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Chapter 1

Introduction

The use of Dynamic Programming in economic modelling has revolutionized
economic thought and has allowed the field to tackle interesting problems such as
those approached by Edward Prescott and Finn Kydland, the 2004 Nobel Laureates
in Economic Science. The award was presented “for their contributions to dynamic
macroeconomics: the time consistency of economic policy and the driving forces be-
hind business cycles” (Nobel, 2004). The models they pioneered are now ubiquitous
and are an indispensable part of every economist’s toolbox. Moreover, such topics
are given high priority in most doctoral programs in Economics. It is an apparent
contradiction that these models rarely manage to find their way into undergraduate
curricula in Economics programs.

The mathematical tools available to undergraduates majoring in Economics
is, in most cases, limited by the course offerings of the Mathematics department.
In order to include dynamic models in undergraduate Economics programs, some
treatment of dynamic programming must be introduced in the course offerings of
Mathematics departments. Although the author’s main interest is Economics, dy-
namic programming spans several disciplines in application including Astronomy,
Physics, and Engineering. Students of these disciplines would benefit from under-
standing the applications of these methods to Economics as much as students of
other disciplines benefit from examples drawn from Physics and Engineering that
are presented in most Calculus courses.

This guide is an introduction to the field of dynamic programming that bal-
ances rigor and applications. Although it is not a comprehensive survey of the field,
it encompasses a rigorous development of the theory that is sufficient to tackle in-
teresting problems. The attempt is to make this material accessible to advanced
undergraduate students who have knowledge of mathematical optimization or real
analysis. The author shares the point of view of McShane (1989), who opines “or-
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dinary undergraduate students of mathematics should be taught a form of control
theory simple enough to be understood and general enough to be applicable to many
problems.”

The first objective is to contextualize some of the concepts used in the devel-
opment of the theory behind dynamic programming in terms familiar to the target
audience. These ideas include the use of correspondences as a generalized concept
of a function and the characterization of continuity to such correspondences. The
second objective is to present a rigorous development of the results that validate the
use of these methods. The motivation to present this development is twofold. First,
it is desirable to establish the results. Second, the approach followed is attractive
in concept and provides some simple yet interesting ways to attack problems that
might arise elsewhere. The third and final objective is to understand, by considering
an application, the usefulness of the theory developed. Through this example we
aim to understand why the development follows the path it does. We hope this
guide serves as an introductory overview that will encourage the reader to further
pursue the study of dynamic programming.

The remainder of the chapter is organized as follows. Section 1.1 gives a brief
introduction to some of the main references associated with dynamic programming,
outlines the texts that are central in our development, and suggests some preparatory
reading. Section 1.2 presents a brief historical account of the growth of the field.
Section 1.3 presents an outline of some applications of the methods of dynamic
programming and gives some suggestions as to how the reader might delve into the
field after understanding what is developed in this treatment.

1.1 Literature Review

Several approaches to the study of dynamic programming exist. These include
the Calculus of Variations, which gave birth to Optimal Control Theory, as well as
other recursive methods of Dynamic Programming. These methods are all related
and coincide in the idea of “thinking in states,” as Ljungqvist and Sargent (2004)
note. By the concept of states, we mean that a problem of inter-temporal optimiza-
tion will be affected, or have a different state, in a future period depending on the
solution achieved in this period. The recursiveness of states links these problems
through time making these methods a natural approach to problems in the fields
of Physics and Economics. For our purposes we refer to dynamic programming,
control theory, and recursive methods as the same concept giving preference to the
term dynamic programming. One of the goals of this project is to contextualize
these approaches both historically and topically and find a suitable approach to the
material.
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In exploring the field of dynamic programming from an applications point
of view, the methods presented in most books like Hoy et al. (2001), Ljungqvist
and Sargent (2004), and Shone (2002) are “näıve,” as McShane (1989) notes, where
applications are discussed with no existence theorems being established. Conversely,
the books that develop the theory are overly dense and sometimes too involved to
be approachable by an undergraduate student. Finally, recent developments in
Stochastic Control Theory, such as those presented in Yong and Zhou (1999) and
Young (2000), make an introduction to this field even more daunting because they
rely on Measure Theory.

As an undergraduate seeking to understand the results that prove the methods
of dynamic programming, the author would have liked to have found a treatment
that combines both rigor and applications. Given that the field is young, the original
developments of the material are still accessible and relevant. Richard Bellman first
coined the title of dynamic programming to the study of these methods in his 1957
monograph (Bellman, 1957). It is a consensus between several authors writing in
this field that his original piece still provides much insight and is an enjoyable
read. Pontryagin et al. (1964) present the other classic work in the field, which was
published shortly afterwards and uses an approach that relies on partial differential
equations. The approaches used by the two classic treatments above view time as a
continuous process and employ several methods such as those of partial differential
equations to develop the material. These characteristics made these developments
unappealing since most data and applications in Economics view time as a discrete
process.

The treatment presented in Stokey et al. (1989) serves as main reference. We
follow this development since it has several desirable attributes with respect to ap-
plications and development of the material. Stokey et al. (1989) first present the
results of deterministic dynamic programming. Several examples of applications are
then presented in abstract form. A basic treatment of Measure Theory is then intro-
duced and is sufficient to develop the results of stochastic dynamic programming,
followed by some applications of these methods to more realistic examples. This
development serves the authors’ purpose of having this book be a reference guide
for researches in the area. As such, it is inadequate to provide an introduction to
undergraduates with an interest in the field, but is a great source of results and
insight that will drive this project.

The approach followed in Stokey et al. (1989) is useful since the reader may be
familiarized with the idea of thinking in “states” as well as develop an appreciation
for the field. In economics, the concept of states is analogue to the an agent’s
decision-set. At every time period, the agent being modelled chooses one decision
from its decision-set. This decision affects the possibilities available to him in the
next period. Following this process recursively, we have that the choices available
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to an agent at any point in time depend on the original state, and the choices made
at every preceding time period. By developing the theory of deterministic dynamic
programming, Stokey et al. (1989) habituate the reader to thinking in states through
the use of correspondences.

In order to contextualize the material in Stokey et al. (1989), we rely on results
presented in a typical undergraduate Mathematics program. Suggested prerequisites
include the sections on mathematical optimization, metric spaces, and real analysis
as presented in Holder (2005), Bryant (1985), Rudin (1976), and Royden (1988)
respectively. Finally, other results more particular to economics are drawn from
Mas-Colell et al. (1995) and Chiang (1984).

1.2 Historical Motivation

As mentioned above, the contributions of Bellman (1957) and Pontryagin et al.
(1964) formally described the results that solidified the study of these methods.
Although these contribution were made recently, the problems they address have
been attacked by some of the first mathematicians in history. The contributions
of these mathematicians provided some important results and influenced the work
of their modern counterparts, although they did not establish the existence results
formally of Pontryagin et al. (1964) or the insight of separating the infinite process
into a one-stage control problem as developed by Bellman (1957).

A comprehensive treatment of the history of dynamic programming and its
precursors is beyond the scope of this guide. However, a short review of the accom-
plishments is warranted. Ferguson (2004) traces the “development of the theory of
the calculus of variations, from its roots in the work of Greek thinkers and continuing
through to the Renaissance.” This study commences by setting up some problems
studies in antiquity that seem to be direct precedents of the study of the calculus
of variations. Some of these include Hero’s principle of least time and the isopara-
metric problems of Pappus. Ferguson (2004) then follows the contributions of great
mathematicians such as Fermat, Newton, as well as Bernoulli’s postulation of the
brachistochrone problem, “the problem concerning the shortest distance between
two [accelerating] points,” (Fomin and Gelfand, 2000) in an infamous competition.
The first real problem of this kind to be formulated and solved was posed by New-
ton in his “famous work on mechanics methods, Philosophiae naturalis principia
mathematica (1685) [· · · ], thus marking the birth of the theory of the calculus of
variations”(Ferguson, 2004). Several other advances would facilitate the develop-
ment of the current theory of dynamic programming. One example of these is the
conception of the first recursive function by Kurt Gödel (Goldstein, 2005).
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Ferguson (2004) proceeds to tell the story of the correspondence between Euler
and Lagrange and how their interaction fomented the derivation of the Euler equa-
tions, which is the goal of the final section in Chapter 3. The last topic in this study
is the emanation of optimal control theory from the calculus of variations. McShane
(1989) presents a different perspective regarding the historical development of dy-
namic programming. This study is centered on the history of optimal control theory,
and has a less forgiving perspective.

McShane (1989) recognizes, as does Ferguson (2004), the lack of philosophical
rigor in the calculus of variations and criticizes it more pungently. When commenting
on the treatment of the calculus of variations in Fomin and Gelfand (2000) he notes
that, “if the calculus of variations is mathematics, our conclusions must be deducible
logically from the hypothesis, with no use of anything that is ‘clear from the physical
meaning’ ”(McShane, 1989). In the same way McShane (1989) chastises some of the
early developments in the field of calculus of variations, he argues later developments
were mislead. He states:

The whole subject was introverted. We who were working in it were striving
to advance the theory of the calculus of variations as an end in itself, without
attention to its relation with other fields of activity (McShane, 1989).

In the perspective of McShane (1989), the contributions of Pontryagin et al. (1964)
changed the focus of the calculus of variations by focusing on problems in Engineer-
ing and Economics. “In the process, they incidentally introduced new and important
ideas into the calculus of variations” (McShane, 1989).

Earlier contributions by Bellman (1957) and others made these methods ripe
for the application in Economics. As Edward Prescott noted in his address when
receiving the Nobel Prize, it took several years before he and others would rein-
vent the existing fields of optimal control theory and dynamic optimization with an
Economics flavor (Nobel, 2004).

1.3 Applications and Extensions

It is desirable to demonstrate the power of these methods by considering ap-
plications. Given the nature of this project, we examine in detail one problem, that
of deterministic economic growth. The approach taken in the final chapter of this
guide is fairly abstract, with the goal of this chapter being to elucidate some intu-
ition into why the assumptions made to obtain the desired results are consistent with
economic theory. However, there are numerous applications that are more concrete
and that might help the reader establish a better understanding of the material.
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Ljungqvist and Sargent (2004) present a plethora of applications in economics
that might quench the reader’s thirst for a less rigorous development. Fischer and
Blanchard (1989) present a thorough treatment of modern macroeconomics, in which
many of the models presented rely on recursive methods to provide insight. Simi-
larly, Sala-i-Martin (2000) presents notes from graduate courses in Economic Growth
that assumes that students have the ability to solve problems of recursive nature.
Barro and Sala-i-Martin (2003) reach a high point in the study of topics related to
Economic Growth and present several models that assume the student is familiar
with the concepts of dynamic programming. Aghion and Griffith (2005) extend
certain growth topics to include the idea of endogenous growth and technological
development.

Other applications outside economics were considered for this guide. The
most entertaining applies the Bellman equation to the study of optimal policies in
sports. Romer (2002) applies the Bellman equation and finds an optimal policy for
conversion plays in football. Several other applications in the fields of Engineering
and Physics exist but were not considered.

The nature of this project makes a comprehensive treatment of the field of
dynamic programming almost impossible. In this treatment, several interesting ex-
tensions of the material will not be included but are worth mentioning. First, the
use of computational methods to find numerical solutions to stochastic optimal con-
trol problems in economics has become ubiquitous in recent years. Diáz-Giménez
(2001) presents the method of linear quadratic approximations to evaluate dynamic
programs with macroeconomic data. Another topic of interest is the stability prop-
erties of policy functions derived using the methods presented in this guide. Stokey
et al. (1989) and Vohra (2005) present treatments of the study of dynamic stability
and interesting applications of these results.

The following Chapters are organized as follows. Chapter 2 introduces the
mathematical background necessary for the development of the theory of dynamic
programming in Chapter 3, and it contextualizes it within other concepts advanced
undergraduates should be familiar with. Chapter 3 develops the theory of determin-
istic dynamic programming following the development to the derivation of the Euler
equations. Finally, Chapter 4 presents some insight into the necessity of the assump-
tions established in Chapter 3 through the application of dynamic programming to
the analysis of deterministic economics growth in an abstract form.



Chapter 2

Continuities

In this Chapter we consider some material that is preliminary to the results
that follow in Chapter 3, and that is requisite to the development of dynamic pro-
gramming. The main focus of this Chapter is the study of several definitions of
continuities for functions followed by the characterization of continuity for point-
to-set mappings, or what we call correspondences. Much of the development that
follows rests on a firm understanding of the concepts of upper and lower-hemi con-
tinuities.

We begin section 2.1 by considering a general definition of functional continu-
ity. We then relate this classic definition of continuity to the stronger property of
uniform continuity and upper and lower semi continuities for functions. Section 2.2
introduces the concept of correspondences and relates several versions of continuity
of correspondences to the analog properties of functions. The section concludes with
two theorems that are useful in the proceeding section.

2.1 Functional Continuity

The following is a classical definition of functional continuity and is typically
introduced in a Real Analysis course.

Definition 1. (Continuous Functions.) Let (X, dX) and (Y, dY) be metric spaces;
suppose E ⊂ X, and f maps E into Y . Then f is said to be continuous at p if for
every ε > 0 there exists δ > 0 such that

dX(x, p) < δ implies dY(f(x), f(p)) < ε.

As presented in Rudin (1976), Royden (1988), and other sources, continuity is
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more generally defined as a topological concept. For our purposes there is little gain
from such a general development, and we restrict the generality of our development.
A property that is stronger than continuity is that of uniform continuity.

Definition 2. (Uniform Continuity.) Let f be a mapping of a metric space (X, dX)
into a metric space (Y, dY). We say that f is uniformly continuous on X if for every
ε > 0there exists δ > 0 such that

dX(q, p) < δ implies dY(f(q), f(p)) < ε.

Two differences exists between Definitions 1 and 2. First, the δ used in De-
finition 1 depend on the point p. Secondly, the δ used in Definition 2 can be used
for every pair of points such that dX(p, q) < δ. We say that uniform continuity is a
stronger property since every function with this property also has the property of
functional continuity. Theorem 1 below relates the concepts of functional continuity
with uniform continuity through the requirement that the space X be compact.

Theorem 1. Let f be a continuous mapping of a compact metric space (X, dX) into
a metric space (Y, dY). Then f is uniformly continuous in X .

Proof. Let ε > 0. Then ∀ x ∈ E, ∃ δx > 0 3 f(Nδx/2(x)) ⊆ Nε/2(f(x)). Since
{Nδx/2(x) : x ∈ E} is an open cover of E, and since A is compact, there exists a finite
subcover, say {Nδxi/2(xi) : i = 1, 2, · · · , n}. Define δ = min{δxi

/2 : i = 1, 2, · · · , n}.
Let p, q ∈ E be 3 d(p, q) < δ. Then p ∈ Nδ(xi) for some 1 ≤ j ≤ n. Also,

d(q, xj) ≤ d(p, q) + d(p, xj)

< δ + δxj
/2

< δxj
.

So,
d(f(p), f(q)) ≤ d(f(p), f(xj)) + d(f(xj), f(q)) < ε.

¡

We proceed by introducing the concept of Lipschitz Continuity. This continuity
essentially states that the difference in function values is bounded proportionally to
the distance between the arguments.

Definition 3. (Lipschitz Continuity.) Let f be a mapping of a metric space (X, dX)
into a metric space (Y, dY). We say that f is Lipschitz continuous on X if ∃ λ > 0
such that for every x, y ∈ X,

dY(f(x), f(y)) < λdX(x, y).
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Theorem 2 relates the concepts introduced in Definition 3 to Definitions 1
and 2. Namely, it states that a function that is Lipschitz continuous is uniformly
continuous and thus continuous.

Theorem 2. Let f be a mapping of a metric space (X, dX) into a metric space Y with
the property of Lipschitz continuity. Then f is uniformly continuous.

Proof. Let f be as stated and define λ > 0 to be 3

dY(f(x), f(y)) < λdX(x, y).

Let ε > 0 and define δ = ε
λ
. It follows that for q ∈ Nδ(p),

dY(f(x), f(y)) < λdX(x, y)

< λδ = ε.

Since δ was chosen independently of p, we have the desired result. ¡

The following definitions of continuities are not directly related to Lipschitz
continuity. Instead, we view these as relaxed instances of Definition 1. Moreover, by
the definition of the lim sup and lim inf, these have the advantage of always existing
in the extended real numbers.

Definition 4. (Functional Upper Semi-Continuity.) The function f is said to be
upper semi-continuous at x0 if

lim sup
x→x0

f(x) ≤ f(x0).

Definition 5. (Functional Lower Semi-Continuity.) The function f is said to be
lower semi-continuous at x0 if

lim inf
x→x0

f(x) ≥ f(x0).

The claim above that the functional definitions of upper and lower semi-
continuities are weaker than Definition 1 can be substantiated by verifying that both
limitsinequalities in the definitions above hold when a function has the property of
being continuous. The next theorem provides a way to appreciate this relationship.

Theorem 3. Let f be a mapping of a metric space (X, dX) into a metric space (Y, dY)
be such that it is both upper and lower semi-continuous. Then, f is continuous.
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Proof. Let x0 ∈ X, and f be as stated. From the definitions above, it follows that

lim inf
x→x0

f(x) ≥ f(x0) ≥ lim sup
x→x0

f(x).

From the definitions of the lim inf and lim sup we always have the opposite rela-
tionship. We thus have that lim inf

x→x0

f(x) = lim sup
x→x0

f(x), and the function f is

continuous at x0. ¡

2.2 Continuities of Correspondences

Our focus now shifts to the study of correspondences, or what is commonly
known as point-to-set maps. In the same way we approached functional continuities,
we study several definitions of continuities for correspondences. We further provide
insight as to how these properties relate to those introduced in the previous section.
We first provide a formal definition of correspondences.

Definition 6. (Correspondence) A correspondence Γ : X → Y is a relation that
assigns a set Γ(x) ⊆ Y to each x ∈ X.

Correspondences prove to be valuable in the study of dynamic programming
since they provide a natural way to relate the state in the present period to the
state in the future period. To acclimate the reader to the ideas of lower and upper
hemi-continuity of a correspondence, we first introduce the concepts of lower and
upper semi-continuity.

Definition 7. (Upper Semi-Continuity for Correspondences) The correspondence Γ
is upper semi-continuous at x0 if ∀ ε > 0, ∃ δ > 0 3

x ∈ Nδ(x) implies Γ(x) ⊆
⋃

y∈Γ(x0)

Nε(y).

The word upper in Definition 7 makes sense since the ε neighborhood of the
target set is an upper-approximation of the local images.

Definition 8. (Lower Semi-Continuity for Correspondences) The correspondence Γ
is lower semi-continuous if ∀ ε > 0,∃ δ > 0 3

x ∈ Nδ(x) implies Γ(x0) ⊆
⋃

y∈Γ(x)

Nε(y).
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Conversely, Definition 8 says that the target set is within an ε neighborhood of
the local images. The following theorem relates upper and lower semi-continuity of
a function and correspondences is found in Holder (2005). The proof of this theorem
is omitted for brevity.

Theorem 4. The function f : X → IR is upper or lower semi-continuous if and
only if the correspondence Γ : X→ IR defined by Γ(x) = {y : y ≤ f(x)} is upper or
lower semi-continuous, respectively.

Next, we introduce the concept of a graph of a correspondence. The graph of
a correspondence is often used to establish related properties of the correspondence.

Definition 9. (Graph) The graph of a correspondence Γ is the set

A = {(x, y) ∈ X× Y : y ∈ Γ(x)}.

Having introduced several continuities, we now introduce the concept of up-
per hemi-continuity. We establish the desired definition only for compact-valued
correspondences. By compact valued we mean that for any x ∈ X, the set Γ(x) is
compact. As Stokey et al. (1989) note, “a general definition of u.h.c. for all corre-
spondences is available, but [· · · ] its wider scope is never useful” for our purposes.

Definition 10. (Upper Hemi-Continuity.) A compact-valued correspondence Γ is
upper hemi-continuous (u.h.c.) at x if Γ(x) is nonempty and if, for every se-
quence xn → x and every sequence {yn} 3 yn ∈ Γ(xn) ∀ n, ∃ a convergent subse-
quence of {yn} whose limit point y is in Γ(x).

The following theorem establishes a relationship between the concept of u.h.c.
and functional continuity. We attribute the following theorem to Mas-Colell et al.
(1995), who note that u.h.c. “ can be thought of as a natural generalization of the
notion of continuity for functions.”

Theorem 5. A correspondence Γ is single-valued and u.h.c. if and only if it is also
continuous in the functional sense.

Proof. If Γ is continuous as a function, we have that its graph is closed. Moreover,
since the continuous mappings of compact sets is compact, and therefore bounded
as well. Thus, Γ is upper hemi-continuous as a correspondence.

Suppose now that Γ is upper hemi-continuous as a correspondence and consider
any sequence xn → x ∈ A with xn ∈ A ∀ n. Define S = {xn : n = 1, 2, · · · } ∪ {x}.
Now, let ε > 0 and set N ∈ IN to be such that dX(x, xn) < ε ∀ n ≥ N . Define r to
be such that

r > max{||x1||, ||x2||, · · · , ||xN ||, ||x||+ ε}.
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We have that ||x|| < r, ∀ x ∈ S, so that S is bounded. Because S is also closed,
it follows that S is compact, by the Heine-Borel theorem. By hypothesis, Γ(S) is
bounded, and so Γ(S) is compact. Assume for the sake of obtaining a contradiction
that the sequence {Γ(xn)} ⊂ Γ(S) does not converge to Γ(x). Extract a subsequence
xnk

→ x such that Γ(xnk
) → y for some y ∈ Γ(S) 3 y 6= Γ(x). Then the graph of Γ

is not closed, which contradicts the property of u.h.c. as a correspondence. ¡

The use of single valued correspondences would destroy the motivation to
introduce the concept of correspondences and in general we do no consider them as
single valued. Nonetheless, the theorem above helps achieve the concept of u.h.c.
The second type of continuity, lower hemi-continuity for correspondences, presents
another generalization of the concept of functional continuity for correspondences.

Definition 11. (Lower Hemi-Continuity.) A correspondence Γ is lower hemi-
continuous (l.h.c.) at x if Γ(x) is nonempty and if, for every y ∈ Γ(x) and every
xn → x, ∃ N ≥ 1 and a sequence {yn}∞n=N such that yn → y and yn ∈ Γ(x), ∀ n ≥
N .

The theorem below establishes a result parallel to that relating u.h.c. to func-
tional continuity presented in Theorem 5. For the purpose of brevity, a proof is
omitted.

Theorem 6. If a correspondence Γ is single valued and l.h.c. is also continuous in
the functional sense.

The study of l.h.c. and u.h.c. on their own is required to address some of the
topics covered in the following section. Figure 2.1 shows in panel (a) a lower hemi-
correspondence that is not upper hemi-continuous, and in panel (b) an upper hemi-
continuous correspondence that is not lower hemo-continuous. The images provide
intuition about the corresponding definitions. A general concept of continuity of a
correspondence is now introduced.

Definition 12. (Continuity of Correspondences) A correspondence Γ : X → Y is
continuous at x ∈ X if it is both l.h.c. and u.h.c.

The proof of the following theorem uses the fact that if the graph of the
correspondence is closed, then the graph is close-valued. That is, for every x ∈ X,
the set Γ(x) is a closed set.
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Figure 2.1: Upper and lower hemi-continuity Mas-Colell et al. (1995).

Theorem 7. Let Γ be a nonempty-valued correspondence, and let A be the graph
of Γ. Suppose that A is closed, and that for a bounded set X̂ ⊆ X, the set Γ(X̂) is
bounded. Then Γ is compact-valued and u.h.c.

Proof. For any x ∈ X we have that since A is closed, it follows that Γ(x) is closed as
well. Moreover, since Γ is compact-valued by hypothesis, the Heine-Borel theorem
yields compactness when restricting X to subsets of IRk.

Let x̂ ∈ X, and let {xn} ⊂ X be such that xn → x̂. Since Γ(xn) 6= ∅, choose
yn ∈ Γ(xn) ∀ n. Since xn → x, there is a bounded set X̂ ⊆ X containing {xn} and x̂.
By hypothesis, Γ(X̂) is bounded. Hence, {yn} ⊆ Γ(X̂) has a convergent subsequence,
call it {yn}; let ŷ be the limits point of the subsequence. Then, {(xn, yn)} is a
convergent subsequence in A converging to (x̂, ŷ); since A is closed, it follows that
(x̂, ŷ) ∈ A. Hence ŷ ∈ Γ(x̂), so Γ is u.h.c. at x̂. Since x̂ was chosen arbitrarily, we
obtain the result. ¡

The last theorem in this section establishes another relationship between a
correspondence and its graph. In this case, the convexity of the graph A of the
correspondence Γ is used to show Γ is u.h.c. under a set of circumstances.

Theorem 8. Let Γ be a nonempty-valued correspondence, and let A be the graph of
Γ. Suppose that A is convex, and that for a bounded set X̂ ⊆ X, there is a bounded
set Ŷ ⊆ Y 3 Γ(x) ∩ Ŷ 6= ∅, ∀ x ∈ X̂. Then Γ is l.h.c. at every interior point of X .

Proof. Choose x̂ ∈ X\X′; ŷ ∈ Γ(x̂); and {xn} ⊂ X with xn → x. Let ε > 0 be such
that X̂ = Nε(x̂). Note that for some N ≥ 1, xn ∈ X̂, ∀ n; without loss of generality
we take N = 1.
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Let D denote the boundary of the set X̂. Every point xn has at least one
representation as a convex combination of x̂ and a point in D. For each n, choose
αn ∈ [0, 1] and dn ∈ D such that

xn = αndn + (1− αn)x̂.

D is a bounded set and xn → x, so αn → 0. Choose Ŷ such that Γ(x)∩ Ŷ 6= ∅,∀ x ∈
X̂. Then for each n, choose ŷn ∈ Γ(dn) ∩ Ŷ, and define

yn = αnŷn + (1− αn)ŷ.

Since (dn, ŷn) ∈ A, ∀ n, (x̂, ŷ) ∈ A, and A is convex, it follows that (xn, yn) ∈
A, ∀ n. Moreover, since αn → 0 and all of the ŷn’s lie in the bounded set Ŷ, it
follows that yn → ŷ. Hence {(xn, yn)} lies in A and converges to (x̂, ŷ). ¡

This chapter provided the reader with the concepts of upper and lower hemi-
continuities for correspondences as well presenting some results that will prove valu-
able in the next section. We have studied correspondences and different types of
continuities. The following section uses the concepts introduced so far to establish
the foundations of dynamic programming.



Chapter 3

Dynamic Programming

In this Chapter, we establish the foundations of dynamic programming. In
Section 3.1 we first consider topics of analytical nature like that of a contraction
mapping and a fixed point. These topics, as well as those developed in prior sec-
tions, lead to the establishment of the Theorem of the Maximum in section 3.2. In
Section 3.3 we define the sequence problem and the functional equation problem.
We then establish the congruency of their solutions under the assumption that the
return function F is bounded. Finally, Section 3.4 explores the classical variational
approach to dynamic problems and established the sufficiency of the Euler equations
together with the transversality condition.

3.1 Contraction Mappings and Fixed Points

This section is devoted to the study of fixed points. Although fixed points can be
guaranteed for many function types, we focus on those obtained from a contraction
mapping. The formal definition of a fixed point and contraction follow.

Definition 13. (Fixed Point) A function mapping T : X → X has a fixed point if
for some x̄ ∈ X, T (̄x) = x̄. Then, x̄ is called a fixed point of T .

Definition 14. (Contraction) Let (X, dX) be a metric space and T : X → X be a
function mapping of X into itself. T is a contraction mapping (with modulus β)
if for some β ∈ (0, 1),

dX(T (x), T (y)) ≤ βdX(x, y), ∀ x, y ∈ X.

The following theorem relates the two concepts introduced above by estab-
lishing the fact that contraction mappings always have fixed points. The theorem

15
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below examines complete spaces. That is, spaces in which every Cauchy sequence
is a convergent sequence.

Theorem 9. (Contraction Mapping Theorem) If (X, dX) is a complete metric space
and T : X→ X is a contraction with modulus β, then

1. T has exactly one fixed point x̂ ∈ X, and

2. for any x0 ∈ X, dX(T
n(x0), x) ≤ βndX(x0, x), n = 1, 2, · · · ,

where we define the iterates of T, the mappings {T n} by T 0(x) = x, and
T n = T (T n−1(x)), n = 1, 2, · · · , n.

Proof. 1. We first prove the existence of a fixed point. Choose v0 ∈ X, and define
{vn}∞n=0 by vn+1 = T (vn), so that vn = T n(v). By the contraction mapping
property of T,

dX(v2, v1) = dX(T (v1), T (v0)) ≤ βdX(v1, v0).

By induction and the triangle inequality, we have that for any m > n

dX(vm, vn) ≤ dX(vm, vm−1) + · · ·+ dX(vn+1, vn)

≤ [βm−1 + · · ·+ βn]dX(v1, v0)

= βn[βm−n−1 + · · ·+ β + 1]dX(v1, v0)

≤ βn

1− β
dX(v1, v0),

where the fourth inequality holds from

βm−n−1 + · · ·+ β + 1 =
m−n−1∑

n=1

βn ≤
∞∑

n=1

βn =
1

1− β
.

From the equation above, we gather {vn}∞n=0 is a Cauchy sequence. Since X is
a complete metric space, it follows that vn → v ∈ X.

We now show uniqueness of the fixed point by showing T (v) = v. Note first
that ∀ n, v0 ∈ X,

dX(T (v), v) ≤ dX(T (v), T n(v0)) + dX(T
n(v0), v)

≤ βdX(v, T n−1(v0)) + dX(T
n(v0), v).

Since both terms above converge to zero, we have that dX(Tv, v) → 0 as
n →∞.
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Finally, assume for the sake of obtaining a contradiction that v̂ 6= v is such
that T (v̂) = v̂. Then,

0 < a = dX(v, v̂) = dX(T (v̂), T (v)) ≤ βdX(v̂, v) = βa,

which cannot hold since a > 0, β < 1. Thus, there is not another v such that
T (v) = v and we have the desired uniqueness property.

2. Observe that for n ≥ 1,

dX(T
n(v0), v) = dX[T (T n−1(v0)), Tv] ≤ βdX(T

n−1(v0), v),

so that the result follows by induction.

¡

For our purposes, contraction mappings are restricted to metric spaces with
desirable properties such as completeness. The following corollaries establish results
about contraction mappings defined over complete metric spaces.

Corollary 1. Let (X, dX) be a complete metric space and T : X→ X be a contraction
mapping with fixed point x ∈ X. If X′ is a closed subset of X and T (X′) ⊆ X′, then
x ∈ X′. If in addition T (X′) ⊆ X′′ ⊆ X′, then x ∈ X′′.

Proof. Choose v0 ∈ X′ and note that {T n(v0)} is a sequence in X′ converging to
v. Since X′ is a closed subset of a compact space X it is itself closed. Thus, we
have that v ∈ X′. If in addition we have that T (X′) ⊆ X′′, then it follows that
v = Tv ∈ X′′. ¡

Corollary 2. Let (X, dX) be a complete metric space and T : X → X, and suppose
that for some N ∈ IN, TN : X→ X is a contraction mapping with modulus β. Then

1. T has exactly one fixed point in X , and

2. for any x0 ∈ X, dX(T
kN(x0), x) ≤ βkdX(x0, x), k = 1, 2, · · · .

Proof. We show that a unique fixed point v of TN is also the unique fixed point of
T . We have that

dX(T (v), v) = dX[T (TN(v)), TN(v)] = dX[T
N(T (v)), TN(v)] ≤ βdX(T (v), v).

Since β ∈ (0, 1), this implies that d(T (v), v) = 0 and v is a fixed point of T .
Uniqueness follows since any fixed point of T is also a fixed point of TN . The proof
for part 2 is the same as that of Theorem 9 and is thus omitted. ¡
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The theorem below establishes the main result of this section. We understand
contraction mappings as functions that have desirable properties, especially regard-
ing fixed points. The following theorem establishes the conditions that are sufficient
for a function mapping to be a contraction.

Theorem 10. (Blackwell’s sufficient conditions for a contraction) Let X ⊆ IRk, and
let B(X) be the space of bounded functions f : X→ IR, with respect to the sup norm.
Let T : B(X) → B(X) be an operator satisfying

1. (monotonicity) If f, g ∈ B(X) and f(x) ≤ g(x), ∀ x ∈ X, then (Tf)(x) ≤
(Tg)(x), ∀x ∈ X.

2. (discounting) there exists some β ∈ (0, 1) such that

T (f(x) + a) ≤ (Tf)(x) + βa, ∀f ∈ B(X), a ≥ 0, x ∈ X.

Proof. If f(x) ≤ g(x), ∀ x ∈ X, we write f ≤ g. For any f, g ∈ B(X), f ≤
g + ||f − g||. Then properties 1 and 2 imply

Tf ≤ T (g + ||f − g||) ≤ Tg + β||f − g||.

Reversing the roles of f, g gives the same logic. So Tg ≤ Tf +β||f − g||. Combining
the two inequalities we have that, ||Tg − Tf || ≤ β||f − g||. ¡

3.2 Theorem of the Maximum

In this section, we apply the concepts of hemi-continuity of correspondences
and establish the result that allows the study dynamic programming. The following
theorem was first proposed by Pontryagin et al. (1964) and establishes that, under
a set of conditions, dynamic problems are well-defined.

Theorem 11. (Theorem of the Maximum) Let X ⊂ IRk and Y ⊂ IRl, let f : X×Y→
IR be a continuous function, and let Γ : X→ Y be a compact-valued and continuous
correspondence. Then, the function h : X→ IR defined as

h(x) = max
y∈Γ(x)

f(x, y)

is continuous, and the correspondence G : X→ Y defined as

G(x) = {y ∈ Γ(x) : f(x, y) = h(x)}

is nonempty, compact-valued, and u.h.c.
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Proof. Let x ∈ X. The set Γ(x) is nonempty and compact, and f(x, ·) is continuous;
hence it attains its maximum by Wierstrauss’s Theorem and the set of maximizers
G(x) is nonempty. Moreover, since G(x) ⊆ Γ(x) and by the compactness of Γ(x)
we have that G(x) is bounded. Suppose yn → y, and yn ∈ G(x), ∀ n. Since Γ(x)
is closed, y ∈ Γ(x). Also, since h(x) = f(x, yn);∀ n, and f is continuous, it follows
that f(x, y) = h(x). Hence y ∈ G(x); so G(x) is closed. Thus, G(x) is nonempty
and compact for each x.

Next, we show that G(x) is u.h.c. Fix x, and let {xn} be any sequence converg-
ing to x. Choose yn ∈ G(xn), ∀ n. Since Γ is u.h.c. , there exists a subsequence {yn}
converging to y ∈ Γ(x). Let z ∈ Γ(x). Since Γ is u.h.c., there exists a subsequence
{ynk

} converging to y ∈ Γ(x). Hence G is u.h.c.

Finally, we show that h is continuous. Fix x, and let {xn} be any sequence con-
verging to x. Choose yn ∈ Γ(xn), ∀ n. Let h̄ = lim sup h(xn) and h = lim inf h(xn).
Then there exists a subsequence {xnk

} such that h̄ = lim f(xnk
, ynk

). But since G
is u.h.c., there exists a subsequence of {ynk

}, call it {y′j}, converging to y ∈ G(x).
Hence h̄ = lim f(xj, y

′
j) = f(x, y) = h(x). An analogous result establishes that

h(x) = h. Hence {h(xn)} converges to its limit of h(x). ¡

The following two results study how the results of the Theorem of the Maxi-
mum change when stronger constraints are imposed on f and Γ.

Lemma 1. Let X ⊆ IRk and Y ⊆ IRl. Assume that the correspondence Γ : X → Y
is nonempty, compact, convex valued, and continuous, and let A be the graph Γ.
Assume that the function f : A → IR is continuous and that f(x, ·) is strictly
concave, for each x ∈ X. Define g : X→ Y by

g(x) = arg max
y∈Γ(x)

f(x, y).

Then for ε > 0and x ∈ X, there exists δx > 0 3

y ∈ Γ(x) and |f(x, g(x))− f(x, y)| < δx implies ||g(x)− y|| < ε.

If X is compact, then δ > 0 can be chosen independently of x.

Proof. Note that under the stated assumptions g is a well-defined, continuous, and
single valued. We first prove the claim for the case where X is compact. For each
ε > 0 , define

Aε = {(x, y) ∈ A : ||g(x)− y|| ≥ ε}.
If Aε = ∅, ∀ ε > 0, then Γ is single valued and the result is trivial. Otherwise there
exists ε̂ > 0 sufficiently small such that for all 0 < ε < ε̂, the set Aε is nonempty
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and compact. For any such ε define,

δ = min
(x,y)∈Aε

|f(x, g(x))− f(x, y)|.

Since the function being minimized is continuous and Aε is compact, the minimum
is attained. Moreover, since [x, g(x)] /∈ Aε ∀ x ∈ X, it follows that δ > 0. Then,

y ∈ Γ(x) and ||g(x)− y|| ≥ ε implies |f(x, g(x))− f(x, y)| ≥ δ.

If X is not compact, the argument above can be applied separately for each
fixed x ∈ X. ¡

Theorem 12. Let X,Y, Γ, A be defined as in the Lemma above. Let {fn} be a se-
quence of continuous functions on A; assume that for each n and each x ∈ X, fn(x, ·)
is strictly concave in its second argument. Assume that f has the same properties
and that fn → f uniformly (in the sup norm). Define the functions gn and g by

gn(x) = arg max
y∈Γ(x)

fn(x, y), n = 1, 2 · · · , and

g(x) = arg max
y∈Γ(x)

f(x, y).

Then, gn → g pointwise.

Proof. First note that since gn(x) is the unique maximizer of fn(x, ·) on Γ(x), and
g(x) is the unique maximizer of f(x, ·) on Γ(x), it follows that

0 ≤ f(x, g(x))− f(x, gn(x))

≤ f(x, g(x))− fn(x, g(x)) + fn(x, gn(x))− f(x, gn(x))

≤ 2||f − fn||, ∀ x ∈ X.

Since fn → f uniformly, it follows immediately that for any δ > 0, there exists
Mδ ≥ 1 such that

0 ≤ f(x, g(x))− f(x, gn(x)) ≤ 2||f − fn|| < δ, ∀ x ∈ X, ∀ n ≥ Mδ.

To show that gn → g pointwise, we must establish that for each ε > 0 and
x ∈ X, there exists Nx ≥ 1 such that

||g(x)− gn(x)|| < ε, ∀ n ≥ Nx.

By the lemma above, it suffices to show that for any δx > 0 and x ∈ X there exists
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Nx ≥ 1 such that

|f(x, g(x))− f(x, gn(x))| < δx, ∀n ≥ Nx.

It now follows that any Nx ≥ Mδx has the required property. ¡

3.3 Dynamic Programming

The dynamic programs to be studied in this section and thereafter are repre-
sented in two different manners. The sequence problem (SP) is

max
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ(xt), t = 0, 1, 2, · · · ,

x0 ∈ X given.

The alternative functional equation,(FE) , v is

v(x) = max
y∈Γ(x)

[F (x, y) + βv(y)], ∀ x ∈ X.

Our focus is to characterize the properties of F,X,Y, Γ, and A that are nec-
essary and sufficient for the solution of SP to satisfy FE and conversely. This is
desirable since there exist methods to solve the FE that might elucidate solutions
to particular SPs. This result might seem surprising when one takes into account
how each problem relates the states at each time period. The SP relates the states
in term of sequences. At every point in time the SP might be solved with a differ-
ent policy. On the other hand, the FE examines the problem one stage at a time.
Moreover, the choice in the FE follows the same policy every stage.

Definition 15. (Feasible Plans) A sequence {xt}∞t=0 in X is called a plan. Given
x0 ∈ X, define

Π(x0) = {{xt}∞t=0 : xt+1 ∈ Γ(xt), t = 0, 1, 2, · · · }

as the set of feasible plans from x0.

The definition above provides a framework to relate the solutions of the FE
to that of the SP. An element x̃ ∈ Π(x0) is an infinite sequence, so that Π(x0) is
a collection of sequences as defined by Γ. We proceed by establishing assumptions
that drive our results. In Chapter 4, we reconcile these assumptions with those
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imposed by the neo-classical theory of economic growth on the economic agents
being modelled.

Assumption 1. Γ(x) 6= ∅, ∀ x ∈ X.

Assumption 2. For all x0 ∈ X and x̃ ∈ Π(x0),

lim
n→∞

n∑
t=0

βtF (xt, xt+1) ∈ IR∗.

The following definition relates the return obtained at each period through the
return function F and the discount rate β into the concept of utility.

Definition 16. (Utility Function) For each n = 0, 1, · · · , define un : Π(x0) → IR by

un(x̃) =
n∑

t=0

βtF (xt, xt+1),

so that un(x̃) is the partial sum of discounted returns through the nth period horizon.
If assumption 2 holds, the infinite sum exists and we define

u(x̃) = lim
n→∞

un(x̃).

Definition 17. (Supremum Function) If assumptions 1 and 2 hold, then Π(x0) 6=
∅∀x0 ∈ X, and F is well defined ∀ x̃ ∈ Π(x0). We define the supremum function as

v∗(x0) = sup
x̃∈Π(x0)

u(x̃).

Being that v∗ is the supremum for the SP with a known x0, it follows that:

1. If |v∗(x0)| < ∞,
v∗(x0) ≥ u(x̃)∀ x̃ ∈ Π(x0), (3.1)

and for any ε > 0,

v∗(x0) ≤ u(x̃) + ε for some x̃ ∈ Π(x0). (3.2)

2. If v∗(x0) = ∞, then there exists a sequence of feasible plans {x̃n} such that

lim
n→∞

u(x̃n) = ∞.
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3. If v∗(x0) = −∞, then

u(x̃) = −∞, ∀ x̃ ∈ Π(x0).

The goal of this section is to find connections between the functions v∗ and
v. We have that if assumptions 1 and 2 hold, v∗ is defined uniquely. Theorem 14
presents conditions guaranteeing v∗ = v. In order to arrive at this result we first
establish that the unique solution of the SP problem, v∗, satisfies the FE. This is
established if the following three conditions hold:

1. If |v∗(x0)| < ∞,

v∗(x0) ≥ F (x0, y) + βv∗(y),∀ y ∈ Γ(x0), (3.3)

and for any ε > 0,

v∗(x0) ≤ F (x0, y) + βv∗(y) + ε for some y ∈ Γ(x0). (3.4)

2. If v∗(x0) = ∞, then there exists a sequence {yn} ⊆ Γ(x0) such that

lim
n→∞

[F (x0, y) + βv∗(yn)] = ∞. (3.5)

3. If v∗(x0) = −∞, then

F (x0, y) + βv∗(yk) = −∞ ∀y ∈ Γ(x0). (3.6)

The properties of v∗ that follow as a supremum-valued function and those
outlined above have a striking resemblance. In fact, the only difference is that the
conditions to be shown consider a single period and postpone the evaluation of the
remaining states by relying on v∗ starting from the next period. The following
Lemma is useful in establishing the fact that the solution to the SP satisfies the FE.

Lemma 2. Let X, Γ, F, and β satisfy Assumption 2. Then, for any x0 ∈ X and any
(x0, x1, x2, · · · ) = x̃ ∈ Π(x0),

u(x̃) = F (x0, x1) + u(x̃′)

where x̃′ = (x1, x2, · · · ).



Chapter 3 – Dynamic Programming Suárez Serrato – Page 24

Proof. Under Assumption 2, for any x0 ∈ X and any x̃ ∈ Π(x0),

u(x̃) = lim
n→∞

n∑
t=0

βtF (xt, xt+1)

= F (x0, x1) + β lim
n→∞

n∑
t=0

βtF (xt+1, xt+2)

= F (x0, x1) + βu(x̃).

¡

Theorem 13. Let X, Γ, F, and β satisfy Assumptions 1 and 2. Then v∗ satisfies
(FE).

Proof. If β = 0, the result is trivial. Suppose that β > 0 and choose x0 ∈ X. Suppose
v∗(x0) is finite. Then (3.1) and (3.2) above hold. Let x1 ∈ Γ(x0) and ε > 0. By
(3.2), there exists x̃′ = (x1, x2, · · · ) ∈ Π(x1) such that u(x̃′) ≥ v∗(x1)− ε. Note that
x̃ ∈ Π(x0). From the 3.1 and the Lemma above, we have that

v∗(x0) ≥ U(x̃) = F (x0, x1) + βu(x̃′) ≥ F (x0, x1) + βv∗(x1)− βε.

Since ε was chosen arbitrarily, condition (3.3) is established.

Now let X0 ∈ X, and ε > 0. From (3.2) and the Lemma above, we can choose
x̃ = (x0, x1, · · · ) ∈ Π(x0), so that

v∗(x0) ≤ u(x̃) + ε = F (x0, x1) + βu(x̃′) + ε,

where x̃′ = (x1, x2, · · · ). It then follows from (3.1) that

v∗(x0) ≤ F (x0) + βv∗(x1) + ε,

since x1 ∈ Γ(x0), this established (3.4).

If v∗(x0) = +∞, then there exists a sequence there exists a sequence {x̃n} ⊆
Π(x0) such that lim

n→∞
u(x̃n) = +∞. Since x1,n ∈ Γ(x0), ∀n, and

u(x̃n) = F (x0, x1,n) + βu(x̃′n) ≤ F (x0, x1,n) + βv∗(x1,n), ∀ n,

it follows that (3.5) is established.

If v∗(x0) = −∞, then

u(x̃) = F (x0, x1) + βu(x̃′) = −∞,∀ (x0, x1, · · · ) = x̃ ∈ Π(x0),
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where x̃′ = (x1, x2, · · · ). Since F is real-valued, it follows that

u(x̃′) = −∞,∀ x1 ∈ Γ(x0),∀ x̃′ ∈ Π(x0).

Hence v∗(x0) = −∞, ∀ x1 ∈ Γ(x0). Since F is real-valued and β > 0, the
condition in (3.6) follows immediately. ¡

Insight regarding the result of the previous theorem is exposed when consid-
ering the sets of solution of the SP and the set of solutions of the FE. The previous
theorem sates that the set of solutions to the FE contains the set of solutions of the
SP. The following theorem provides a partial converse. That is, under an additional
restriction, the set of solutions to the SP contains the set of solutions to the FE.

Theorem 14. Let X, Γ, F, and β satisfy Assumptions 1 and 2. If v is a solution to
(FE) and satisfies

lim
n→∞

βnv(xn) = 0,∀ x̃ ∈ Π(x0),∀ x0 ∈ X, (3.7)

then v = v∗.

Proof. If v(x0) is finite, then condition (3.3) and (3.4) hold. We show this implies
(3.1) and (3.2) also hold. From (3.3), we have that for all x̃ ∈ Π(x0),

v(x0) ≥ F (x0, x1) + βv(x1)

≥ F (x0, x1) + F (x1, x2) + β2v(x2)
...

≥ un(x̃) + βn+1v(nn+1), n = 1, 2, · · ·

Taking the limit at ε →∞ and using (3.7) above, we get that (3.1) holds.

Next, fix ε > 0 and choose {δt}∞t=1 ⊂ IR+ such that
∞∑

t=1

βt−1δt ≤ ε
2
. Since (3.2)

holds, choose x1 ∈ Γ(x0), x2 ∈ Γ(x1), · · · so that

v(xt) ≤ F (xt, xt1) + βv(xt+1) + δt+1, t = 1, 2, · · ·
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Then x̃ ∈ Π(x0), and

v(x0) ≤
n∑

t=0

βtF (xt, xt+1) + βn+1v(xn+1) + (δ1 + · · ·+ βnδn+1)

≤ un(x̃) + βn+1v(xn+1) +
ε

2
, n = 1, 2, · · ·

Therefore, (3.7) implies that for n sufficiently large, v(x0) ≤ un(x̃) + ε. Since
ε > 0 was chosen arbitrarily , we have that (3.2) holds.

If (3.7) holds, then (3.6) implies that v cannot take the value −∞. If v(x0) =
+∞, choose n ≥ 0 and (x0, x1, · · · ) such that xt ∈ Γ(xt−1) and v(xt) = +∞ for
t = 1, 2, · · · , n, and v(xn+1) ≤ +∞ for all xn+1 ∈ Γ(xn). Clearly (3.7) implies
that n is finite. Fix A > 0. Since v(xn) = +∞, (3.5) implies that we can choose
xn+1,A ∈ Γ(xn) such that

F (xn, xn+1,A) + βv(xn+1,A) ≥ β−n

[
A + 1−

n−1∑
t=0

βtF (xt, xt+1)

]
.

Then choose x̃n+1,A ∈ Π(xn+1,A) such that u(x̃n+1,A) ≥ v(xn+1,A) − β−(n+1). Since
v(xn+1,A) is finite, the argument above shows that this is possible. Then x̃A =
(x0, x1, · · · , xn, x̃n+1,A) ∈ Π(x0) and

u(x̃A) =
n−1∑
t=0

βtF (xt, xt+1) + βnF (xn, xn+1,A) + βn+1u(x̃n+1,A) ≥ A.

Since A > 0 was chosen arbitrarily, it follows that v∗(x0) = +∞. ¡

Theorem 15 relates the solutions to FE to those of SP by combining the ap-
proach in both problems. The theorem statement essentially prolongs the use of the
FE approach one period and uses the SP to maximize the first period.

Theorem 15. Let X, Γ, F, and β satisfy assumptions 1 and 2. Let x̃∗ ∈ Π(x0) be 3
it attains the supremum in the SP for a given x0 ∈ X. Then,

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗t+1, t = 0, 1, 2, · · · . (3.8)

Proof. Since x̃∗ attains the supremum,

v∗(x∗t ) = u(x̃∗) = F (x0, x
∗
1) + βu(x̃∗′) (3.9)

≥ u(x̃) = F (x0, x1) + βu(x̃′), ∀ x̃ ∈ Π(x0).
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In particular, the inequality holds for all plans with xt = x∗t . Since (x∗1, x2, x3, · · · ) ∈
Π(x∗t ) implies that (x0, x

∗
1, x2, x3, · · · ) ∈ Π(x0), it follows that

u(x̃∗′) ≥ u(x̃′), ∀x̃ ∈ Π(x∗1).

hence u(x̃∗′) = v(x∗1). Substituting this into (3.9), gives (3.8) for x0. Continuing by
induction establishes (3.8) for all t. ¡

The following theorem establishes a boundedness condition on the sequence xt

and shows that any sequence satisfying this condition is an optimal plan.

Theorem 16. Let X, Γ, F, and β satisfy Assumptions 1 and 2. Let x̃∗ ∈ Π(x0) be
3 satisfies equation (3.8), and with

lim sup
t→∞

βtv∗(x∗t ) ≤ 0. (3.10)

Then x̃∗ attains the supremum in SP for a given x0.

Proof. Suppose that x̃∗ ∈ Π(x0) satisfies (3.8) and (3.10). Then, it follows by
induction on (3.8) that

v∗(x0) = un(x̃∗) + βn+1v∗(x∗n+1), n = 1, 2, · · ·

Then, using (3.10), we find that v∗(x0) ≤ u(x̃∗). Since x̃∗ ∈ Π(x0), the reverse
inequality holds, establishing the result . ¡

As was mentioned above, the FE problems weighs the choice at every period
using the same policy. In order to characterize this more formally, we introduce the
concept of a policy correspondence. We study a special class of policy correspon-
dences, that is those that are members of the set C(X) of bounded and continuous
functions.

Definition 18. (Policy Correspondence) Given a solution v ∈ C(X) to

v(x) = max
y∈Γ(x)

[F (x, y) + βv(y)],

we can define the policy correspondence G : X→ X by

G(x) = {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}.

Our focus now shifts to the study of policy correspondences. It is desirable
to find conditions under which the policy correspondences have the properties nec-
essary for the Theorem of the Maximum to describe the optimal solutions. Since
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policy correspondences are defined in terms of the return function F and the corre-
spondence Γ, G obtains the desired properties by placing the following restrictions
on these.

Assumption 3. X is a convex subset of IRk, and the correspondence Γ : X→ X is
nonempty, compact-valued, and continuous.

Assumption 4. The real valued function of the graph of f , F : A → IR, is bounded
and continuous, and 0 < β < 1.

It is of importance to note the relationship between the return function and
the discount rate β. Although these are defined independently, their use in Theorem
17 further assumes they satisfy (3.7). In that context, the sequence βn is required
to decrease at a sufficient pace to fulfill the condition established. The claim that
Assumptions 3 and 4 modify the policy correspondence G in exactly the appropriate
way is substantiated in Theorem 17.

Theorem 17. Let X, Γ, F, and β satisfy Assumptions 3 and 4, and let C(X) be the
space of bounded continuous functions f : X → IR, with the sup norm. Then the
unique operator T maps C(X) into itself, T : C(X) → C(X); T has a unique fixed
point v ∈ C(X); and for all v0 ∈ C(X),

||T n(v0)− v|| ≤ βn||v0 − v||, n = 0, 1, 2, · · · .

Moreover, given v, the optimal policy correspondence G : X → X defined in 11 is
compact-valued and u.h.c.

Proof. Under Assumption 3 and 4, for each f ∈ C(X) and x ∈ X, the problem in
(3.2) is to maximize the continuous function [F (x, ·) + βf(·)] over the compact set
Γ(x). Hence the maximum is attained. Since both F , and f are bounded, clearly
Tf is also bounded; and since F and f are continuous, and Γ is compact-valued and
continuous, it follows from the Theorem of the Maximum that Tf is continuous.
Hence T : C(X) → C(X).

It is them immediate that T satisfies the condition’s of Blackwell’s sufficiency
conditions for a contraction. Since C(X) is a Banach space, it follows from the
contraction mapping theorem, that T has a unique fixed point v ∈ C(X), and
so (3.3) holds. The stated properties of G then follow from the Theorem of the
Maximum. ¡

In order to characterize the value function v and the policy correspondence
G, we require further assumptions on the behavior of Γ and F . The following
assumptions establish properties of F and Γ that allow us to use previous results
about fixed points and contraction mappings.
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Assumption 5. For each y, F (·, y) is strictly increasing in each of its first k argu-
ments.

Assumption 6. Γ is monotone in the sense that x ≤ x′ implies Γ(x) ⊆ Γ(x′).

To prove Theorem 18, we seek to show that Γ is u.h.c.. Assumption 6 provides
the required property to show this. If one imagines a sequence {xn} converging to
its limit point, it follows that the sequence {Γ(xn)} is nested. This imagery helps
visualize the over approximation of the target set as required by u.h.c. correspon-
dences. Assumption 5 alone does not provide the required information about the
behavior of F . However, in combination with Assumptions 4 and 2, we have enough
information to present the following theorem.

Theorem 18. Let X, Γ, F, and β satisfy Assumptions 3–6, and let v satisfy

v(x) = max
y∈Γ(x)

[F (x, y) + βv(y)].

Then v is strictly increasing.

Proof. Let C ′(X) ⊂ C(X) be the set of bounded, continuous, and nondecreasing
functions on X , and let C ′′(X) ⊂ C ′(X) be the set of strictly increasing functions.
Since C ′(X) is a closed subset of the complete metric space C(X), it then follows
that if T [C ′(X)] ⊆ T [C ′′(X)]. Assumptions 5 and 6 ensure this is so. ¡

Assumption 7. F is strictly concave; that is,

F [θ(x, y) + (1− θ)(x′, y′)] ≥ θF (x, y) + (1− θ)F (x′, y′),

∀ (x, y), (x′, y′) ∈ A, and all θ ∈ (0, 1), and the inequality is strict if x 6= x′.

Assumption 8. Γ is convex in the sense that for any 0 ≤ θ ≤ 1, and x, x′ ∈ X,

y ∈ Γ(x) and y′ ∈ Γ(x′) implies

θy + (1− θ)y′ ∈ Γ[θx + (1− θ)x′].

It is worth noting that the convexity assumption stated in Assumption 8 is
established within the same period. That is, it is assumed that x and x′ belong to a
given Γ(x) in the same time period. Convexity is not established inter-temporally.
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Theorem 19. Let X, Γ, F and β satisfy Assumptions 3–4 and 7–8; let v satisfy

v(x) = max
y∈Γ(x)

[F (x, y) + βv(y)],

and let G satisfy

G(x) = {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}. (3.11)

Then, v is strictly concave and G is a continuous, single-valued function.

Proof. Let C ′(X) ⊂ C(X) be the set of bounded, continuous, weakly concave func-
tions on X , and let C ′′(X) ⊂ C ′(X) be the set of strictly concave functions. Since
C ′(X) is a closed subset of a complete metric space C(X), by Theorem 17 and
Corollary 1 to the Contraction Mapping Theorem, it is sufficient to show that
T [C ′(X)] ⊆ C ′′(X).

To verify that this is so, let f ∈ C ′(X) and let

x0 6= x1, θ ∈ (0, 1), and xθ = θx0 + (1− θ)x1.

Let yi ∈ Γ(xi) attain (Tf)xi, for i = 0, 1. It follows that

(Tf) ≥ F (xθ, yθ) + βf(yθ)

≥ θ[F (x0, y0) + βf(y0)] + (1− θ)F (x1, y1) + βf(y1)

= θ(Tf)x0 + (1− θ)(Tf)x1,

where the first line uses (3.2) and the fact that yθ ∈ Γ(xθ); the second uses the
hypothesis that f is concave and the concavity restriction of F in Assumption 7; and
the last follows from the way y0, y1 were selected. Since x0 and x1 were arbitrary,
it follows that Tf is strictly concave, and since f was arbitrary, it follows that
T [C ′(X)] ⊆ C ′′(X).

Hence, the unique fixed point v is strictly concave. Since F is also concave
(Assumption 7) and, for each x ∈ X, Γ(x) is concave (Assumption 8), it follows that
the maximum in (3.2) is attained. ¡

Theorems 19 and 20 characterize v by using the fact that the operator T
preserves certain properties (Stokey et al., 1989). In many cases, it is difficult to solve
for the policy correspondences. In these cases, it is desirable to use approximations
of the policy function instead. Theorem 20 outlines the conditions under which this
is possible.
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Theorem 20. (Convergence of the Policy Functions) Let X, Γ, F, and β satisfy
Assumptions 3–4 and 7-8, and let v and g satisfy

v(x) = max
y∈Γ(x)

[F (x, y) + βv(y)], and g(x) = {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}.

Let C ′(X) be the set of bounded, continuous, concave functions f : X → IR, and let
v0 ∈ C ′(X). Let {(vn, gn)} be defined by

vn+1 = Tvn, n = 0, 1, 2, · · · , and

gn(x) = arg max
y∈Γ(x)

[F (x, y) + βvn(y)], n = 0, 1, 2, · · ·

Then gn → g pointwise. If X is compact, then the convergence is uniform.

Proof. Let C ′′(X) ⊂ C ′(X) be the set of strictly concave functions f : X → IR. As
shown in Theorem 19, v ∈ C ′′(X). Moreover, as shown in the proof of that Theorem,
T [C ′(X)] ⊂ C ′′(X). Since v0 ∈ C ′(X), it follows that every function vn, n = 1, 2, · · · ,
is strictly concave. Define the functions {fn} and f by

fn(x, y) = F (x, y) + βvn(y), n = 1, 2, · · · , and

f(x, y) = F (x, y) + βv(y).

Since F satisfies Assumption 7, it follows that f and each function fn, n =
1, 2, · · · , is strictly concave. Hence Theorem 19 applies and the desired results are
proved. ¡

Assumption 9. F is differentiable on the interior of A.

It is a logical consequence of Assumption 9 that the function v in the FE is
differentiable. The proof of this result assumes knowledge of results in the field
of convex analysis that are considered to be overly esoteric for the target audience,
and is thus omitted. Readers interested in a formal development of this result would
benefit from the treatment of sub-gradients in Rockafellar (1970) and the statement
of the result in Stokey et al. (1989). In the final section of this chapter we rely on
this result to establish the classical variational result first introduced by Euler and
then proven sound by Lagrange (McShane, 1989).
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3.4 Euler Equations

In this section, we present a solution mechanism to recursive problems. The cal-
culus of variations approach to dynamic problems such as the brachiostochrone and
isoparametric problems motivated mathematicians to establish the results presented
in this section. The isoparametric problem, first solved by Lagrange, provided the
insight to establish the sufficiency of the first-order conditions proposed by Euler
(Ferguson, 2004). Although, the version of the results presented here follow the SP
approach to dynamic problems, the same results may be obtained following the FE
approach.

Definition 19. (Euler Equations) Let F satisfy assumptions 3-5,7, and 9; let Fx

denote the l-vector of partial derivatives (F1, · · · , Fl)in its first l arguments, Fy de-
note the vector (Fl+1, · · · , F2l). Since F is continuously differentiable and strictly
concave, if x∗t+1 is in the interior of Γ(x∗t ) for all t, the first-order conditions for

max
y

[F (x∗t , y) + βF (y, x∗t+2)]

s.t. y ∈ Γ(x∗t ) and x∗t+2 ∈ Γ(y)

are
0 = Fy(x

∗
t , x

∗
t+1) + βFx(x

∗
t+1, x

∗
t+2), t = 0, 1, 2, · · · .

The Euler equations described above comprise a “system of l second-order
differential equations in the vector of state variables xt” Stokey et al. (1989). In
order to solve for the optimal solution, we require an l-vector of boundary conditions.
The condition we refer to as the transversality condition provides these conditions.

Definition 20. (Transversality Condition) The transversality condition states that

lim
t→∞

βtFx(xt∗, x∗t+1) · x∗t = 0.

We are now ready to establish the final result of this guide, that Definitions
19 and 20 are sufficient conditions to obtain the maximizing sequence of the SP.

Theorem 21. (Sufficiency of the Euler and transversality conditions) Let X ⊆ IRl
+,

and let F satisfy Assumptions 3-5,7, and 9. Then the sequence {x∗t+1}∞t=0 with x∗t+1 ∈
Γ(x∗t )\Γ(x∗t )

′, t = 0, 1, 2, · · · , is optimal for the SP problem, given x0, if it satisfies
the Euler and transversality conditions stated in Definitions 19 and 20.

Proof. Let x0 be given; let {x∗t} ∈ Π(x0) satisfy the conditions imposed in Definitions
19 and 20; and let {xt} ∈ Π(x0) be any feasible sequence. It is sufficient to show
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that the difference, call it D, between the objective function in SP evaluated at {x∗t}
and at {xt} is nonnegative.

Since F is continuous, concave, and differentiable as according to Assumptions
4, 7 and 9,

D = lim
T→∞

T∑
t=0

βt[F (x∗t , x
∗
t+1) + F (xt, xt+1)]

≥ lim
T→∞

T∑
t=0

βt[Fy(x
∗
t , x

∗
t+1) · (x∗t − xt)− Fx(x

∗
t , x

∗
t+1) · (x∗t+1 − xt+1)],

where the second inequality follows from the fact that the linear approximation of a
concave function lies above the function itself. By the definition of Π(x0), we have
that x∗0 − x0 = 0. Then, rearranging terms gives

D ≥ lim
T→∞

{
T−1∑
t=0

βt[Fy(x
∗
t , x

∗
t+1) + βFx(x

∗
t+1, x

∗
t+2)] · (x∗t+1 − xt+1)

+ βT Fy(x
∗
T , x∗T+1) · (x∗T − xT )

}
.

Since {x∗t} satisfies Definition 19, the summation of the first T − 1 terms is zero.
Therefore, substituting the equation in Definition 19 into the last term as well and
using Definition 20 yields

D ≥ − lim
T→∞

βT Fx(x
∗
T , x∗T+1) · (x∗T − xT )

≥ − lim
T→∞

βT Fx(x
∗
T , x∗T+1) · x∗T ,

where the last line uses the fact that Fx ≥ 0 by Assumption 4, and xt ≥ 0, ∀ t. It
then follows from Definition 20 that D ≥ 0, establishing the desired result. ¡

Definitions 19 and 20 establish a straightforward procedure to solve recursive
problems. Moreover, Theorem 21 proves their sufficiency so that the optimal se-
quence is obtained. The objective in Chapter 3 is fulfilled with the development of
the rigorous set of results that prove the existence of a maximum, relate the solu-
tions of the SP and the FE, and outline a solution mechanism. Chapter 4 considers
the application of dynamic programming to the problem of Economic Growth and
provides economic intuition behind the restrictions placed on Γ, F,X,Y and v in
Chapter 3.



Chapter 4

Deterministic Economic Growth

In the final chapter of this guide we seek to elucidate some intuition about
the results of the previous chapter. It is easy to get lost in the technicality of the
field and forget that we are developing these methods not only for the sake of their
beauty but also to apply them to economic theory. In this chapter, we present
the one-sector model of optimal economic growth. The SP problem is presented in
an abstract manner to indicate that any function satisfying the conditions outlined
could be modelled in this way.

The neo-classical theory of economic growth associates behavioral assumptions
of economic agents, that is households and firms, with many of the properties we
give the utility and production functions in this example. We owe the formulation
of this problem to Stokey et al. (1989), and the solutions to the author of this guide.

Consider the abstract notion of an economy with one good at every time period,
the amount of which is yt. The good is produced with the technology described
by the gross production function G(kt, nt) = yt, where kt represents capital and nt

represents labor at time t. Neo-classical growth theory has that the gross production
function G has the following properties. First, since it relates current inputs to
outputs it is defined over the graph of the correspondence Γ. That is, G : A →
IR+. Moreover, G is continuously differentiable, strictly increasing, homogeneous of
degree one, and strictly quasi-concave. A function is homogenous of degree one if
G(tk, tn) = t1G(k, n). Moreover, a function is quasi-concave if the upper contour set
of the function is concave. Further, G has the properties that

G(0, n) = 0, Gk(k, n) > 0, Gn(k, n) > 0, ∀ k, n > 0

lim
k→0

Gk(k, 1) = ∞, lim
k→∞

Gk(k, 1) = 0,

where Gk represents the partial derivative of the function with respect to its argu-

34
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ment k. The two limits above imply conditions on the marginal rate of productivity.

At each period, households face the choice of allocating the output between
investment, denoted it, and consumption, denoted ct, so that we may relate

G(kt, nt) = yt ≥ ct + it. (4.1)

The budget constraint in equation (4.1) states that a household cannot con-
sume or invest more of the good than what is available at a given time period.
Capital is assumed to depreciate at rate δ ∈ [0, 1] every period. So that at every
time period the following equation must hold

kt+1 = (1− δ)kt + it. (4.2)

Combining the expressions in equations 4.1 and 4.2, we get that

G(kt, nt) ≥ ct + kt+1 − (1− δ)kt. (4.3)

In this model, we do not consider the household’s choice of providing labor
and assume nt = 1 ∀ t. In order to express production in terms of net depreciation,
and given that nt has been normalized to unity, we define

g(kt) = G(kt, 1) + (1− δ)kt, (4.4)

and note that g(kt) ≥ ct +kt+1. We assume non-satiability, which is defined to mean
that we get equality in the previous equation. We now study the properties of the
function g(kt). From the definition of g as the sum of two continuously differentiable
and strictly increasing functions we have that it inherits these properties. We also
have that the sum of a strictly concave function and a linear function maintains the
property of strict concavity. Moreover, we have that

g(0) = G(0, 1) = 0,

g′(k) = Gk(k, 1) + (1− δ) > 0,

lim
k→0

g′(k) = lim
k→0

[Gk(k, 1) + (1− δ)] = ∞, and

lim
k→∞

g′(k) = lim
k→∞

[Gk(k, 1) + (1− δ)] = (1− δ),

so that it preserves the properties of G modifying the last one by a horizontal shift.

The household’s role is to find a sequence of consumptions that maximizes its
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utility. That is, it faces the SP described by

max
{ct}∞t=0

∞∑
t=0

βtU(ct), (4.5)

where β ∈ (0, 1) is the rate of time preference or discounting factor, and U is
the utility function of the household. The assumptions placed on U are that it
is a bounded function from IR+ into IR that is continuously differentiable, strictly
increasing, strictly concave, and lim

c→0
U ′(c) = ∞.

It is implicit in the formulation of this problem that household utility is ad-
ditively separable through time and is time-invariant. That is, the utility function
does not express an intrinsic trade off between consumption between periods. This
trade-off is introduced through the state variable of capital. The utility function is
time invariant since U(ct) = U(ct+1) if and only if ct = ct+1. These are standard
assumptions in the literature of neo-classical economic theory, however, they should
be kept in mind when interpreting the results.

Using our previous derivation of the net production function we recast the
maximization problem in terms of choosing a sequence of capital that maximizes
the household’s utility in this way:

max
{kt+1}∞t=0

∞∑
t=0

βtU(g(kt)− kt+1)

s.t. kt+1 ∈ Γ(kt), t = 0, 1, 2, · · · ,

k0 ∈ X given.

We proceed to show that the assumptions made in Chapter 3 to develop the
desired results follow from the behavioral assumptions imposed by neo-classical eco-
nomics on the agents. That is, we wish to show that the functional restrictions
imposed in the previous Chapter are consistent with economic theory and that the
methods of dynamic programming developed so far are a result of the need to model
economic behavior. Before we proceed, we summarize for conciseness the properties
of the utility function U and the net production function g.

U1. 0 < β < 1. T1. g is continuous.
U2. U is bounded. T2. g(0) = 0.
U3. U is strictly increasing. T3. g is strictly increasing.
U4. U is strictly concave. T4. g is weakly concave.
U5. U is continuously differentiable. T5. g is continuously differentiable.

We now proceed to evaluate the set of assumptions made in previous chapters.
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Henceforth, we refer to the function F as the inter-temporal function used in pre-
vious chapters. In this example, the function F (kt, kt+1) = U(g(kt)− kt+1) and the
correspondence Γ(kt) = [0, g(kt−1)].

Assumption 1. Γ(k) 6= ∅,∀ k ∈ X.
Since Γ(kt) was defined to be Γ(kt) = [0, g(kt−1)], and g(0) = 0 we have that
0 ∈ Γ(kt) ∀ t and hence Γ(kt) is always nonempty.

Assumption 2. For all k0 ∈ X and k̃ ∈ Π(k0),

lim
n→∞

n∑
t=0

βtU [g(kt)− kt+1] ∈ IR∗.

Since U is bounded, we have that ∃ M ∈ IN 3 |U(·)| ≤ M .

So, lim
n→∞

n∑
t=0

βtU [g(kt)− kt+1] ≤ M lim
n→∞

n∑
t=0

βt = M
1−β

.

Assumption 3. X is a convex subset of IRk, and the correspondence Γ : X→ X is
nonempty, compact-valued, and continuous.

Assumption 4. The function U [g(kt)− kt+1] : A → IR is bounded and continuous,
and 0 < β < 1.
We showed U is bounded in Assumption 2. We have that both U and g(kt)−kt+1 are
continuous functions. Since the composition of continuous functions is continuous
as well we have the second result. The third follows from hypothesis.

Assumption 5. For each kt+1, U [g(kt)− kt+1] is strictly increasing in kt and kt+1.
From T3 and U3 we have that the function is strictly increasing.

Assumption 6. Γ is monotone in the sense that k ≤ k′ implies Γ(k) ⊆ Γ(k′).
It follows from Γ(k) = [0, g(k)], that k ≤ k′ implies

Γ(k) = [0, g(k)] ⊆ [0, g(k′)] = Γ(k′).

Assumption 7. G is strictly concave; that is,

G[θ(kt, kt−1) + (1− θ)(k′t, k
′
t+1)] ≥ θG(kt, kt+1) + (1− θ)G(k′t, k

′
t+1),

∀ (kt, kt+1), (k
′
t, k

′
t+1) ∈ A, and all θ ∈ (0, 1), and the inequality is strict if kt 6= k′t.

This property is a direct consequence of U4.

Assumption 8. Γ is convex. This property follow from the characterization of Γ
in term of intervals in this problem.
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The application of dynamic programming to economic modelling has been
shown to be consistent with the assumptions of economic theory. The problem
presented in this chapter has been shown to suffice the conditions developed in
Chapter 3, and is thus well defined. Using Assumption 9 and the methods presented
in the last section of Chapter 3, one can solve the problem for specific functional
characterizations of utility and production.

As was mentioned, several extensions including stability dynamics, stochastic
models, and numerical solutions make the application of dynamic programming
useful to problems in several disciplines. We hope the reader might continue the
study of this field as much as the author has enjoyed this project and will continue
the study of this field in the Economics Ph.D. program at the University of California
at Berkeley.



Appendix A

Notation Index

¡ quod erat demonstrandum(QED)
x ∈ X membership
X ⊂ Y,X ⊆ Y strict subset, subset⋂

,
⋃

intersection, union
∅ empty set
\ set deletion
Xc complement
X′ derived set
X̄ closure
X× Y cartesian product
IN natural numbers
IR, IR∗ real numbers, extended real numbers
IRk kth dimension Euclidean space
IRk

+ non-negative subspace of IRk

IRk
++ positive subspace of IRk

dX(x, y) distance function in the metric space (X, d)
(X, dX) metric space
Nδ(p) δ-neighborhood around the point p
| · | absolute value
|| · || norm
B(X) space of bounded functions on X
C(X) space of bounded and continuous functions on X
fn(X) iterates of the function f on X
T n(B(X)) iterates of the function T on the function space B(X)
Π(x0) the set of feasible plans from x0
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