the nested property of our intervals,
d(fk1+n(Iα), fk2+n(Iβ)) ≥ δ. �

Lemma 2.14. Given some periodic point z and some f j(Iα) ∈ S,
lim sup

n→∞
(d[fn(z), fn+j(Iα)]) ≥ δ.

Proof. Case I a: The orbit of z at some point leaves the series of intervals we are
considering.
WLOG, let this point be the (k − 1)st iterate of z, where z has period k. Then
by construction of δ,∃ some l ∈ {1, 2} for which d(zk, Il) > δ. By Lemma 2.9, we
know we may find an n for which fn+j(Iα) ⊂ Il and fn(z) = zk.

Case I b: The orbit of z is constantly within the series of intervals we are
considering.
Then we may encode z’s trajectory through intervals in a sequence of 2 variables.
Let γ ∈ Σ2, for which γ = (c1c2c3...) such that f i(z) ∈ Ici

. Because the trajectory
of z is periodic, γ must also be periodic. Assume γ contains a 1. WLOG, say
zk ∈ I1. Then we may use Lemma 2.9 to pick an n which forces fn+j(Iα) ⊂ I2

(which means it will be a subset of I211, by construction) and fn(z) = zk, which
will force our Lemma to be true. Otherwise, γ must contain a 2, we may assign
zk ∈ I2, and we may again apply Lemma 2.9 to force zk to line up with an element
of I12, proving our Lemma.

Case I c: The point z is an endpoint of more than one interval.
Then z will be the periodic point x on which these intervals are based, and we
may easily line up one of the points in its orbit that does not bound I1 with an
arbitrarily long string of 1s, giving a distance greater than δ.

�

Case II: n 6= 3

Because there are 4 or more intervals we are considering, and each has at most
1 point in common, we know that there are some pairs of intervals which are
completely disjoint. Let δ = inf{d(Ij , Ik)|k, j ∈ [1, n− 1] ∩ Z+, d(Ij , Ik) > 0}.

Lemma 2.15. Given two points fk1(Iα), fk2(Iβ) ∈ S such that α 6= β, ∃n ∈ Z+

such that d(fk1+n(Iα), fk2+n(Iβ)) ≥ δ.

Proof. Assume β and α are distinct, then by Lemma 2.8, we know that we may
pick some n for which without loss Of generality σk1+n(α) begins with (n− 1)(n−
2)...(1)(1) and σk2+n(β) is constantly 1. Because 1 < j ≤ n − 1, we know we
may pick some slightly greater n for which σk1+n(α) begins with j and σk2+n(β)
begins with 0. Then by definition of δ and the nested property of our intervals,
d(fk1+n(Iα), fk2+n(Iβ)) ≥ δ.

Now assume β and α are identical.
Case I a: The displacement |k1 − k2| = 1.
We know by Devaney [2] that there is some j ∈ [2, n − 1] ∩ Z+ for which Ij is on
a different side of I1 from Ij+1. When the strings are displaced by 1, we will have
this j lined up with j + 1 every time they occur, so if we advance the sequence by
n to that place, we will find d(fk1+n(Iα), fk2+n(Iα)) ≥ 0, and thus by definition of
δ, d(fk1+n(Iα), fk2+n(Iα)) ≥ δ.
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Case I b: The displacement |k1 − k2| > 1.
Before and after the strings ui, we will have displacements of 2 or more on each
side. This means that we will have a minimum of 4 intervals lined up with ones.
Because the intervals are distinct, there are at most 2 which are adjacent to I1, so
by advancing the sequence by n to an overlap of some j for which d(Ij , I1) > 0 with
1, we will have d(fk1+n(Iα), fk2+n(Iβ)) ≥ δ.

Lemma 2.16. Given some periodic point z and some f j(Iα) ∈ S,
lim sup

n→∞
(d[fn(z), fn+j(Iα)]) ≥ δ.

Proof. Case I a: The orbit of z at some point leaves the series of intervals we are
considering. WLOG, let this point be the k − 1st iterate of z, where z has period
k. Then by construction of δ,∃ some l ∈ [1, n− 1] ∩ Z+ for which d(zk, Il) > δ. By
Lemma 2.9, we know we may find an n for which fn+j(Iα) ⊂ Il and fn(z) = zk.

Case I b: The orbit of z is constantly within the series of intervals we are
considering. Then we may encode z’s trajectory through intervals in a sequence of
n−1 variables. Let γ ∈ Σn, for which γ = (c1c2c3...) such that f i(z) ∈ Ici

. Because
the trajectory of z is periodic, γ must also be periodic. Since we have 4 or more
intervals, we may pick any h ∈ [1, n− 1]∩Z+ for which zk ∈ Ih, and we know that
there will be an l ∈ [1, n − 1] ∩ Z+ for which d(Ih, Il) > δ. Then we may apply
Lemma 2.9 to find the appropriate n for which fn(z) = zk and fn+j(Iα) ∈ Ih to
complete the proof.

Case I c: The point z is an endpoint of more than one interval.
Then z will be the periodic point x on which these intervals are based, and we
may easily line up one of the points in its orbit that does not bound I1 with an
arbitrarily long string of 1s, giving a distance greater than δ. �

�

Now consider the case where none of the three properties of the first proposition
hold. Then let I1′ = [max I1111...,max I1] and redefine I1 = [min I1,min I1111...].
With this notation, observe that I11′11′11′ ... will be a point on the boundary of the
removed invariant interval and I1′11′11′1... will be its image. We may define a set S
as before, except now instead of strings of ones we will use strings of double length
of 11

′
s. Then if we allow only f2 iterates of points in the set to be used, we may line

up arbitrarily long sequences of 11
′
s and reproduce the above lemmas for lim inf.

Because In−1 → I1 and In−1 → I11′ , we may follow either ones or 1
′
s by n− 1s, so

we may alternate between sequences of even and odd length. This will insure that
we may line up an I1 or I1′ with some Ij and get a distance greater than δ in a
method parallel to the above construction.

3. Maps with f-invariant δ-scrambled Sets are in T2

Here we use a theorem proved in Block and Coppel [1] to argue by contradiction
that any map f which admits an f -invariant δ-scrambled set is in T2. Here are
some relivant definitions.

Definition 3.1. [1] A trajectory {fn(c)} will be said to be alternating if either
fk(c) < f j(c) for all even k and all odd j, or fk(c) > f j(c) for all even k and all
odd j.
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Definition 3.2. [1] We define the limit set of a point x ∈ I to be the set

ω(x) = ω(x, f) =
⋂

m≥0

⋃
n≥m

fn(x)

.
Equivalently, y ∈ ω(x) if and only if y is a limit point of the trajectory γ(x), i.e.

fnk(x) → y for some sequence of integers nk →∞.

The following is a useful Lemma from Block and Coppel:

Lemma 3.3 (Block and Coppel IV.4). A limit sets ω(x) contains only finitely
many points ⇐⇒ x is asymptotically periodic.

If ω(x) contains infinitely many periodic points, then no isolated point of ω(x)
is periodic.

Theorem 3.4. [1] Suppose f2 is not turbulent. Then ∀c ∈ I exactly one of the
following alternatives holds:

(i): the trajectory {fk(c)} is bimonotinic and converges to a fixed point of f

(ii): the trajectory {fk(c)} is alternating from some point on and the limit set
ω(c, f) is an f-orbit of period 2.

(iii): the trajectory {fk(c)} is alternating from some point on and if we set

(4) α = minω(c, f2), β = maxω(c, f2),

(5) γ = minω(f(c), f2), δ = maxω(f(c), f2),

then [α, β] and [γ, δ] are disjoint non-degenerate intervals which contain no fixed
point of f .

Proposition 3.5. If f admits an f-invariant δ-scrambled set, then f2 is turbulent.

Proof. Let S ⊂ I be an f -invariant δ-scrambled set. Let c ∈ S. TAssume (i) or
(ii) holds. But then the limit set is finite, so c is asymptotically periodic by the
above Lemma from B and C, so we have a contradiction against the property of
δ-scrambled that lim sup

n→∞
(d[fn(s), fn(z)]) ≥ δ for any s ∈ S and periodic z ∈ I.

If the trajectory {fk(c)} is not alternating from some point on then (iii) fails.
Assume that the trajectory {fk(c)} is alternating from some point on. Then we
know that if k1 is odd and k2 is even, then without loss of generality fk1(c) < fk2(c).

Let w1 = sup{f2k+1(c)|k ∈ N} and w2 = inf{f2k(c)|k ∈ N}. Because
lim inf
n→∞

(d[fn(c), fn+1(c)]) = 0, we must have w1 = w2 = w. But then by continuity,

w ∈ ω(c, f2) and w ∈ ω(f(c), f2), so (iii) still fails. Thus f2 must be turbulent. �

4. All Strictly Turbulent Maps Admit f-invariant δ-scrambled
subsets

As mentioned previously, [4] showed that all strictly turbulent maps admit f -
invariant δ-scrambled sets. We produced an independent proof of this result.
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Let f be strictly turbulent. Then ∃ compact intervals I
′

0 = [a
′
, b
′
], I

′

1 = [c
′
, d

′
],

s.t. I
′

0 ∪ I
′

1 ⊂ f(I
′

0) ∩ f(I
′

1) Thus I
′

0 ⊂ f(I
′

0), so there is at least one fixed point
in I

′

0. Call the set of such fixed points F, and observe that the set is non-empty
and closed. Because I

′

1 ⊂ f(I
′

0), the set K = {x ∈ I
′

0|f(x) = d
′} is also non-empty

and closed by continuity. By these two conditions, ∃ two points a
′′ ∈ F, b

′′ ∈ K for
which d(a

′′
, b
′′
) = d(F,K), where d(F,K) has the usual definition inf

x∈F,y∈K
d(x, y).

Let a = min{a′′ , b′′}, b = max{a′′ , b′′}. Let I0 = [a, b]. Similarly select c, d ∈ I
′

1

and let I1 = [c, d]. Now by construction, I0 ∪ I1 ⊂ f(I0) ∩ f(I1)
Let ai ∈ {0, 1}, ∀i ∈ Z+ ∪ {0}. By continuity of f , we know ∃ intervals in Ia0

which are pre-images of I0 and I1 under f , for either value of a0. Now let Ia0a1 be
the subinterval of Ia0 of minimum width for which f(Ia0a1) = Ia1 . Without Loss
Of Generality force Ia0a1 to include its endpoints, then Ia0a1 is compact.

Definition 4.1. Define Ia0a1a2...an
as the subinterval of Ia0a1a2...an−1 of minimum

length for which f(Ia0a1a2...an) = Ia1a2...an .

All of these intervals will be constructed to be compact by repetition of the above
argument. In addition, it follows from the definition that the intervals are nested,
that is, Ia0a1a2...an−1an

⊂ Ia0a1a2...an−1∀n ∈ Z+.

Definition 4.2. Let Σ = {α|α = (a0a1a2...), for ai ∈ {0, 1}} be the set of all
infinite binary strings.

Definition 4.3. For some α ∈ Σ, define Iα as
∞⋂

n=0
Ia0a1a2...an

.

Because Iα is the nested intersection of countably many compact intervals, Iα

is either an interval or a point. For consider the case where Iα is a point. Observe

f(Iα) = f(
∞⋂

n=0
Ia0a1a2...an

) ⊂
∞⋂

n=0
f(Ia0a1a2...an

) =
∞⋂

n=0
f(Ia1a2...an

) = Iσ(α). But by

uniform continuity, we can see that Iσ(α) is also a point, so in fact in this case

f(
∞⋂

n=0
Ia0a1a2...an

) =
∞⋂

n=0
f(Ia0a1a2...an

).

Definition 4.4. Let σ be the operation on a binary string α = (a0a1a2a3...) ∈ Σ
such that σ(α) = (a1a2a3...). Observe that f(Iα) = f(Ia0a1a2a3...) = Ia1a2a3... =
Iσ(α).

∀i ∈ Z+ ∪ {0}, let ti be the string of zeros of length 2i, ui be the string of ones
of length 2i. Consider the set:

S′ = {Iα | α = (∗0t0 ∗1 ∗0u1 ∗2 ∗1 ∗0 t2 ∗3 ∗2 ∗1 ∗0u3...), for ∗i ∈ {0, 1}}

This set is uncountable, so it must contain uncountably many α’s for which Iα is
a singleton, i.e. Iα = xα. Let S = {fn(Iα) | Iα ∈ S′, µ(Iα) = 0, n ∈ Z+ ∪ {0}}.
Observe that then if fn(Iα) ∈ S, fn(Iα) = {xσn(α)}, a singleton.

Lemma 4.5. Given our construction of I0, It∞ is a point and not an interval.

Proof. Recall that It∞ =
∞⋂

n=0
Ia0a1a2...an , where ai = 0, ∀i ∈ Z+. Because f is

continuous, and I0 ∪ I1 ⊂ f(I0), some of the range of I0 under f is not in I0, so the
length of I00 is smaller than the length of I0. By a similar argument, it can be seen
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the that length of Ia0a1a2...an−1 is smaller than the length of Ia0a1a2...an , ∀n ∈ Z+

so we have that the sequence of lengths of these intervals is strictly decreasing.
Assume It∞ is an interval, i.e. that there is a positive lower limit to the decreasing

of the length of the interval. Then It∞ is preserved under f , that is f(It∞) =
Iσ(t∞) = It∞ . We know a is a fixed point by construction, and because f does not
cross the line y = x again in I0, we know it cannot in It∞ . But this is a contradiction
as it is graphically impossible to have a fixed interval under a continuous mapping
which has a fixed endpoint and no other fixed points, so It∞ must be a point. �

Lemma 4.6. Let k1, k2 ∈ Z+ ∪ {0}. Given distinct binary strings σk1(α) and
σk2(β), ∃ an n ∈ Z ∪ {0} for which the first digit of σn+k1(α) is not equal to the
first digit of σn+k2(β).

Proof. Let j = |k1 − k2|.
Case 1: j > 0: The strings have the same initial structure, and are displaced

relative to each other by j applications of σ, so if we look far enough ahead in the
string, we will see a place in which the string of constant zeroes ti overlaps exactly
the last j of the string of ∗s. If ∗1 = 1, apply n to both strings until the first
character of the binary string is ∗1, lined up with a 0 from ti. Else, apply n until
∗1 is lined up with a 1 from ui+1.

Case 2: j = 0: Because the strings are lined up, the indices on the strings of *s
will be lined up. Because the strings are not identical, ∃n ∈ Z+ ∪ {0} such that ∗n

in α is different from ∗n in β. When σ is applied enough times to bring the matched
∗ns to the front of their binary strings, the Lemma’s condition will be fulfilled. �

Lemma 4.7. Let k1, k2 ∈ Z+ ∪ {0}, Without loss of generality let k1 > k2. Then,
given binary strings σk1(α) and σk2(β), ∀j ∈ Z+, ∃ an n for which the next i
characters of σn+k1(α) and σn+k2(β) are both zero.

Proof. Again, let j = |k1 − k2|. Find some n1 in the even integers for which
2n1 > j + i. Then if we apply σ enough times to σk1(α) to advance i positions into
tn1 or some longer sequence of zeroes, there will still be at least i zeros which the
strings will have in common. �

Theorem 4.8. If f is strictly turbulent, then ∃ a δ-scrambled f-invariant subset
of S under f .

Proof. Let δ = d(I0,I1)
3 , then δ > 0 because f is strictly turbulent. Then, if two

points Iα and Iβ are in different intervals, d(Iα, Iβ) ≥ δ. Recall that the Iα is in I0

if the first entry in the string is 0, else Iα is in I1

Lemma 4.9. Given two points fk1(Iα), fk2(Iβ) ∈ S such that α 6= β, ∃n ∈ Z+

such that d(fk1+n(Iα), fk2+n(Iβ)) ≥ δ.

Proof. By Lemma, there is an n for which the first digit of σn+k1(α) is not equal
to the first digit of σn+k2(β). We know σn+k1(α) = fn+k1(Iα) and σn+k2(β) =
fn+k2(Iβ), so we may apply fn times to fk1(Iα) and fk2(Iβ) and find that
d(f j+n(Iα), fk+n(Iβ)) ≥ δ. �

By applying this lemma to arbitrary points and iterates of them, we may see
that lim sup

n→∞
(d[fk+n(Iα), f j+n(Iβ)]) ≥ δ.
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Lemma 4.10. Given two points fk(Iα), f j(Iβ) ∈ S such that α 6= β and ε ∈ R+,
∃n ∈ Z+ such that d(f j+n(Iα), fk+n(Iβ)) ≤ ε.

Proof. Without loss of generality assume j < k.
Because I000... is a point, the sequence of intervals Ia0a1a2...an where ai = 0∀i ∈

Z+ has length converging to zero as n approaches infinity. Then given any ε ∈ Z+,
we may find an i ∈ Z+ for which the length of Ia0a1a2...an

is less than ε∀n ≥ i
By lemma, pick some n1 ∈ Z+ for which the first i terms of σn+k1(α) are 0 and
overlap with the first i terms of σn+k2(β). Then d(f j+n(Iα), f (k + n)(Iβ)) ≤ ε,

where n =
∞∑

h=1

nh. Because ε and the starting points were arbitrary, this proves

that lim inf
n→∞

(d[fn(s1), fn(s2)]) = 0. �

Lemma 4.11. ∃δ ≥ 0, n ∈ Z+ ∀s ∈ S, z ∈ I s.t. z is periodic,
lim sup

n→∞
(d[fn(s), fn(z)]) ≥ δ

Proof. Let δ be defined as above. Then pick some periodic point z and some
s = xα ∈ S.

Case 1: The trajectory of z under f never leaves I0 ∪ I1. Then we may encode
z’s trajectory between these intervals in a binary sequence. Let γ ∈ Σ, for which
γ = (c0c1c2c3...) such that f i(s) ∈ Ici

. Because the trajectory of z is periodic, γ
must also be periodic. We know that α is not periodic or eventually periodic, so
there must some place in the string in which γ and α differ. If we use the σ map
to bring these to the front of the strings, we will have the corresponding points in
different intervals under the f map. Thus ∃ an n for which d[fn(s), fn(z)] > δ.

Case 2: The trajectory of z under f leaves I0 ∪ I1 at some point w. Let k be
the period of z. By construction of S, there exists an n for which fn(s) has an
arbitrary length string of zeros or ones. If d(w, I0) > d(w, I1), then d(w, I0) > δ, so
if we select a high enough n to get an overlapping string of zeros with length greater
than k, we can find some n2 for which σn2(α) begins with a 0 and fn2(z) = w.
Then d(fn2(s), fn2(z)) > δ. If d(w, I1) > d(w, I0), we make a similar construction
with a string of ones.

Because both these points are arbitrary, this proof may be applied countably
many times to the iterates of the points under this method, so
lim sup

n→∞
(d[fn(s), fn(z)]) ≥ δ. �

The set is uncountable and f -invariant by construction. �

5. Periodic Points in Maps with f-invariant δ-scrambled Sets

Finally, we show that maps with f -invariant δ-scrambled sets must have periodic
points of period 2k for every k > 0.

Lemma 5.1. If f : I → I admits a δ-scrambled f-invariant set S ⊂ I for some
δ > 0, then f t has a periodic point of period 2 for every t ≥ 0.

Proof. Let f : I → I admit a δ-scrambled f -invariant set S ⊂ I for some δ > 0.
Now, let t ≥ 0 be arbitrary and consider the map f t. Consider the theorem

below that comes from Block and Coppel.

Theorem 5.2. [1] If f has no periodic point of period 2 then, for every c ∈ I, the
trajectory {fk(c)} is bimonotonic and converges to a fixed point of f .
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If f t does not have a periodic point of period 2, then according to the theorem
above from [1], for every c ∈ I the trajectory {fkt(c)} converges to a fixed point of
f t. Now take a point s ∈ S. Since s is obviously in I we can say,

fkt(s) → z

where z is a fixed point of f t. By continuity,

f(fkt(s)) → f(z)

f2(fkt(s)) → f2(z)

...

fn(fkt(s)) → fn(z)
Now fkt = s′ ∈ S because S is f -invariant, and notice that z must be a periodic
point of f since it is a fixed point of f t.

fn(s′) → fn(z)
lim

n→∞
fn(s′) = lim

n→∞
fn(z)

lim
n→∞

(d[fn(s′), fn(z)]) = 0

lim sup
n→∞

(d[fn(s′), fn(z)]) = 0 6≥ δ

since δ > 0
This contradicts the final part of the definition of a δ-scrambled set. Therefore,

f t must admit a periodic point of period 2.
�

Corollary 5.3. If f admits an f-invariant δ-scrambled set for some δ > 0, then f
has a periodic point of period 2.

Proposition 5.4. If f : I → I admits a δ-scrambled f-invariant set S ⊂ I for
some δ > 0, then it has periodic points of periods 2k for every k > 0.

Proof. From Lemma 5.1 above we know that f t must admit a periodic point of
period 2 for every t > 0. Let t = 2j where j > 0.

Now consider the below theorem from Block and Coppel.

Theorem 5.5. [1] If c is a periodic point of fh with period m, then c is a periodic
point of f with period mh/d, where d|h and gcd(d, m) = 1.

Now using the theorem above, because f2k

has a periodic point of period 2, then
f will have a periodic point with period 2(2j)

d where d|(2j) and gcd(d, 2) = 1. Now
because gcd(d, 2) = 1 we know that d must be odd.

We will restrict our search to when d > 0 since if d < 0 we could simply take |d|
as our new d and the above conditions would still hold true.

Now, there is only one odd integer, 1, that divides an integer in the form 2j . So,
d = 1 and f must have periodic points of periods 2(2j). Because this works for
every j > 0, we can say that f must have period points of periods 2(2j) = 2j+1 for
every j > 0. Let j + 1 = k. Thus, f has periodic points of periods 2k for every
k > 1.

So combining this with Corollary 5.3 from above, f has periodic points of periods
2k for every k > 0. �
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