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Abstract

In this study, the author discusses the concept of function from a historical and pedagogical
perspective. The historical roots, ranging from ancient civilizations all the way to the twentieth
century, are summarized. The author then details several different function representations that
have emerged over the course of its history. Special attention is paid to the idea of abstraction
and how students understand functions at different levels of abstraction. Several middle school,
high school, and college textbooks are then analyzed and evaluated based on their portrayal of
the function concept. The author describes several common misconceptions that students have
about functions and finally proposes a short educational module designed to help older high
school students grow to a deeper level of understanding of this complex and often misunderstood
concept.
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1 Introduction

Irish writer Oscar Wilde once surmised that, “[t]he truth is rarely pure and never simple.” While
his musings were most likely not directed towards the mathematics’ community, Wilde’s statement
sheds light on the nature of mathematical truth, an issue that has plagued mathematicians and
mathematics’ educators for centuries.

Many mathematics’ students delight in the black and white nature of math. While they struggle
to decipher reality from fiction, right from wrong, and fact from opinion in their history and English
courses, they perceive math to be a subject of cut-and-dry answers. In working problems or doing
homework, students strive for the “right” answer and are often satisfied when reaching the solution
even if they do not completely understand why their answer is correct. While teachers often stress
that students “show their work,” such work typically exhibits the ability of the student to reproduce
a numerical manipulation and is not always an indication of whether or not the student comprehends
the mathematical subtleties.

Exposure to higher level mathematics dispels the illusion of the simplicity of math. Students
realize that their prior understanding of mathematical concepts is incomplete. The study of func-
tions, perhaps the most central concept in all mathematics, is often one of the topics where students’
understanding is most incomplete. From early elementary school throughout the rest of their math-
ematics careers, students encounter functions in various forms and applications. While they often
learn how to manipulate and “use” functions to perform tasks, students do not always grasp the com-
plexity of the multifaceted concept. In fact, mathematicians over the past 500 years have struggled
to produce an accurate definition of function. Teachers and textbooks, in their attempts to make
the idea accessible, have used a myriad of pedagogical techniques to teach functions. Sometimes
teachers and textbooks “water-down” the concept in order to avoid confusing students, which leaves
gaps in their understanding. Other times students are overloaded with definitions and subtleties
beyond the breadth of their mathematical understanding. These students end up disregarding or
forgetting certain aspects of what they are taught in favor of their own understanding.

In this paper, the notion of the function, its historical development, common misconceptions,
and the pedagogical difficulties that arise from its complexity are discussed. How functions are
taught and presented in various textbooks is analyzed, and suggestions are made about ways in
which functions can be taught with increased clarity.

2 History

The complexity of the function mirrors the intricacy of its historical development. The concept has
roots dating back 4000 years as ancient civilizations developed the idea of counting and the notion of
correspondence between objects that is implied by a sequence of numbers [15]. From their countless
tablets of corresponding numbers, it is likely that the Babylonians touched on aspects of the function
idea. These tablets presented sets of ordered pairs with unknown purpose but of evident functional
character [14]. While they studied specific functions, it is not likely that the Babylonians had devel-
oped a generalized concept [12]. Thus, while this early emergence demonstrates the primacy of the
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function within the natural world, it does not mark the beginning of a sophisticated and deliberate
understanding of the concept.

In the fourteenth century, French mathematician Nicole Oresme developed the geometric theory
of latitude of forms and the concept of the rectangular coordinate system [15]. In this work, Oresme
introduced the idea of acceleration as the intensity of velocity and touched on several ideas about
independent and dependent variables [21]. His investigation and depiction of natural laws that de-
scribe one quantity as dependent on another comes closer to relating the function concept of today
[12].

During the early 17th century, as scientists discovered more about natural laws and as mathe-
maticians began to connect the studies of algebra and geometry, the idea of function became more
of a necessity. Galileo, in his study of motion, clearly grasped the concept of the relation of variables
to one another, and Descartes, in his study of the algebraic expression of curves, also touched on
the function concept [12].

It is essential to note that at this point in time, Newton and Leibniz were developing calculus, a
subject which, in modern times, is inseparable from the function concept. Early calculus, however,
was not a calculus of functions but rather was a calculus of geometric curves. In fact, most early
calculus dealt with solving problems about curves and properties of curves such as tangents and
areas under them. Leibniz and Newton were concerned with the geometric nature of their new un-
derstanding, and it was not until after the introduction of the function concept that calculus began
to take shape in its algebraic form [8].

Neither the explicit concept nor the word ‘function’ were introduced until the 17th century.
Within the context of the development of analytical geometry, it is not surprising that the word
‘function’ emerged in relation to a geometric concept. Leibniz used the word to denote a geomet-
ric object, such as the tangent associated with a curve, in 1692 [8]. Leibniz’s usage of the word
“function” aligns with the present-day definition, however, he described a much narrower and more
restricted understanding of the concept. In fact, over the years, counterexamples have been a driving
force in the development of the function concept. In response to these new examples, the definition
has had to change and expand to encompass the complete function concept. It was not until 1718
that Johann Bernoulli introduced the first formal definition of the function in response to the need
for such a term. His definition reads,

“One calls here Function of a variable a quantity composed in any manner whatever of
this variable and of constants” [8].

This vague definition marked the beginning of the function’s evolution into the multi-faceted concept
that exists today.

As mathematics began to drift away from the geometric idea of analysis to the algebraic in the
1700’s, the notion of the function underwent a similar transformation. Euler’s definition in his 1748
work, Introductio in Amalysin Infinitorum, reads,

3



“A function of a variable quantity is an analytical expression composed in any manner
from that variable quantity and numbers or constant quantities” [8].

Euler’s definition is nearly identical to Bernoulli’s, however, the addition of the term “analytical
expression” is significant because it shifts the notion from the geometric to the algebraic. At a
time when geometry and algebra were viewed as disjoint mathematical subjects, Euler’s definition
emphasizes the idea of using algebra to represent a geometric object. He links the geometric with
the algebraic. Euler was also the first to treat calculus as a theory of functions [8].

At around this same time, Euler was also engaged in a debate with Jean d’Alembert and Daniel
Bernoulli concerning a famous problem concerning vibrating-strings. The problem involves deter-
mining the function that describes the shape of an elastic string with fixed ends at a specific time, t,
after it has been released to vibrate from some initial shape. During this era, many mathematicians
ascribed to the “Article of Faith” which asserted that if two analytic expressions agree on an interval,
they must agree everywhere.

French mathematician d’Alembert, a believer in the “Article of Faith,” took a mathematically
rigorous perspective on this problem. In 1747, he developed the wave equation, given by(

δ2y

δt2

)
= a2

(
δ2y

δx2

)
,

where a is a constant. From this partial differential equation, d’Alembert produced his “most gen-
eral” solution to the vibrating string problem:

y(x, t) =
(

1
2

)
[ϕ(x + at) + ϕ(x− at)],

where ϕ is an arbitrary function determined on the interval between the fixed ends by the initial
shape of the string. Most significant to this discussion of functions is d’Alembert’s belief that ϕ
must be a single twice differentiable formula. Since ϕ represents any arbitrary function, his con-
tention emphasizes his belief that analytic expressions are the only type of permissable functions [8].

The next year, Euler proposed his findings on the problem. He agreed with d’Alembert’s solution,
but disagreed with his assertions about ϕ. Euler contended that the original arbitrary function does
not necessarily have to be representable by a unique analytic expression. In fact, he argued that
a more general solution to the problem could be given by extending ϕ to include initial shapes of
the string represented by multiple analytic expressions defined on different subintervals. Even more
broadly, Euler believed that ϕ could represent any curve drawn freehand. Since ϕ is a function,
Euler’s claim implies the extension of the function concept to include piecewise functions, or func-
tions defined individually over different intervals, and freehand functions that cannot be expressed
by any combination of analytic expressions. The physical considerations in this problem caused
Euler to alter his conception of function significantly so that in 1755 he wrote

“If, however, some quantities depend on others in such a way that if the latter are changed
the former undergo changes themselves then the former quantities are called functions
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of the latter quantities” [8].

Euler’s observations led to a broader view of the function concept.

In 1753, Daniel Bernoulli challenged both d’Alembert’s and Euler’s solutions to the vibrating
string problem. Bernoulli was more of a physicist than a mathematician, and he found d’Alembert’s
and Euler’s solutions to lack consistency with the physics of the problem. He even went so far as
to say in reference to the solutions, “beautiful mathematics but what has it to do with vibrating
strings?” [8].

Bernoulli based his solution to the vibrating-string problem on his understanding of musical
vibrations. He knew that vibrating strings have infinitely many fundamental vibrations, and thus,
concluded that given the constants bn and a and the endpoints of the string (0, `), the solution to
the problem could be expressed as

y(x, t) =
∞∑

n=1

bn sin
(nπx

`

)
cos

(
nπat

`

)
.

While Bernoulli was not interested in debating the nature of functions, his solution, when solved for
initial conditions at t = 0 implies that any arbitrary function can be represented by the series

y(x, 0) = f(x) =
∞∑

n=1

bn sin
(nπx

`

)
.

Euler and d’Alembert rejected Bernoulli’s solution. While Bernoulli understood the physics be-
hind the problem, Euler contended that he did not consider its implication concerning functions.
Euler believed that all series of sines must be odd and periodic, and thus, according to Euler,
the existence of even and non-periodic functions disproves Bernoulli’s solution. Euler’s argument
rested on his belief in the “article of faith” as mentioned earlier [20]. The debate surrounding the
vibrating-string controversy eventually died down, but belief in the false assumption that every an-
alytic function that has the same values over an interval must be identical everywhere persisted for
several more years [8].

In 1807, Joseph Fourier, as a result of his study of heat conduction, developed a theorem about
functions that, similar to Bernoulli’s, deals with a series of sines and cosines. His theorem states:
Any function f(x) defined over (-`, `) is representable over this interval by a series of sines and cosines,

f(x) =
(ao

2

)
+
∞∑

n=1

[
an cos

(nπx

`

)
+ bn sin

(nπx

`

)]
,

where the coefficients an and bn are given by

an =
(

1
`

) ∫ `

−`

f(t) cos
(

nπt

`

)
dt
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and

bn =
(

1
`

) ∫ `

−`

f(t) sin
(

nπt

`

)
dt

Fourier’s proof was questionable and his theorem was eventually disproved by German mathemati-
cian Johann Dirichlet. In 1829, however, Dirichlet developed sufficient conditions for Fourier’s
theorem. He stated that all functions that converge, that is all functions with only finitely many
discontinuities and finitely many maxima and minima on an interval, can be represented by the
Fourier series. Fourier’s work is significant because it disproved the “article of faith” assumption
and because it re-emphasized analytic expressions as functions. The result proved that two analytic
expressions could agree on one interval without necessarily agreeing outside that interval [8].

Fourier’s theorem also forced mathematicians to re-evaluate the concept of function both because
of the confusion caused by his results and because of the looseness of his proof techniques. His work
prompted the investigation of other mathematicians like Dirichlet, who once said, “To make sense
out of what he [Fourier] did took a century of effort by men of “more critical genius,” and the end
is not yet in sight” [8]. In 1829, Dirichlet produced a counterexample to Fourier’s original theorem.
The Dirichlet function, which assigns one value to all rationals and another to all irrationals, can
not be represented by a Fourier series and was the first clear example of a function that was neither
an analytic expression or a curve drawn freehand. It was also the first function to be discontinuous
everywhere. Rather importantly, the Dirichlet function highlights the concept of arbitrary pair-
ing. While many mathematicians had acknowledged the arbitrary nature of functions prior to him,
Dirichlet was the first to give a concrete example of an arbitrary function [8].

In 1939, French mathematician Nicolas Bourbaki defined functions in the following manner:

“Let E and F be two sets, which may or may not be distinct. A relation between a
variable element x of E and a variable element y of F is called a functional relation in
y if for all x ∈ E there exists a unique y ∈ F which is in the given relation with x” [8].

Thus, Bourbaki became the first mathematician to define function in terms of a set of ordered pairs.
This idea of functions as sets of ordered pairs has since been accepted by many mathematicians as
an all-encompassing and succinct manner in which to understand functions. In fact, many algebra
and higher level textbooks present this definition as the primary (or glossary) definition.

The function concept has undergone a drastic transformation over the course of more than 300
years since Leibniz introduced the term. What began as a word coined to describe a purely geometric
idea has evolved into a concept of importance in nearly every field of mathematics.

3 Function Representations

In light of the lengthy development of the function and debates within the mathematical world about
its nature, it is no wonder that students struggle to grasp the concept. Annie and John Selden, in
their 1992 summary of recent research on students’ conceptions of functions, explain that, “there is
an unavoidable conflict (tension) between the structure of mathematics and the cognitive process
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of concept acquisition. Whereas it can only take one sentence to state a definition, ‘unpacking’ a
definition is a hard cognitive task” [18]. This task is especially difficult when students face concepts,
like functions, with many different definitions and representations. New ways of representing func-
tions have emerged continually over the course of its development. Each of these representations is
important in understanding a specific aspect of the idea and each is strongly tied to the others, but
as a collection, they may overwhelm and confuse students [18].

True understanding of functions runs deeper than just the ability to regurgitate definitions. There
are actually three basic conceptions of functions that indicate the level of understanding achieved by
students. These are not three completely different notions, but rather, they represent a continuum
of abstraction.

The most basic concept of function is that of an action. Dubinsky and Harel call action “a
repeatable mental or physical manipulation of objects” [4]. Students at this phase of understanding
need evidence of a concrete action in order to grasp that something is a function. They see functions
as an explicit rule which takes an input, transforms it by means of a specific algorithm, and then
produces an output. Students with an action conception easily comprehend two of the most common
representations of functions.

Graphs are quite possibly the most recognizable representation of functions. This representation,
however, is not always directly connected with the idea of function in students’ minds since graphs
are often taught several years before the term function is ever introduced. Graphs help students
understand useful information about functions including maxima and minima as well as the concepts
of increasing and decreasing [18]. In fact, in his article about functions, Theodore Eisenberg goes
so far as to assert, “Single valued, real variable functions should be thought of as being inherently
tied to a graphical representation, and . . . all elementary concepts concerning functions (should)
be defined in a visual format” [6]. Unfortunately, students often struggle to develop visualization
skills, especially when they encounter non-typical functions such as the Dirichlet function.

The formula representation of functions is also another important aspect of the function con-
cept. This idea restricts the notion of function in a way similar to Euler’s original definition of
function [18]. While this representation is especially useful in calculus and pre-calculus, students
who are only exposed to this definition have difficulty understanding that functions can have com-
pletely arbitrary pairings. Functions do not necessarily have a formulaic representation nor do they
even have to concern numbers. This representation also leads to a misunderstanding about the
existence of discontinuous functions. Even functions depicted by two or more formulas defined over
different parts of the domain are difficult for students to perceive as functions [18].

The next level of understanding is the process conception. This conception involves a deeper
understanding of a function as something that takes in an object, transforms it and produces a
completely new object. Rather than needing an explicit formula or rule, students at this level of
understanding are willing to accept functions that involve vague transformations.

The idea of a function machine is a common tool used by teachers to help students view functions
from the process conception. This technique presents functions as a machine or a box that accepts
an input and produces an output. With the process understanding, students have no need to know
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the contents of the box, but rather, the existence of the machine alone is enough to convince them
that they are dealing with a function. While some researchers suggest that “the function machine
provides a powerful foundation and is a cognitive root for developing understanding of the concept
of function” [10], others see the representation as ineffective for students who do not understand
how machines process numbers [18]. Research also shows that students have difficulty connecting
the function machine concept with graphs and other such representations of functions [10]. While
it offers a simplistic approach to help younger students understand functions as a process, like each
of the other representations, the function machine conception does not provide a complete picture
of the notion.

A second process-oriented view deals with the idea of functions as a correspondence between two
sets. This understanding is similar to Dirichlet’s 1837 definition, and basically says that a function
is a correspondence such that for every element of the first set there corresponds one element of the
second set. This correspondence idea forces students to abandon their need for an algorithm and
instead focus more on the idea of mapping one set to another [18].

The most sophisticated understanding is that of functions as objects. With this conception,
the “machine” is no longer necessary, and students see functions as entities in and of themselves
that can be transformed and operated upon. The concept is best encapsulated by the ordered-pair
representation.

The ordered pair definition of function, as introduced by Bourbaki in 1939, is arguably the most
mathematically accurate in the sense that it completely captures the essence of a function. This
representation describes a function as a possibly infinite set of ordered pairs (x,y) in which each
x-coordinate is paired with only one y-coordinate. It is important because it can accurately describe
discontinuous functions, arbitrary pairings, and can even be extended to account for functions whose
domain and range are not numbers. Also, the set concept gives rise more readily to the notion of
function as an object. Unfortunately, many researchers feel that this definition is too abstract for
students in high school or below. In order to fully grasp this definition, students must have a fairly
firm understanding of set theory. Most junior high and high school students, however, have had
little exposure to set theory, and as a result, use of words such as set and subset may add to their
confusion. In addition, students must also deal with the idea of infinity and more perplexing, what
it means to have an infinite set. Researchers contend that while students are able to reproduce
the ordered pair definition formally, they seem to ignore the definition in application and practice
and instead default to their own intuitive understanding [18]. In this manner, there is a disconnect
between this definition and the adolescent’s concept of function.

In her article about the formation of the view of functions as objects, Anna Sfard asserts that
this view, called a structural conception, is important for mathematicians in the sense that it makes
cognitive processes efficient [19]. Sfard uses the term operational conception to refer to the view of
a function as a process and argues that students should first be taught to see functions as opera-
tions so that they will more naturally develop a sense of functions as objects. She contends that
students should not be expected to obtain a structural understanding of functions until they reach
higher-level theory in which such an understanding is necessary [19]. While this issue is debateable,
the importance of the object conception of function is undeniable. Leading students to an object
understanding of function is the ultimate goal of function understanding, but Sfard argues that stu-
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dents will not be able to completely grasp the concept of functions as object until they use functions
as such in their course work.

4 Textbook Analyses

Textbooks often serve as an authority to the students they serve. Many teachers use their students’
textbooks as their primary resource. They develop their lesson plans directly from the exercises and
activities within the texts, and often, some of the teachers’ own understanding of the concepts they
teach are derived from these books. Even when teachers refuse to teach directly from the book, their
students still have a copy of the text for reference. When they encounter a concept that they do not
know or cannot remember, it is likely that they turn to the glossaries of their books for a definition.
There is nothing inherently wrong with such a use of textbooks, but under such conditions, the way
information is presented within each book is vitally important to the students’ understanding of the
concepts.

Textbook authors face a dilemma when writing about concepts as complex as the function. When
developing their presentation of the concept, they must consider the mathematical maturity of their
audience without losing sight of the core mathematical principles involved. They must also evaluate
the pedagogical issues that underlie all of education. Should they introduce a specific example first
and then develop outward to a general definition? Or should they clearly define the concept first
and then list specific examples? In all of these matters, which subtleties will help the most students?

Nine texts ranging in level from pre-algebra through college mathematics were analyzed for this
study to determine how authors present the concept of function to students of varying mathematical
maturity. Four of these texts are pre-algebra and algebra books, all written between 1990 and 1999.
Calculus books, published between 1994 and 2002 account for three of the texts, and a discrete
mathematics makes eight. Also, the handbook for the TAKS (Texas Assessment of Knowledge and
Skills) exit level mathematics test is analyzed in order to understand what the state expects of
students.

While traces of the concept are taught as early as kindergarten, students are not usually intro-
duced to the mathematical use of the word function until they enter pre-algebra or algebra when
they are somewhere between 12 and 15 years old. At this point in their mathematical careers,
students will begin to encounter variables and equations for the first time. They will first begin to
classify and describe relationships between variables. While the algebra curriculum is fairly uniform
across textbooks, the manner in which the material is presented varies greatly from book to book.
Each of the four algebra textbooks studied here emphasizes different concepts, and with respect to
functions, gives students different perceptions of the subject.

As stated previously, graphs are often introduced to students before the concept of function. In
the 1998 Glencoe Algebra 1: Integration, Applications, Connections [2], functions are introduced
directly as graphs (56). The textbook authors take the concept of graphs, which are familiar to
students, and build on it with the function idea. The word function is defined as
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“. . . a relationship between input and output. In a function the output depends on the
input. There is exactly one output for each input” [2].

The authors immediately illustrate the concept with a graph but do not connect functions with
the idea of a set of ordered pairs until later during their discussion of relations. The book depicts
relations as mappings and represents them with graphs, tables, and sets of ordered pairs. Over two
hundred pages after its initial definition of function, the concept is redefined as “a relation in which
each element of the domain is paired with exactly one element of the range” [2]. At this point in the
text, the authors turn their focus away from functions for several hundred pages. When they return
to the topic, it is within the context of describing linear, quadratic, and exponential functions. For
each of these sections, the authors place a heavy emphasis on graphical representation. In this way,
the idea of functions as sets of ordered pairs is almost immediately abandoned after its first intro-
duction. The definition is likely to fade in the students’ minds as they are presented opportunities
to use or internalize the concept. This text, while adequate in its connection of functions with their
graphical representations, does not give students a holistic view of the concept.

Some educators believe that the discovery method of teaching is the most effective teaching phi-
losophy. They believe that helping students to explore a concept so that they will discover it on
their own rather than explicitly teaching the topic allows students to more successfully internalize
what they are learning. Some textbooks were written with this philosophy in mind. HRW’s Algebra:
Integrating [17] is one such text with respect to its presentation of functions. The first mention of the
word function occurs during its introduction of linear functions. A linear function is described as a
linear equation where one of the coordinates is dependent on the other. It goes on to “preview” sev-
eral different types of functions including step, exponential, and quadratic without ever specifically
defining the term function. While this text digs deeper into non-traditional functions like absolute
value, integer, and piecewise functions in a way that gives students a broader understanding of the
concept, the book fails to actually define function until towards the end of the book when it gives
the ordered pair definition. While it does elaborate on the function machine concept of function,
it leaves students with disconnects in understanding between different representations of function.
While they may know the difference between linear, quadratic, and exponential functions, they will
not likely understand functions as processes or objects.

The 1999 Glencoe Pre-Algebra book [9] takes a more straightforward approach to its introduc-
tion of function. The text covers slightly different material than the other algebra books since it is
intended for younger students, but towards the end it begins to discuss the function concept. First it
introduces relations as a set of ordered pairs, and calls the set of all the first coordinates the domain
and the set of all the second coordinates the range. Functions are then presented as a special type of
relation “in which each element of the domain is paired with exactly one element in the range” [9].
The authors then move into a lengthy discussion of graphical representations of different functions
and specifically focus on scatter plots and linear relations. One of the most notable aspects of this
book is the way that it attempts to continue the ordered pairs concept beyond one isolated part of
the text. Even in its discussion of equations, it states, “Since the solutions of an equation in two
variables are ordered pairs, such an equation describes a relation” [9]. Rather than abandoning the
relation concept after a quick cursory introduction, the authors attempt to make connections for
their young students that will help them have a deeper understanding of functions.
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A similar approach to introducing functions was taken by the 1990 Heath Algebra I [3] textbook.
Relations appear first and are established as a set of ordered pairs. The authors then demonstrate
several different representations of relations including lists of pairs, tables, and graphs. Unlike the
other algebra texts, this book details these differing representations of the relation and, by extension
function concepts, so that students are encouraged to connect and reconcile them as different facades
of the same idea. This text also defines functions directly from the relation idea. It explains,

“A relation is a function if and only if each first component in the relation is paired with
exactly one second component” [3].

With its use of the expression “if and only if,” this definition may be too complex for young students
who have not yet developed an understanding of the nuances of definitional language. While it does
not elaborate the concept as a process or leave room for the extension of the function idea to entities
other than numbers, this text does provide a straightforward function definition.

On the whole, the algebra books studied for this paper presented the function in a flat, single-
layered manner. Each book tended to describe the idea from only one perspective, often tailoring
their emphasis to the aspect that would be most useful later in the text. At first glance, such a
technique seems inadequate, however, it can be argued that providing too much information about
the complexity of functions may serve only to confuse and frustrate students. In fact, some including
Anna Sfard, whose research will be discussed later, contend that gradual instruction beginning with
a lower level of expectation for understanding will actually lead to a better understanding of the
subtleties in the future. [19]

The TAKS test determines whether or not students in Texas graduate, and with the No Child
Left Behind act, teachers in Texas feel pressure to focus their instruction solely on state-mandated
curriculum. For many students, the perception of the function presented by the TAKS test de-
termines their understanding of the concept. While algebra marks the beginning of the study of
functions, the TAKS standards mark what students are expected to know about functions by the
end of their high school careers. Function related concepts are addressed by four of the ten TAKS
objectives for the exit level mathematics test. On the July of 2004 exam, 20 of the 60 questions
concerned one of the function related objectives. This percentage of questions demonstrates the high
level of attention that the Texas Education Agency (TEA) feels the topic deserves.

The TAKS study guide was developed by the TEA as a resource primarily for students and
their parents [1]. The guide is designed specifically for struggling students and is free to students
who have previously failed the test. The book collectively addresses the test objectives by giving
explanations, practice questions, and answer keys.

Objective one states,“The student will describe functional relationships in a variety of ways” [1].
This section of the study guide introduces functions and defines function as a set of ordered pairs in
which “each x-coordinate is paired with only one y-coordinate” [1]. More significant than the actual
definition is the stress that the objective places on the student’s understanding that functions can be
represented in multiple ways. The study guide immediately explains multiple examples of different
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representations including a table, an input/output function machine, a list of ordered pairs, a graph,
and a word problem describing a functional relationship.

Objective two concerns the students’ understanding of the properties and attributes of functions.
It deals with parent functions, domains and ranges, correlation of scatterplots, and representing pat-
terns with algebraic expressions. Objective three focuses on linear functions and objective five deals
with quadratic and other nonlinear functions.

It is evident that the TEA wants students to have as broad an understanding of functions as pos-
sible. The guide, however, never encourages students to think of functions outside of the numerical
realm nor does it expose them to non-traditional functions like piecewise functions or the absolute
value function. The addition of such material might serve to confuse students more than it would
actually enhance their understanding of function. In a text designed to make concepts as simplistic
as possible, the authors may have found such material inappropriate.

Calculus marks the beginning of advanced mathematical study. Many students never take a
course in calculus, and those who do enter a course do not usually do so until their last year of
high school or during college. By the time they reach calculus, most students have been exposed
to functions for several years. The study of calculus, however, sheds new light on functions as the
ideas of differentiation and integration clarify the notion of functions as objects. The three texts
studied for this paper each use different techniques to present the concept, but while the algebra
books focused on functions as either graphs or ordered pairs, each of the calculus texts take more
of an action approach and refer to functions as rules.

In Edwards and Penney’s Calculus: Early Transcendentals Matrix Version [5], the authors ex-
plain that understanding the relationships between variables is often crucial to mathematically
analyze geometric and scientific situations. They describe that these relationships can often be ex-
pressed as formulas in which one variable is a function of another and write,

“A real-valued function f defined on a set D of real numbers is a rule that assigns to each
number x in D exactly one real number, denoted by f(x)” [5].

While this definition leaves room for a broad, process-oriented “rule” view of function, the book fo-
cuses mainly on the formula idea. This trend is natural considering that much of the time involved
in a first year calculus course revolves around learning how to differentiate and integrate functions
in their equation form.

In the quintessential reform calculus text, Calculus [7], the authors hint at two different function
definitions, both at the very beginning of the book. The first definition is basically the ordered pair
concept; however, the authors avoid using set notation or vocabulary. They write, “One quantity,
H, is a function of another, t, if each value of t has a unique value of H associated with it” [7]. This
definition sufficiently depicts the arbitrary nature of function pairings, but it fails to capture the
idea of functions as entities. In the second part of the definition, the authors tell readers to “think
of t as the input and H as the output” [7]. The input/output concept reflects the process concept
of function as it implies that somehow the input is manipulated to produce the output. The book
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then gives three examples of function representations: tables, graphs, and formulas.

Arnold Ostebee and Paul Zorn’s Calculus: From Graphical, Numerical, and Symbolic Points of
View [13], takes a similar discovery learning approach as the HRW algebra book. The text begins by
presenting and discussing five different examples of functions: an equation, a relationship expressed
in words, a piecewise function, a graph, and a table. The definition is finally presented only after
examples are discussed at which point the authors write, “A function is a rule for assigning to each
member of one set, called the domain, one member of another set, called the range” [13]. While this
definition and the examples help to dispel many common function misconceptions, the text does not
mention the set of ordered pairs definition nor does it attempt to reconcile the entity nature of a
function with the idea that functions are rules.

Generally, calculus texts seem to focus on the idea of functions as rules or formulas. Interest-
ingly, while calculus texts are designed for students of greater mathematical maturity, they avoid
using ordered pairs and set notation even more notably than the algebra texts. While they probably
avoid this notation for the sake of simplicity and to prevent confusion over vocabulary, calculus
books are capable of doing this due to the way functions are used in the course. Unfortunately, the
discrepancy in definition between levels of mathematics study cause an even greater disconnect in
students’ understandings of the function concept. The idea of function that they studied in algebra
separates itself as an entirely different entity from the function they learn about in calculus.

University students studying mathematics should achieve a broader view of functions. As they
enter more challenging courses, they will be required to think and learn about functions in new
ways, and ideally they will begin to connect the bits of isolated definitions that they have absorbed
throughout their mathematical careers thus far. In the abstract math text Mathematics: A Discrete
Introduction [16], Edward Scheinerman explains that, “Intuitively, a function is a ‘rule’ or ’mech-
anism’ that transforms one quantity into another” (158). He goes on to state that this text will
“develop a more abstract and rigorous view of functions” [16] at which point he defines functions in
terms of relations:

“A relation f is called a function provided (a,b) in f and (a,c) in f imply b=c” [16].

This definition, while very similar to some of the algebra textbook definitions, serves to connect the
various representations of functions in the minds of mature students.

5 Common Misconceptions

As the human brain receives new information, it attempts to categorize and synthesize it with its
existing knowledge base. Throughout these acts of understanding, however, students have the ten-
dency to develop incorrect assumptions and conceptions about new ideas, especially with respect to
complex concepts like functions. Several misconceptions obscure students’ perceptions of functions.
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Students often believe that functions must be continuous and differentiable in order to truly be
considered a function. Anna Sierpinska explains this phenomenon, “As, normally the first examples
of functions encountered by a student are everywhere continuous, non-differentiable in at most finite
number of points, built up of one piece of a curve in the graphical representation, given by a single
formula; such rare functions constitute, in the student’s mind, the prototype of a function” [21].
Students, when faced with a function unlike the examples that they have been taught, will hesitate
before accepting it as a function. Many students base their understanding of what a function is
on their reserve of examples rather than the definitions they have been taught. For her study on
students’ function conceptions, Professor Anna Sfard evaluated 22-25 year old university students
who had completed a foundational mathematics course covering introductory set-theory, algebra,
and calculus. She found that many students are unfamiliar with piecewise functions and tend to
view expressions defined by cases over different sections of domain as multiple functions rather than
one [19]. In a questionnaire, she asked students to state whether the following example describes a
function (x and y are natural numbers):

If x is an even number then y = 2x + 5
Otherwise (x is an odd number) y = 1− 3x.

Only 50% of the control group believed that this proposition describes a function even though
many willingly suggested that it describes two separate functions. Some students also have difficulty
accepting that a graphical representation of a discontinuous curve represents one function rather than
several. Such a perplexity is natural considering that even great mathematicians like d’Alembert
did not accept split-domain functions [19]. In fact, the idea of a non-differentiable function was so
new and disputed that in 1893 mathematician Hermite declared, “I turn away with fright and horror
from this lamentable evil of functions which do not have derivatives” [8].

Similarly, some mathematicians believed that functions must have a rule or algorithm behind
them, leading to a second common misconception. Sierpinska relates, “algebraic skill accompanied
by the belief in the power of algebra to solve almost automatically many kinds of problems, may
be an impediment to understanding the general concept of function” [21]. Students who are accus-
tomed to working with functions in algebraic expression notation may have difficulty believing that
functions may be constructed arbitrarily. Just as mathematicians prior to Dirichlet did not accept
the concept of a function as an arbitrary correspondence seriously, students fail to understand the
notion because of its abstract nature [8]. Such a function was not conjured out of necessity or great
usefulness to the world outside of mathematics, but its development was of vital importance to those
trying to understand and develop a deeper understanding of functions. In 1899 Poincaré expressed
his frustration with the new developments in thought about function, “In former times when one
invented a new function it was for a practical purpose; today one invents them purposely to show
up defects in the reasoning of our fathers and one will deduce from them only that” [8]. While
arbitrary functions may seem impractical, their existence highlights the deeper concept that alge-
braic expressions are only means of describing functions. Students, however, tend to see formulas
as things in themselves rather than as representations of other entities [19]. In her study, Sfard
presented students with the following true or false questions:

1.) Every function expresses a certain regularity (the values of x and y cannot be matched in a
completely arbitrary manner).
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2.) Every function can be expressed by a certain computational formula.

Only 6% of the students responded that both statements were false, which suggests that the
majority of the students believe that there must be an algorithm corresponding to the function in
order for it to be valid. Sfard suggests that “Not only do the students seem to think about functions
in terms of process rather than of permanent objects, but they also believe that the processes must
be algorithmic and reasonably simple” [19]. This desire for algorithmic simplicity also accounts for
students’ hesitancy to accept discontinuous and non-differentiable functions.

Sierpinska suggests that introducing students to one function represented by two different for-
mulae may help students to discriminate between the function itself and the “analytic tools” used
to describe it [21]. Unfortunately, students have a difficult time accepting that algorithms that look
different, but produce the same values, are actually the same function. When presented with the
algorithmically different functions:

N to N: f(x) = x2

and the recursively defined
g(0) = 0, g(x + 1) = g(x) + 2x + 1

students had difficulty believing that they were equivalent even though they produce the same val-
ues [19]. This misconception is tied to students’ unfamiliarity with the ordered pair definition of
function. They cannot comprehend that two different algorithms that produce the same set of
ordered pairs are in fact the same function because they cannot separate their understanding of
functions as rules.

When students are first introduced to the function concept, they are often taught the vertical
line test to check if a graph is a function. The test instructs students to slide a vertical line across
the graph they are testing. If the line ever crosses two points of the graph at once, the graph is
not a function. This technique is a helpful aid for young students who have trouble comprehending
what it means for the function to have uniqueness, however, it does not prevent students, even when
they are older, from confusing domain and range values. In fact, many students overcompensate
and hold the misconception that functions must have a one-to-one correspondence. Ed Dubinsky
and Guershon Harel describe, “It is extremely common for subjects at all levels to have difficulty
with this uniqueness condition and confuse it with the notion of one-to-one” [4].

This phenomenon may be connected to students’ lack of ability to visualize functions. While
they may remember and understand the vertical line test, the test is of little consequence without
a graph on which to employ it. Eisenberg asserts that “. . . students have a strong tendency to
think of functions algebraically rather than visually” even though visualization can be extremely
helpful [6]. Some argue that students resist visual representations because visual processing requires
higher level skills than analytical processing [6]. While analytical processing often involves only one
degree of abstraction from an expression to concrete numbers, visualization requires the ability to
evaluate an expression, develop trends, and transfer all the knowledge into a visual format. Inter-
estingly, Alexander Norman, in his study of teachers’ knowledge of functions, found that in contrast
to the students, teachers tend to rely on and prefer graphical representations of functions, especially
when determining the functionality of an expression [11]. He explains that teachers have often had a
high degree of exposure to different types of functions. They are comfortable with standard graphs
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and know how to answer a variety of questions from these graphs [11]. For students, who have had
considerably less exposure to standard graphs, visualization can be intimidating and can feel quite
foreign. Only increased exposure to graphs and visual representations will help students overcome
this reluctancy.

These misconceptions are simply the manifestation of students’ incomplete understanding of the
function concept. While misunderstanding is to be expected as students learn new concepts, the
goal of educators is to help students attain the highest possible level of understanding in the shortest
amount of time. Careful consideration of students’ cognitive processes and capabilities, as well as
attention to outside factors that contribute to misunderstanding are essential to the achievement of
this goal.

6 Function Module Proposal

From the textbook analyses, it is evident that students receive a varied and sometimes disjoint view
of the nature of functions as they progress through middle and high school. As discussed previously,
functions can be understood on three levels of abstraction: as actions, as processes, and as ob-
jects. Studies performed on college age students reveal that few have progressed beyond the action
understanding and even fewer beyond the process understanding [4] [19]. Such a lack of abstract
comprehension indicates the value of developing new ways to help students understand functions.

A possible way to approach this problem is to develop a short lesson module specifically designed
to teach students about the three conceptions of functions. The following module is designed to
consist of five one hour long sessions that fill the gaps in understanding. It is intended to be taught
to students near the end of their algebra II course. At this point, they will be quite familiar with
functions. In fact, many of the students will probably be able to produce accurate definitions and
examples of functions, but as with most topics, they probably will not have thought much about the
subtleties of functions or about their own thought processes. This new look at a familiar subject
will help students make connections and piece together ideas that have previously been separated
in their minds.

Day 1: Overview of all three abstractions
The first day of the function module begins with an interactive discussion in which students are
asked the question: what is a function? Students are encouraged to think back to all their previous
courses to produce as many different definitions as they can. The teacher makes a running list of
these definitions on the blackboard, leaving space next to each item for further notes. The teacher
serves as the facilitator for this discussion, but does not make qualitative judgements about any of
the definitions produced. Next, the students are challenged to produce examples of different types
of functions. The teacher encourages the students to think creatively to produce unique examples.
In total this discussion lasts approximately half an hour, at which point the teacher introduces
the three different levels of abstraction of the function concept. The teacher then explains that in
mathematics, an abstraction is an idea that has been generalized from another concept so that it is
less dependent on real world objects and closer to a mathematical construct. He or she then goes
on to talk through each abstraction using the function machine idea as the base to which he or she
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ties each abstraction. The action process is associated with a box on which a specific formula or
algorithm is explicitly given. The instructor emphasizes that students often start out understanding
functions only as specific rules or formulas and that this is typical of an action conception. The
process conception is represented by the same function box, however, for those who have reached
the process level of understanding, the box no longer has a specific algorithm written on it, but
instead, the process that takes place within the function machine is unknown. Lastly, the teacher
presents the students with the final conception, the object conception. The visual for this conception
actually excludes the machine altogether. The instructor explains that at the most abstract level,
functions are simply arbitrary pairings. At this point the instructor turns the class’ focus back to
the original definitions on the board and asks the students to identify which definitions fit under
each abstraction. After further discussion, the teacher chooses several of the examples brainstormed
earlier and, for homework, asks students to classify each of these examples based on the abstraction
to which they are most related: action, process, or object.

Day 2: Action conception in depth
The second day of the function module is devoted to the action conception. The instructor asks the
students to identify the action examples from the previous night’s assignment. Using these examples
as a springboard, the rest of the class is spent reviewing functions in their graphical and algebraic
forms and talking about action-related concepts like finding intercepts, maxima, and minima. While
much of the material covered in this class is review, students are encouraged to use this time to
cement and refine their base knowledge. For homework, students are assigned review problems from
various sections of their textbook dealing with functions and different applications of functions.
These may include problems dealing with finding function values for given inputs on graphs or with
equations.

Day 3: Process conception in depth
During the third day of instruction, students examine what it means to view functions from a process
point of view. The teacher begins the class by referring to the examples from day one that have been
deemed process examples. The overlap and subtle distinction between action and process examples
may result in difficulty for the student in identifying these. The instructor discusses these difficulties
and tries to help students understand that the significance of the process conception lies mainly in
the students’ ability to broaden their understanding of what functions can be. The teacher then
spends some time discussing processes outside the type of algebraic manipulations typically studied
by mathematics students. These functions may include recursive formulas, computer algorithms,
and real-life conditional statements. The last part of the period is devoted to reviewing transfor-
mations on generalized linear, quadratic, and exponential functions. Students are taught that the
ability to perform these transformations is a significant step in the abstraction of functions. Students
realize that they are doing more than plugging numbers into equations, but rather, they are able
to perform processes on the functions themselves. For homework, the teacher selects and assigns
several problems dealing with this conception. These may include problems in which the students
are given a table of inputs and outputs and must determine the process that the input underwent
to become the output. Students may also be asked to produce inputs and outputs from a graphical
representation of a function. Some of the problems should also be devoted to transformations of
linear, quadratic, and exponential functions.

Day 4: Object conception in depth
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The fourth day of this module is concerned with building a function definition from the relation
concept. While the topic of relations should be review for the students, many will probably have
only a vague recollection of it. The teacher defines relations and then explains that functions are
a specific kind of relation in which each x coordinate is paired with only one y. At this point, the
instructor also introduces the concepts of onto and one-to-one and discusses in depth about domain
and co-domain. The instructor introduces students to the graphical representations of these pairings
consisting of circles to represent the two sets between which the mapping occurs and arrows connect-
ing each pair of elements. The instructor is careful to emphasize that these pairs do not necessarily
have to have a rule that determines them, but that those that do can still be represented in this
fashion. For students the equation f(x) = 3x + 2, where the domain is the real numbers, may seem
impossible to represent as a set of ordered pairs. Astute students will realize that simply listing a
few ordered pairs that satisfy this equation will not actually accurately depict the function. The
instructor, however, describes that (x, 3x + 2) actually represents the same function in ordered-pair
notation. The teacher also spends some time discussing inverse functions. Students are encouraged
to make observations about what types (i.e. one-to-one, onto) of functions have inverses. For home-
work, the students are assigned several problems dealing with sets of ordered-pairs and questions of
whether functions are onto, one-to-one, and if they have inverses.

Day 5: Special functions and wrap-up
The final day in this module is spent discussing special examples of functions that highlight im-
portant aspects of the function concept. The instructor begins by showing students examples of
functions whose inputs and outputs are not numbers. An example of such a function is a table with
a list of the people in the class and their favorite colors. Next, the teacher introduces the Dirichlet
function as a means of showing students that functions can be discontinuous. The students will
likely have difficulty understanding this function particularly due to the fact that it cannot be vi-
sualized or graphically displayed. Lastly, the teacher presents an example of two different processes
that represent the same function. This example illustrates how the difference between the process
and object conceptions can completely alter one’s view of a specific function. While someone with
a process conception would view these functions as different, people with object conceptions would
readily agree that they are the same. The instructor ends the module by allowing students to discuss
things that confuse them about functions. For homework, the students must produce and express a
function from the action, process, and object conception.

7 Conclusion

Functions play an important role in all of mathematics. They can be found in every mathemat-
ics course from pre-algebra through graduate studies. The development of the idea now known as
function has a long history only matched in complexity by the many different ways that functions
can be represented. Surface familiarity with concepts of such complexity, however, often leads to
misunderstanding and misconceptions. Researchers surmise that students must learn such concepts
slowly and with careful attention to each level of understanding before new abstractions can be
grasped. Teachers and textbooks tend to send students different signals regarding functions and
many students, upon reaching college, have disjoint perceptions about functions. These have often
been constructed by students from the examples with which they are most familiar rather than the
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definitions that they have been taught. While developmental characteristics hinder young students
from fully grasping the concept, the author believes that with careful and deliberate instruction high
school juniors can be confronted with the idea of function at its deepest level of abstraction.

References

[1] Texas Education Agency. TAKS Study Guide: Grade 11 Exit Level Mathematics and Science.
Texas Education Agency, Texas, 2003.

[2] William Collins, Gilbert Cuevas, and et. al. Algebra 1: Integration, Applications, Connections,
volume 1. Glencoe/McGraw-Hill, USA, 1999.

[3] Clyde A. Dilley, Steven P. Meiring, John E. Tarr, and Ross Taylor. Algebra 1. D.C. Heath and
Company, USA, 1990.

[4] Ed Dubinsky and Guershon Harel. The nature of the process conception of function. In
Ed Dubinsky and Guershon Harel, editors, The Concept of Function: Aspects of Epistemology
and Pedagogy, pages 85–106. Mathematical Association of America, USA, 1992.

[5] C. Henry Edwards and David E. Penney. Calculus: Early Transcendentals Matrix Version.
Prentice Hall, Upper Saddle River, New Jersey 07458, 6 edition, 2002.

[6] Theodore Eisenberg. On the development of a sense for functions. In Guershon Harel and
Ed Dubinsky, editors, The Concept of Function: Aspects of Epistemology and Pedagogy, pages
153–174. Mathematical Association of America, USA, 1992.

[7] Deborah Hughes-Hallet, Andrew Gleason, and et. al. Calculus. John Wiley and Sons, USA,
1994.

[8] Israel Kleiner. Evolution of the function concept: A brief survey. The College Mathematics.,
20(4):282–300, 1989.

[9] William Leschensky, Carol Malloy, and et. al. Pre-Algebra: An Integrated Transition to Algebra
and Geometry. Glencoe/McGraw-Hill, USA, 1999.

[10] Mercedes McGowen, Phil DeMarois, and David Tall. Using the function machine as a cogni-
tive root. In Proceedings of the 22nd Annual Meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education, pages 247–254. Tucson, AZ,
2000.

[11] Alexander Norman. Teachers’ mathematical knowledge of the concept of function. In Guer-
shon Harel and Ed Dubinsky, editors, The Concept of Function: Aspects of Epistemology and
Pedagogy, pages 215–232. Mathematical Association of America, USA, 1992.

[12] J J O’Connor and E F Robertson. The function concept. http://www-history.mcs.
st-andrews.ac.uk/HistTopics/Functions.html, October 2005.

[13] Arnold Ostebee and Paul Zorn. Calculus: From Graphical, Numerical, and Symbolic Points of
View. Hartcour Brace and Company: Saunders College Publishing, USA, 1997.

19



[14] Jean Piaget and et. al. Epistemology and Psychology of Functions. D. Reidel Publishing Com-
pany, Dordrecht, Holland, 1977.

[15] Joao Pedro Ponte. The history of the concept of function and some educational implications.
The Mathematics Educator, 3(2), Winter 1992.

[16] Edward R. Scheinerman. Mathematics: A Discrete Introduction. Brooks/Cole, USA, 2000.

[17] James E. Schultz, Kathleen A. Hollowell, and Jr. Wade Ellis. Algebra: Integrating. Holt,
Rinehart, and Winston, USA, 1997.

[18] Annie Selden and John Selden. Research perspectives on conceptions of function summary and
overview. In Guershon Harel and Ed Dubinsky, editors, The Concept of Function: Aspects of
Epistemology and Pedagogy, pages 1–16. Mathematical Association of America, USA, 1992.

[19] Anna Sfard. Operational origins of mathematical objects and the quandry of reification the case
of function. In Guershon Harel and Ed Dubinsky, editors, The Concept of Function: Aspects
of Epistemology and Pedagogy, page 5984. Mathematical Association of America, USA, 1992.

[20] Abe Shenitzer and N. Luzin. Function: Part i. The American Mathematical Monthly, 105(1):59–
67, Jan. 1998.

[21] Anna Sierpinska. On understanding the notion of function. In Guershon Harel and Ed Du-
binsky, editors, The Concept of Function: Aspects of Epistemology and Pedagogy, pages 25–58.
Mathematical Association of America, USA, 1992.

20


