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We consider ∆(M) for M a singular arithmetic congruence monoid.
This set is fully characterized when a = 0 and when gcd(a, b) = pα

for p a rational prime and α > 0. Finally, we show that the ∆-set
of any singular ACM is finite and we develop theory towards the
computation of ∆(M) in the nonprimary case.

N will denote the positive integers and N0 will denote the nonnegative inte-
gers. P will denote the set of (positive) rational primes, and for any x ∈ N,
P(x) will denote the set of rational primes which divide x. If S ⊆ N, then S
will denote the multiplicative closure of S in (N,×). Intervals will be always
be treated as subsets of Z.

1 Introduction

For any m > 0 the set

Hm = {x ∈ N : x ≡ 1 mod m} = 1 + mN0.

is a monoid under the usual multiplication operation. Monoids of this form
are called Hilbert monoids after David Hilbert.

Hilbert monoids generalize to a broader class of submonoids of (N,×): Let
b ∈ N and choose a satisfying 0 < a ≤ b and a2 ≡ a mod b. The arithmetic
congruence monoid (ACM) determined by the choice of a, b is defined as

Ma,b = {x ∈ N : x = 1 or x ≡ a mod b} = (a + bN0) ∪ {1}

under multiplication. Essentially, an arithmetic congruence monoid is the
smallest submonoid of (N,×) which contains some arithmetic progression
{a + kb : k ∈ N}.

If M is any submonoid of (N,×), 1 is the unique unit of M . Thus, we
may call x ∈ M irreducible iff x = yz for y, z ∈ M implies y = 1 or z = 1;
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the set of all irreducible elements of M will be denoted A(M). Since (N,×)
is atomic, any such M is also atomic, in the sense that every x ∈ M can
be written as a product of finitely many elements of A(M). In (N,×), such
factorizations are of course unique, but this is not the case when dealing with
ACMs:

Example 1.1 Consider M2,2 = (2N)∪{1}. A positive integer x is irreducible
in M iff 2 | x but 4 - x; hence 6, 18, 54 ∈ A(M2,2). Now

324 = (18)2 = (6)(54)

so we see that a given element of M2,2 need not have a unique factorization
into irreducible elements. (We say in such a case that M is not factorial.)

In general the situation is even worse. For instance, it can be shown that
4, 10, 250 ∈ A(M4,6), but 1000 = (4)(250) = (10)3. Thus, we are not even
guaranteed that all factorizations of a given element are of the same length.
(That is, M4,6 is not half-factorial.)

Our purpose is to determine, to some extent, how badly unique factor-
ization fails in Ma,b. If x ∈ M where M is any monoid, we set

L(x) = {l ∈ N0 : there exist x1, . . . , xl ∈ A(M) such that x = x1 · · ·xl}.

Order L(x) = {l1 < · · · < lj} and define

∆(x) = {li+1 − li : i ∈ [1, j)}.

Finally, define ∆(M) =
⋃

x∈M ∆(x); this is the ∆-set of the monoid M . We
wish to characterize ∆(M) when M is an arithmetic congruence monoid.

Determining the ∆-set of a given monoid is no simple task. For instance,
the Hilbert monoid Hm (which is Krull) has the same factorization properties
as the block monoid on (Z/mZ)× (see [5]); little can be said about the ∆-set
of a block monoid on an arbitrary finite abelian group (unless it is cyclic, for
example). It is known, however, that the ∆-set of a Hilbert monoid is always
finite [3].

The ∆-set of a numerical monoid (an additive submonoid of Nk
0) has

been analyzed rigorously in [2]. We will show eventually that an arithmetic
congruence monoid is a submonoid of a finite-dimensional numerical monoid.
However, if N ≤ M there need not be any mathematical relationship between
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∆(M) and ∆(N): Of course, ∆(N,×) = ∅, but there are submonoids M of
(N,×) which have |∆(M)| = k for every k ∈ N0.

Many important factorization properties of ACMs have already been in-
vestigated: In particular, questions of factoriality, half-factoriality, and elas-
ticity are covered extensively in [1]. Most relevant to our discussion will be
the following result of Banister et al.:

Theorem 1.2 Let Ma,b be an arithmetic congruence monoid.

1. ∆(Ma,b) = ∅ (that is, Ma,b is half-factorial) iff either

a. Ma,b = Hm where ϕ(m) ≤ 2, or

b. a ≡ p mod b, where p is a rational prime dividing b.

2. If ∆(Ma,b) 6= ∅, then 1 ∈ ∆(Ma,b).

2 Basic structure theory of ACMs

Since an arithmetical congruence monoid is determined by the choice of a, b,
it is logical to begin our discussion with a characterization of the idempo-
tent residues modulo b. In particular, we will show that there is a bijection
between the idempotents of Z/bZ and the power set of P(b).

Lemma 2.1 Factor b = pα1
1 · · · pαn

n and let a be an integer, 0 < a ≤ b and a
idempotent modulo b. Then there exists S ⊆ [1, n] such that

gcd(a, b) =
∏
i∈S

pαi
i .

Conversely, for any S ⊆ [1, n] there exists a unique a, 0 < a ≤ b and a
idempotent modulo b, which satisfies the above.

Proof. Let 0 < a ≤ b and a2 ≡ a mod b so that b | a(a − 1). Since a and
a− 1 are relatively prime we can write a = ux and a− 1 = vy where b = uv
and gcd(u, v) = 1; we infer that u =

∏
i∈S pαi

i for some S ⊆ [1, n]. Moreover,
gcd(x, v) = 1, so gcd(a, b) = gcd(ux, uv) = u, as desired.

For the converse take S ⊆ [1, n], u =
∏

i∈S pαi
i , and v = b/u. Then

gcd(u, v) = 1 so the Diophantine equation ux − vy = 1 has exactly one
solution (x, y) modulo b. Observe that

(ux)2 = ux(1 + vy) = ux + bxy ≡ ux mod b
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so choosing a satisfying 0 < a ≤ b and a ≡ ux mod b, we see that a is the
unique such value which satisfies a2 ≡ a mod b and gcd(a, b) = u. �

Set d = gcd(a, b) and m = b/d. By arguments above,

gcd(a, m) = gcd(b, m) = gcd(d,m) = 1.

We infer that a is an idempotent unit modulo m so a ≡ 1 mod m. This
provides the following invaluable membership criterion for Ma,b:

Lemma 2.2 x ∈ Ma,b iff x = 1 or d |N x and x ≡ 1 mod m. That is to say,

Ma,b = (dN ∩Hm) ∪ {1}.

Proof. We will assume x > 1. Suppose that d |N x and x ≡ 1 mod m. By
the Chinese remainder theorem there exists a unique residue class modulo
b which satisfies both these conditions. We infer that x ≡ a mod b and so
x ∈ Ma,b. The argument for the converse is similar. �

The group (Z/mZ)× is actually the class group of Ma,b; we will often
denote it by Cl(Ma,b). Note also that if x ∈ Ma,b is nonunit and p | x is
prime, p ∈ P \ P(m), so P(d) ⊆ P(x) ⊂ P \ P(m).

Corollary 2.3 Let x, y ∈ Ma,b be such that x, y 6= 1 and y |N x.

• If d |N (x/y), then x/y ∈ Ma,b.

• If x ∈ A(Ma,b), then y ∈ A(Ma,b).

Proof. For the first claim it is enough to note that x ≡ y ≡ 1 mod m so that
x/y ≡ 1 mod m.

For the second claim, suppose that y is reducible and z is an irreducible
factor of y. We know that y/z ∈ Ma,b and moreover (x)(y/z) ∈ Ma,b. Since
d |N (y/z) and y | x, d |N (x/z). Observing that (y)(x/z) ∈ Ma,b we infer by
the first claim that x/z ∈ Ma,b, so x is reducible. �

The value of d plays a rather important role in characterizing ∆(M) when
M is an ACM. It is natural to deal with three separate cases:

• M is regular: d = 1.

• M is primary : d = pα for p a rational prime and α > 0.
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• M is nonprimary : d has at least two distinct prime factors.

As M is a Krull monoid in the regular case and the factorization prop-
erties of Krull monoids have been extensively studied (see [3]), we will limit
ourselves to the latter two cases wherein M is a singular ACM. The pri-
mary and nonprimary cases differ substantially: While we are able to obtain
a bound on ∆(M) in the nonprimary case without much trouble, we can
actually fully characterize the ∆-set of a primary ACM.

3 The ∆-set of a primary ACM

Throughout this section, M will denote a primary ACM with d = pα for
p ∈ P and α > 0. By Lemma 2.1 gcd(p, m) = 1 so in addition to fixing p, α
we will let ω be the order of p modulo m. Take β ≥ α to be least such that
pβ ≡ 1 mod m. By the membership criterion, pβ is the smallest power of p
which is an element of M , and of course, pβ ∈ A(M).

The main theorem of this section is the following:

Theorem 3.1 Let M be a primary ACM.

• If α = β = 1, ∆(M) = ∅.

• If α = β > 1, then ∆(M) = {1}.

• If α < β, then ∆(M) = [1, β/α).

The first of these results is an immediate consequence of Theorem 1.2:
Observe that when α = β, p ∈ Ma,b. Since a is minimal among the nonunits
of M and p | a, it follows that a = p, so a is a prime divisor of b.

It is natural in the primary case to classify elements of the ACM by their
p-adic values. We write x ∈ Hγ iff x ∈ M and vp(x) = γ; furthermore,
we denote the intersection Hγ ∩ A(M) by Aγ. Note that if x ∈ M and
vp(x) < 2α, x is irreducible. Similarly, if vp(x) ≥ α + β, x is reducible:

x = pα+βy = (pβ)(pαy),

where pβ ∈ M by hypothesis and pαy ∈ M by Corollary 2.3. Hence, if
x ∈ A(M), vp(x) ∈ [α, α + β).
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Lemma 3.2 The set Aγ is infinite if γ ∈ [α, α + β) and is empty otherwise.

Proof. The latter claim follows from the fact that x ∈ M implies vp(x) ≥ α
and the earlier argument that vp(x) ≥ α + β implies that x is a reducible
element of M .

Suppose then that γ ∈ [α, α + β) and let q 6= p be a rational prime such
that q ≡ p−γ mod m so that pγq ∈ M . We claim that pγq ∈ A(M): write
pγq = (ps)(ptq) where s, t > 0 and s + t = γ.

• If ps 6≡ 1 mod m, then ps /∈ M .

• Assume that ps ≡ 1 mod m. Since β ≥ α was chosen minimal such
that pβ ∈ M , either s < α (and so ps /∈ M) or s ≥ β. The latter
implies t < α because γ < α + β and therefore ptq /∈ M .

We may therefore infer that pγq is irreducible in M . The infinitude of such
irreducibles now follows from Dirichlet’s theorem. �

3.1 Bounding ∆(M) in the primary case

Let F be the set of all nonnegative integral vectors indexed by the interval
[α, α + β). For f ∈ F write

x ∈ Af = Afα
α · · · Afα+β−1

α+β−1

iff x has a factorization into |f | = fα + · · · + fα+β−1 irreducibles of M such
that fγ of these factors have p-adic value γ. We say in this case that f is a
factorization scheme for x; F(x) will denote the set of all such schemes. We
will write f ′ ≤ f iff f ′γ ≤ fγ for all γ ∈ [α, α + β).

For f ∈ F(x) define r(f) = β|f | − vp(x). Note that

r(f) =

β−α∑
i=1−α

ifβ−i.

Since r can be expressed in this way, we immediately derive the following:

Lemma 3.3 Let f ∈ F(x).

• If r(f) ≤ R ≤ 0 there is f ′ ≤ f such that r(f ′) ∈ [R− α + 1, R].

• Similarly, if r(f) ≥ R ≥ 0 there is f ′ ≤ f such that r(f ′) ∈ [R,R−α+β].
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The above lemma is crucial in that it affords us very tight bounds on the
values taken by r.

Lemma 3.4 Fix x ∈ M , f ∈ F(x), and suppose that r(f) ≤ −α. Then
|f |+ 1 ∈ L(x).

Proof. By Lemma 3.3, there exists f ′ ≤ f such that r(f) ∈ [1 − 2α,−α].
Since −r(f ′) ≥ α, there is a factorization rule

Af ′ ⊆ (pβ)|f
′|H−r(f ′)

which is obtained by extracting |f ′| copies of pβ. As −r(f ′) < 2α, we know
that H−r(f ′) = A−r(f ′), so the right factorization has exactly |f ′| + 1 factors.
This suffices to prove the claim because Af ⊆ Af ′Af−f ′ . �

Corollary 3.5 If α = β > 1, then ∆(M) = {1}.

Proof. Let x ∈ M be a nonunit; since M is not half-factorial, we may take
x such that ∆(x) 6= ∅. Suppose that f ∈ F(x) with r(f) > −α. By the
definition of r and the fact that α = β we see that r(f) satisfies

vp(x)

α
< |f |+ 1.

Since l ≤ vp(x)/α for all l ∈ L(x), it follows that |f | = maxL(x). Let
g ∈ F(x) such that |g| = minL(x). Since minL(x) 6= maxL(x), r(g) ≤ −α,
so applying Lemma 3.4 iteratively to g, we find

L(x) = {minL(x), minL(x) + 1, minL(x) + 2, . . . , maxL(x)}

whence ∆(x) = {1}. As x was arbitrary among elements with nonempty
∆-set, ∆(M) = {1}. �

Lemma 3.6 Let M be a primary ACM with α < β. Fix x ∈ M , f ∈ F(x),
and suppose that

r(f) ≥ K =
2α + β(β − α)− 1

α
.

Then |f | − k ∈ L(x) where 0 < k < β/α.
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Proof. Note that K ≥ 1. By Lemma 3.3 there exists f ′ ≤ f with r(f ′) ∈
[K, K − α + β]. For the remainder of the proof we will abbreviate r = r(f ′).

Fix bounds J1 = (α + r)/β and J2 = r/(β − α). We have

J2 − J1 =
αr

β(β − α)
− α

β
≥ K ≥ 1.

so [J1, J2) is nonempty; let q ∈ [J1, J2). Note that

0 < q < J2 =
r

β − α
≤ |f ′|.

and because q ≥ J1, qβ − r ≥ α. Thus, we have a factorization rule

Af ′ ⊆ (pβ)|f
′|−qHqβ−r.

A factorization scheme on the right has at most

|f ′| − q +
qβ − r

α
< |f ′|+ β − α

α
J2 −

r

α
= |f ′|.

terms, so for k > 0, let |f ′| − k be the length of some factorization in
(pβ)|f

′|−qHqβ−r. We have

k ≤ q − qβ − r

α + β − 1
≤
(

r

β − α

)(
α− 1

α + β − 1

)
+

r

α + β − 1

=
(β − 1)

β(β − 1)− α(α− 1)
r.

Since r ≤ K − α + β,

k ≤ (β − 1)(β − α + 1)

α(β − α)
< β/α

So |f | − k ∈ L(x) with 0 < k < β/α, as claimed. �

Theorem 3.7 If M is a primary ACM and α < β, ∆(M) is nonempty and
finite with max ∆(M) < β/α.

Proof. ∆(M) is nonempty since β > 1. Let K be defined as in Lemma 3.6
and fix x ∈ M . Since the values of r on F(x) depend only on vp(x) and
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the length of a given factorization, we will treat r as a function on L(x).
Partition L(x) = L+(x) ∪ L0(x) ∪ L−(x) where

L+(x) = {l ∈ L(x) : r(l) ≥ K} =

{
l ∈ L(x) : l ≥ vp(x) + K

β

}
, and

L−(x) = {l ∈ L(x) : r(l) ≤ −α} =

{
l ∈ L(x) : l ≤ vp(x)− α

β

}
.

This partition is monotonic in the sense that if L(x) = {l1 < · · · < ln},
and li ∈ L−(x) then lj ∈ L−(x) for all j ≤ i; similarly if li ∈ L+(x) then
lj ∈ L+(x) for all j ≥ i.

Let ∆−(x) = {lj+1 − lj : lj ∈ L−(x)}; by Lemma 3.4 ∆−(x) is either
empty or equal to {1}. Similarly, let ∆+(x) = {lj+1 − lj : lj+1 ∈ L+(x)} and
note that by Lemma 3.6 ∆+(x) is either empty or max ∆+(x) < β/α.

It remains only to bound ∆0(x) = {lj+1 − lj : lj, lj+1 ∈ L−(x)} since

∆(x) = ∆−(x) ∪∆0(x) ∪∆+(x).

Let l, l′ ∈ L0(x) and observe that

|l − l′| = |r(l)− r(l)′|
β

≤ (K − 1/α) + (α− 1)

β
=

α2 − αβ + β2 − 2

αβ
< β/α

and thus we may infer that max ∆(M) < β/α. �

3.2 Identity of ∆(M) in the primary case

In the previous section we proved that if M is a primary ACM with α = β
then ∆(M) = ∅ or ∆(M) = {1} (depending on whether α = β = 1 or
α = β > 1, respectively). Moreover, we showed that ∆(M) is finite where M
is a primary ACM. It remains then to prove only the last claim of Theorem
3.1, which we will now attempt. Throughout this section we will assume that
α < β.

Lemma 3.8 If β = ω then [1, δ] ⊆ ∆(M) where δ = dβ/αe − 1.

Proof. Let γ ∈ [α, β) and choose rational primes q, r such that q ≡ p−α mod m
and r ≡ p−γ mod m. Set

t =

⌈
β − γ

α

⌉
+ 1,
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so that αt − β + γ ∈ [α, 2α). Consider x = pαt+γqtr and note that x ∈ M .
Furthermore, we have irreducible factorizations

x = (pαq)t(pγr) = (pβ)(pαt−β+γqtr)

which are of lenghts t + 1 and 2, respectively.
Suppose that y is an irreducible factor of x in M and write y = pvqirj

where i ∈ [0, t] and j ∈ [0, 1]. Since y ≡ 1 mod m and β is the order of p
modulo m by hypothesis we must also have v ≡ iα + jγ mod β. From this
we infer the following:

• If i = j = 0, then v = β and y = pβ.

• If i = 0 and j = 1, then v = γ and y = pγr.

• If i > 0 then v < 2α; otherwise pαq is an irreducible factor of y in M .

Assume that i > 0 so that v ∈ [α, 2α). Let S be the set of residue classes
[α, 2α) + βZ and note that we must have αi + γj + βZ ∈ S. We have two
cases:

• If j = 0, then αi + βZ ∈ S, so either i = 1 or αi ≥ α + β. In the latter
case, we see that since i ≤ t, αt ≥ α+β, but this contradicts the choice
of t, as then αt− β + γ ≥ 2α.

• If on the other hand j = 1, then αi + γ + βZ ∈ S. Since γ ≥ α, we
have αi+ γ ≥ α +β, and it follows that i ≥ 1

α
(β− γ)+ 1, whence i = t

by the choice of t.

Combining all of these arguments the irreducible divisors of x in M are
precisely pβ, pγr, pαq, and pαt−β+γqtr. Since vq(x) = t and vr(x) = 1, the
last of these irreducibles can only appear with pβ. Hence (pαq)t(pγr) and
(pβ)(pαt−β+γqtr) are the only factorizations of x in M and so ∆(x) = {t−1}.

We conclude that{⌈
β − γ

α

⌉
: γ ∈ [α, β)

}
⊆ ∆(M),

but the set on the left-hand side is exactly [1, δ], as desired. �
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Lemma 3.9 If β ≥ 2α− 1 then β = ω.

Proof. Set β = kω. By the minimality of β ≥ α, (k−1)ω ≤ α−1. Combining
this with the assumed bound on β,

ω = kω − (k − 1)ω ≥ (2α− 1)− (α− 1) = α

so that β = ω. �

Theorem 3.10 If α < β then ∆(M) = [1, β/α).

Proof. Let δ = dβ/αe−1 so that [1, δ] = [1, β/α). By Theorem 3.7, ∆(M) ⊆
[1, δ]. If β = ω, then [1, δ] ⊆ ∆(M) by Lemma 3.8.

If on the other hand β 6= ω, we see that β ≤ 2(α − 1) by Lemma 3.9, so
δ = 1. Because ∆(M) is nonempty (as 1 ≤ α < β), equality must hold in
the inclusion ∆(M) ⊆ [1, δ] = {1}. �

4 The ∆-set of a nonprimary ACM

Throughout this section, we will assume that d = pα1
1 · · · pαn

n where pi ∈ P
and αi > 0 for each i. As before, we note that pi is relatively prime with m,
so for each i we will fix ωi to be the order of pi modulo m; βi ≥ αi will again
be minimal such that ωi | βi.

We will digress a moment to acknowledge a possible strategy. Oftentimes
in number theory one needs only to prove the primary case and then the
general case follows by some property of the objects in question. For example,
any singular ACM can be decomposed as an intersection of primary ACMs:

Ma,b =
n⋂

i=1

Mai,b/qi

where qi =
∏

j 6=i p
αj

j , and ai is the reduced residue congruent to a modulo
b/qi. Each of the terms in this intersection is easily seen to be primary by
results in Section 2. Furthermore, this primary decomposition is unique by
the Chinese remainder theorem. Though this decomposition always exists,
a mathematical relationship between ∆(M ∩N) and ∆(M), ∆(N) may not
exist. If N is a general submonoid of M , the factorization properties of M
and N might be substantially different, since it is not always the case, for
example, that A(N) = A(M) ∩N (see Section 5).
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Moving on, we recall that in Section 3 we often made use of the fact
that pβ is irreducible in the primary ACM M . In the nonprimary case we
will employ a similar strategy. Let VM = P(d) ∩M and note that in fact,
A(VM) = A(M)∩VM (this will be discussed with more depth in Section 5).
Since x = pβ1

1 · · · pβn
n ∈ VM by the membership criterion, we see that A(VM)

is nonempty as either x or some irreducible y |M x is an element of this set.
Call y ∈ A(VM) a pi-amenable irreducible iff pkωi

i y ∈ A(VM) for each
k ∈ N0. It is actually relatively easy to demonstrate the existence of such
irreducibles: Choose y ∈ A(VM) and j ∈ [1, n] such that y is of minimal
pj-adic value among elements of A(VM). If i 6= j, then y is pi-amenable.
Thus pi-amenable irreducibles exist and, as a corollary, A(VM) is infinite.
This is precisely the feature of the nonprimary case which we will use to our
advantage.

We are ready to prove that ∆(M) is finite in the nonprimary case. How-
ever, what we will prove is actually a good deal stronger. Say that λ ∈ N0 is
a critical length for a monoid M iff for all x ∈ M , minL(x) < λ.

Lemma 4.1 Let M be a monoid which is not a group. If there is λ such
that λ is a critical length for M , then ∆(M) is nonempty and finite with
max ∆(M) ≤ λ− 2.

Proof. Let x ∈ M be arbitrary. The result is obviously true if maxL(x) ≤ λ,
so suppose that maxL(x) > λ. Factor x = x1 · · ·xλ · · ·xµ where xi ∈ A(M)
for each i and µ > λ. By earlier arguments, there is l ∈ L(x1 · · ·xλ) such
that 1 < l < λ and thus x1 · · ·xλ = y1 · · · yl. Thus, x = y1 · · · ylxλ+1 · · ·xµ

and so µ, µ− (λ− l) ∈ L(x). The claim now follows, since λ− l ≥ λ− 2. �

Theorem 4.2 Let M be a nonprimary ACM, j ∈ [1, n], and y a pj-amenable
irreducible. Choose λ satisfying

λ ≥ max
i

(
1 +

vpi
(y)

αi

)
, and λ ≥ 2αj + ωj

αj

.

Then λ is a critical length for M .

Proof. Let x ∈ M such that l ∈ L(x) for l ≥ λ. Of course vpi
(x) ≥ λαi for

each i. By the first bound on λ, vpi
(x) ≥ αi + vpi

(y) for each i and therefore
vpi

(x/y) ≥ αi. We infer that x/y ∈ M by the membership criterion.
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Now find k such that αj ≤ vpj
(x/y) − kωj ≤ αj + ωj − 1. By the usual

arguments, x/p
kωj

j y ∈ M and since

vp

(
x

p
kωj

j y

)
≤ αj + ωj − 1,

a factorization of x/p
kωj

j y has at most k irreducible factors where

k ≤ αj + ωj − 1

αj

.

Moreover, k + 1 ∈ L(x) since p
kωj

j y is irreducible in M (as y was chosen to
be pj-amenable). By the second bound on λ, λ > k + 1, so minL(x) < λ.
By definition, λ is a critical length for M . �

The above theorem does not apply to the primary case because in the
primary case A(VM) is finite and thus there are no p-amenable irreducibles.
Combining Theorems 3.7 and 4.2, we infer the following:

Theorem 4.3 If M is a singular ACM, then ∆(M) is finite.

We will now demonstrate the usefulness of Theorem 4.2 in formulating
bounds for ∆(M) where M is nonprimary and singular. For instance, we can
derive the following two corollaries:

Corollary 4.4 Let M be a nonprimary ACM. Furthermore, assume that
pγ1

1 · · · pγn
n ∈ M where γi ∈ [αi, 2αi) for each i and that for some j we have

ωj ≤ αj. Then ∆(M) = {1}

Proof. Set y = pγ1

1 · · · pγn
n and note that since γi < 2αi, y is a pi-amenable

irreducible for all i ∈ [1, n]. Applying Theorem 4.2 we see that λ = 3 is a
critical length for M . Since the ∆-set of a nonprimary ACM is nonempty
and λ = 3 is a critical length for M , ∆(M) = {1}. �

Corollary 4.5 Let M be a singular ACM with a = b. Then

∆(M) =

{
∅ if b is prime,
{1} if b is composite.

Proof. This is simply a combination of results; specifically Theorem 3.1 and
Corollary 4.4. �
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Example 4.6 Consider M = M6,30. Here d = 6 and m = 5; p = (2, 3),
α = (1, 1), and ω = (4, 4). Note that 6 is a 2-amenable irreducible of M (it
is of course also 3-amenable). Since 2 has order 4 modulo 5, we may apply
Theorem 4.2 to see that λ = 6 is a critical length of M6,30. By Lemma 4.1,
max ∆(M) ≤ 4. This is actually the best bound because

66 = (96)(486),

6, 96, 486 ∈ A(M), and there are no other factorizations of 66 in M . Without
much trouble we can find witnesses to 1, 2, 3 ∈ ∆(M), so ∆(M) = [1, 4]. We
also note that M6,30 = M6,10 ∩ M6,15, and ∆(M6,10) = ∆(M6,15) = [1, 3] by
Theorem 3.1.

Example 4.7 Let M = M96,480. We have d = 96, m = 5, p = (2, 3),
α = (5, 1), and ω = (4, 4). Since d = 96 ∈ M and 4 = ω1 ≤ α1 = 5,
we can conclude by Corollary 4.4 that ∆(M) = {1}. Again, we decompose
M into primary ACMs: M96,480 = M96,160 ∩ M6,15. Applying Theorem 3.1,
∆(M96,160) = {1} and ∆(M6,15) = [1, 3].

In the primary case, ∆(M) the values α and ω are sufficient to retrieve
∆(M). Thus, it may seem intuitive that ∆(M) is determined by α, ω in the
general case. However, even if we know the values of α, ω, m and even the
structure of the subgroup of Cl(M) generated by p̃1, . . . p̃n, we still cannot
describe ∆(M) precisely all the time:

Example 4.8 Consider M = M56,70. Making the usual preliminary cal-
culations, we see that (αM , ωM , mM) = (αN , ωN , mN), where N = M6,30.
Though pM = (2, 7) and pN = (2, 3), both sets of primes generate the whole
class group Cl(M) = Cl(N) = (Z/5Z)×.

Despite these similarities, we claim that

max ∆(M) ≤ 3 < 4 = max ∆(N).

Proof. Using Theorem 4.2 with y = 56 = 237 (which is 2-amenable), we
see that λ = 6 is a critical length for M . Suppose that 6 ∈ L(x) and that
x = y1y2 is a factorization of x into 2 irreducibles.

Of course, v(x) = v2(y1) + v2(y2) ≥ 6 and v(x) = v7(y1) + v7(y2) ≥ 6. By
the pigeonhole principle there exist i, j with v2(yi) ≥ 3 and v7(yj) ≥ 3. We
must have i 6= j, for if i = j then 142 is a nontrivial irreducible factor of yi in
M which contradicts the hypotheses. Thus, without loss of generality we take
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v2(y1) ≥ 3, v7(y2) ≥ 3, and write y1 = 22z1 and y2 = 72z2. We know that
z1, z2 ∈ M by the membership criterion, and since they divide irreducible
elements of M in N, z1, z2 ∈ A(M) by Corollary 2.3. Thus, x = (142)z1z2 is
a factorization of x into 3 irreducibles of M , whence the claim. �

In all three of the preceding examples we considered nonprimary ACMs
with two primary factors: M = M1 ∩ M2 for M1, M2 primary. Note that
there are instances of M1 = M2 ( M , M = M1 ( M2, and M = M1 = M2.
This suggests that the connection between ∆(M) and the ∆-sets of the terms
in the primary decomposition of M is tenuous at best.

5 Higher structure theory of ACMs

Example 4.8 illustrates that characterizing the full ∆-set of an ACM in the
nonprimary case is somewhat more complicated than in the primary case.
In particular even if we know α, ω, m and the structure of the subgroup of
Cl(M) generated by p, we still cannot determine ∆(M) exactly.

In the example, pM = (2, 7) and pN = (2, 3). While it is true that 2, 3, 7
all have order 4 modulo 5, 2 ≡ 7 mod 5 but 2 ≡ 3−1 mod 5. As a result,
dN ∈ N but dM /∈ M .

This suggests that in order to precisely describe ∆(M) in the nonprimary
case, we need some adequate characterization of VM = P(d) ∩M . We will
begin by generalizing this object for any monoid.

5.1 Saturated submonoids and the vinculum

Let M be any monoid. A submonoid S ≤ M is called saturated iff xy ∈ S
implies x, y ∈ S. That is, whenever S is a saturated submonoid,

xy ∈ S ⇐⇒ x ∈ S and y ∈ S.

Lemma 5.1 We characterize the saturated submonoids of an ACM. Namely,
if M is an ACM and S ≤ M is saturated, then either S = {1} or S = P ∩M
where P(d) ⊆ P ⊆ P \ P(m).

Furthermore, suppose S ≤ T ≤ M with S saturated in T and T saturated
in M and write T = P ∩M . Then we may conclude that S = P

′ ∩M for
P ′ ⊆ P .
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Proof. The set {1} is a saturated submonoid of M , since it is the group of
units. So suppose that S = P ∩M where P satisfies the required inclusions.
S is certainly a submonoid of M , so let x ∈ S, x 6= 1, and factor x = yz.
But then y, z are products of primes in P(x) ⊆ P , whence y, z ∈ P .

Conversely, let M be an ACM and S a saturated submonoid of M . Sup-
pose that S contains some x 6= 1 and let y ∈ M be such that P(y) ⊆ P(x).
Choose k ∈ N such that y |N xk and note that y |M xk+1 since xk+1/y satisfies
the membership criterion. Thus xk+1 = yz for some z ∈ M ; since xk+1 ∈ S
(as S is a submonoid), y, z ∈ S. Thus P(x) ∩M ⊆ S for each x ∈ S.

Since S is a submonoid of M , if x, y ∈ S then xy ∈ S so P(xy) ∩M =
P(x) ∪ P(y)∩M and thus we conclude that S = P(S)∩M . The second claim
is a simple corollary. �

Lemma 5.2 If S is a saturated submonoid of T and T is a saturated sub-
monoid of M , then S is a saturated submonoid of M .

Moreover, if F is a family of saturated submonoids of M , then
⋂

S∈F S is
a saturated submonoid of M .

Proof. A routine application of the definitions. �

Saturated submonoids interest us especially for the following reason:

Lemma 5.3 If S ≤ M is saturated, then ∆(S) ⊆ ∆(M).

Proof. It is clear from the definitions that A(S) = A(M)∩S (as long as S is
saturated; this is certainly false for a general submonoid). Let x ∈ S; by the
preceding statement and the fact that S is closed under factorization, L(x)
is the same regardless of whether we view x as an element of S or an element
of M . Hence ∆(S) ⊆ ∆(M). �

Every monoid which is not a group has at least two saturated submonoids,
namely M and M× (the group of units). Since M× ≤ S for every saturated
submonoid S ≤ M , M× is the minimal saturated submonoid of M . Since
the structure of M× is rather irrelevant to concerns of monoid theory (as it
can always be collapsed to {1} by reducing M), we wish to define a saturated
submonoid VM ≤ M such that whenever S is also saturated and M× ≤ S ≤
VM , then either S = VM or S = M×. The vinculum of M is defined as the
saturated submonoid

VM =
⋂

S≤M
S saturated

S 6=M×

S.
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Given x ∈ M , the smallest saturated submonoid S(x) of M containing x is
the multiplicative closure of

{y ∈ M : (∃k ∈ N) y |M xk}

S(x) = M× iff x is a unit, so

VM =
⋂

x∈M\M×

S(x).

Therefore y ∈ VM iff for all x ∈ M \M×, y divides some power of x (in M).
We infer that

VM = {y ∈ M :
√

y ∪M× = M}

where
√

y is the radical of the principal ideal generated by y. So we may
think of the vinculum as the set of elements of M whose radical contains
M \M×.

Example 5.4 Let M be an ACM. By Lemma 5.1 we have VM = P ∩ M
where P =

⋂
x∈M,x 6=1 P(x) whence we conclude that VM = P(d) ∩M , which

is exactly how we defined it earlier in Section 4.

By the above example, the vinculum actually helps us generalize the
notions of regular and singular for any monoid. In particular we say that M
is regular iff VM = M×, and that M is singular otherwise. In particular, all
groups are regular.

Furthermore we call a singular monoid M primary iff VM is finitely gen-
erated. This is consistent with the definition of a primary ACM because if
M is a primary ACM then A(VM) = {pβ+kω : 0 ≤ k < α/ω} and we know
that if M is a nonprimary ACM then A(VM) is infinite.

5.2 L-collapses and the ∆-set of an ACM

For any Q ⊆ P, set
VM [Q] = P(d) ∪Q ∩M .

Implicitly, 3.8 characterizes the ∆-set of a primary ACM M by describing
factorizations in the saturated submonoids VM [q, r] where q ≡ p−α mod m
and r ≡ p−γ mod m with γ ∈ [α, β). We will show that a similar method
works in the nonprimary case.
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Lemma 5.5 Let M, N be monoids. An L-collapse is a surjective homo-
morphism θ : M → N such that L(θx) = L(x). If such a map exists,
∆(M) = ∆(N).

Proof. Since θ preserves L-sets, for every x ∈ M , ∆(x) = ∆(θx) and so
∆(M) ⊆ ∆(N). The argument for the reverse inclusion simply requires that
θ be surjective, which is true by definition. �

Lemma 5.6 Let M be an ACM, x ∈ M \ P(d), and let q = 1 or q ∈
P(x) \ P(d). Then if q′ ∈ P \ P(d) and q ≡ q′ mod m, x′ = (x/q)q′ ∈ M .
Furthermore, x is irreducible iff x′ is irreducible.

Proof. The former claim is true by the membership criterion.
For the latter claim, suppose x is irreducible and factor x′ = y′z′. Without

loss of generality, let q′ | y′. By the first part, y = (y′/q′)q ∈ M , and since
x = yz′ and y is not a unit, z′ = 1, whence x′ is irreducible. The proof of
the converse is identical. �

Theorem 5.7 Let Q ⊆ P \P(m) such that Q̃ = Cl(M) \ {1̃} and the reduc-
tion map Q → Cl(M) is injective. There is an L-collapse θ : M → VM [Q].

Proof. For each r̃ ∈ Cl(M) \ {1̃}, let q(r̃) be the unique element of Q′ such
that q(r̃) ≡ r mod m. Define a map θ : P → P ∪ {1} by

θp =


p if p ∈ P(d),
1 if p /∈ P(d) and p ≡ 1 mod m,
q(r̃) if p /∈ P(d) and p ≡ r mod m,

θ certainly preserves divisibility by d and residues modulo m, so it is easy
to see that θ : M → VM [Q]. Since VM [Q] is a saturated submonoid of M
(Lemma 5.1), A(VM [Q]) = A(M)∩VM [Q] and moreover, θ fixes VM [Q], so
θ is surjective. Applying Lemma 5.6 iteratively, θ preserves L-sets, and thus
θ is an L-collapse. �

Theorem 5.8 Let M be a singular ACM. Up to L-collapse and isomor-
phism, M has at most 2ϕ(m)−1 saturated submonoids.

Proof. Let Q satisfy the assumptions of Theorem 5.7. If S ≤ M is saturated
and nontrivial we have VM ≤ θS ≤ θM = VM [Q]. By Lemma 5.1 there
are at most 2ϕ(m)−1 submonoids θS (up to isomorphism) which satisfy these
inclusions, corresponding to the subsets of Q. �
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The above shows that we need only work in finitely many saturated sub-
monoids of M in order to completely determine ∆(M). Though this Theo-
rem was a generalization formulated in the same spirit as Lemma 3.8, it is
comparably imprecise, owing to the structural complexity and diversity of
nonprimary ACMs.

5.3 Further structural results

Lemma 5.9 Let M be a singular ACM and let Q satisfy the assumptions of
Theorem 5.7. The monoid VM [Q] can be embedded in a finite-dimensional
numerical monoid.

Proof. Enumerate Cl(M) \ {1̃} = {r̃1, . . . , r̃ϕ(m)−1} and define a homomor-

phism η : Nn
0 × Nϕ(m)−1

0 → Cl(M) by

η(x1, . . . , xn, y1, . . . , yϕ(m)−1) = p̃x1
1 · · · p̃xn

n r̃y1

1 · · · r̃yϕ(m)−1

ϕ(m)−1

then we clearly have

VM [Q] ∼= ker η ∩
n∏

i=1

[αi,∞)× Nϕ(m)−1
0 . �

Unfortunately, the right-hand submonoid of Nn
0×Nϕ(m)−1

0 is not saturated,
so we cannot immediately make use of extensive results concerning the ∆-set
of numerical monoids [2].

Corollary 5.10 Let M, N be singular ACMs and let QM , QN satisfy the
assumptions of 5.7. Suppose that nM = nN , αM = αN , and Cl(M) ∼=
Cl(N). By Lemma 5.9, VM [QM ], VN [QN ] may be embedded as submonoids

of Nn
0 × Nϕ(m)−1

0 . If the resulting homomorphisms ηM , ηN have the same
kernel, then VM [QM ] ∼= VN [QN ] and so ∆(M) = ∆(N).

Example 5.11 We briefly revisit Example 4.8. Both ACMs M = M56,70

and N = M6,30 may be embedded as submonoids of N2
0×N3

0. In the standard
embedding given by Lemma 5.9 we see that ηM(v,w) = 2̃v1+v2+w1 3̃w2 4̃w3 , and
ηN(v,w) = 2̃v1+w1 3̃v2+w2 4̃w3 .

Identifying Cl(M) = Cl(N) = Z/4Z with 2 as our primitive root, these
homomorphisms are determined by

ηM : (v,w) 7→ v1 + v2 + w1 − w2 + 2w3 + 4Z
ηN : (v,w) 7→ v1 − v2 + w1 − w2 + 2w3 + 4Z
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so ker ηM 6= ker ηN .

We conclude with a (very hopeful) conjecture suggested by Theorem 5.7:

Conjecture 5.12 Let M, N be singular ACMs and let QM , QN satisfy the
assumptions of 5.7. Then we have VM [QM ] ∼= VN [QN ] iff VM

∼= VN and
Cl(M) ∼= Cl(N).

6 The asymptotic density of irreducible ele-

ments in a singular ACM

This section is not tangibly related to a description of ∆(M) for M a singular
ACM, as it mainly concerns questions of analytic number theory.

Theorem 6.1 If M is a singular ACM and x ∈ M is reducible, x+b ∈ A(M).

Proof. Suppose otherwise and write x = (a + bh)(a + bk) and x + b =
(a + bi)(a + bj). Substituting and expanding gives

x + b = a2 + ab(i + j) + b2ij = a2 + ab(k + h) + b2kh + b

and canceling terms,

a(i + j) + bij = a(k + h) + bkh + 1

a(i + j − k − h) + b(ij − kh) = 1

so d = 1 which contradicts the singularity of M . �

This suggests that if the limit exists and M is a singular ACM,

ς(M) = lim
k→∞

|A(M) ∩ [1, k]|
|M ∩ [1, k]|

≥ 1

2
.

Example 6.2 For any b, ς(Mb,b) = 1/2 (immediate by the characterization
of irreducibles in this case, see Example 1.1).

If p is an odd prime, ς(Mp,2p) = (p−1)/p. In this case x ∈ M is irreducible
iff p | x but p2 - x. Thus, dividing through by p we see that ς(M) is equal to
the density of odd numbers which are not divisible by p, which is as claimed.
This example shows that ς(M) for M an ACM can be made arbitrarily close
to 1.

ς(M4,6) = 1/2: This argument is largely heuristic. Let x ∈ A(M4,6); then
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• v2(x) ∈ [1, 2].

• A1 = H1 (that is, y ∈ M4,6 is irreducible whenever v2(y) = 1).

• x ∈ A2 iff v2(x) = 2 and x has no odd prime factors congruent to 2
modulo 3. (Otherwise x has an irreducible factor in A1.)

The asymptotic density of A1 in M4,6 is clearly 1/2 so we need only compute
the asymptotic density of A2 in M4,6. Of course, the density of all elements
x ∈ M4,6 with 2-adic value 2 is 1/4. By the above, an irreducible in A2 is
of the form 4y where y is a (possibly empty) product of primes congruent
to 1 modulo 3. As the limiting variable k grows, we observe that there
are many more reducible elements in H2 than irreducible elements and that
the density of A2 in H2 must tend towards 0 (essentially, the probability a
number congruent to 1 modulo 3 has a divisor congruent to 2 modulo 3 tends
towards 1 as k →∞).

7 Further questions

• Suppose we are given a critical length λ for M via Theorem 4.2. This
gives us the estimate max ∆(M) ≤ λ−2, and this bound can be verified
or improved by computing ∆(x) where x ∈ A(M)l, l ∈ [2, λ) (we used
a similar strategy in Example 4.8 to show that max ∆(M56,70) ≤ 3).
By Theorem 5.7 we actually need only check x ∈ A(VM [Q])l.

Is there a finite (or relatively sparse) subset A ⊆ A(VM [Q]) such that
it suffices to compute ∆(x) for x ∈ Al?

• Let Q satisfy the assumptions of Theorem 5.7. By Theorem 5.8 choose
jM to be minimal such that

∆(M) =
⋃

Q′⊆Q
|Q′|≤jM

∆(VM [Q′]).

If M is primary, then by Lemma 3.8 jM ≤ 2. Can we say anymore
about jM? When (if ever) is jM pessimal: jM = ϕ(m)− 1?

• Compute ς(M) for any singular ACM. Is there a singular ACM M such
that ς(M) is irrational? Is there any connection between the rationality
of ς(M) and ∆(M) or between ς(M) and the structure of VM?
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• Let M be any monoid, S ≤ M a saturated submonoid. For x, y ∈ M
say that x ∼S y iff there exist u, v ∈ S with ux = vy. This is an
equivalence relation and the resulting quotient M/S is a monoid. Just
as S preserves some of the factorization properties of M , is the same
true of M/S? Does the structure of M/VM tell us anything interesting
about M?
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