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Abstract

The General Linear Piecewise Lexicographic Programming (GLPwL-
gP) problem is a multiple objective optimization problem with piecewise
linear objective functions. We generalize previous results by changing
and eliminating certain assumptions. We also extend the fundamental
theorem of Linear Programming (LP) to include certain nonlinear, non-
continuous functions. Then we formulate an LP that provides the same
optimal set as a GLPwLgP, when there are two objectives. Moreover, we
show that there exists a bijection that maps corner optimal solutions for
the GLPwLgP problem to basic optimal solutions for the LP problem.
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1 Introduction

Linear Programming is useful in many different fields. It has been applied
to everything from minimizing business costs to maximizing the efficiency
of cancer therapy. Multiple Objective Linear Programming (MOLP) is
an extension of Linear Programming (LP), with the difference being that
MOLPs consider many linear objective functions. The standard form of
an LP is min{c"z : Az = b,z > 0}, where ¢ € R",b € R™, and A € R™*",
The standard form of an MOLP is

min{Cx : Ax = b,z > 0},

where C € RP*™, A € R™*", and m < n. In both the LP and MOLP
we assume that A has full row rank. The feasible region is a polyhedral
set containing all points that satisfy the constraints of the problem. We
denote the feasible set by P = {z : Az = b,z > 0}.

There are two standard ways to find a minimum in a multiple objec-
tive linear program. One technique uses weights to express a modeler’s
preferences. The idea is to give each objective a weight and the aggregate
the weighted objectives to form one objective. So, if w € R? and w > 0,
we transform the MOLP into the following LP,

min{w” Cz : Az = b,z > 0}.

The solutions for every possible positive set of weights forms the efficient
frontier, and the solutions are called pareto optimal solutions. In other
words, z! is pareto optimal if A x? 3 Cz? < Cxz!, with strict inequality
in one component.

Figure 1: The efficient frontier for min { (¢7z,cTz)” : 2z € P}. The faces P*
g 172,63 1

and Py are optimal for the single objectives ¢{ z and ¢l z, respectively.

Another way to find a minimum of a multiple objective linear pro-
gram is to use a lezicographic ordering. The notation used to indicate
a lexicographic ordering is the usual order symbols with a subscript L.



When using lexicographic ordering, the elements at the beginning of a
vector are infinitely more important than the elements at the end of the
vector. Thus, when two vectors are compared lexicographically, their first
elements are compared first, their second elements are compared second,
and so on. For example, because 1 > 0, we have
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It does not matter that the rest of the elements in the first vector are less
than those in the second.

An example illustrating what minimization means when the objectives
are lexicographically ordered is found in Figure [2]. In this figure, Py is
the set of solutions for the objective function (¢f )z, and hence, these are
the only feasible elements consideredd when minimizing cZz. The point
that minimizes c2 ¢ is the one farthest to the right on Pf as indicated.
In this paper we use lexicographic ordering to minimize linear piecewise
objectives. We use the notation R7 to indicate a set of n lexicographically
ordered vectors made up of real numbers.

Optimal
~olotion

Figure 2: The bold line labeled Py represents the optimal region for the objective

function cf  and hence, is the feasible region for minimizing P.

We generalize the results of Ukovich, Pastore, and Premoli [1], as well
as provide new results that extend their problem statement. We begin by
defining a three-piece linear function as follows

¢c(hm—z) ifz<h”
d(z) =d(z|h™,hT,c ,c) =< 0 ifh™ <z <ht
cH(z—h") ifrT <,
where ¢~ and ¢* are positive real numbers, and A~ and h* are such that
h~ < AT, with at least one being finite. The three-piece linear function is



non-negative, convex, and it’s domain is R. Three-piece linear functions
are used by modelers to incorporate penalties. An example of this could
be a grocery store that loses money if it does not keep h™ cans on the
shelf and is charged a storage fee if it has more than A" cans. Having
an amount between h~ and h' is desirable because no penalty is accrued
throughout the interval [h~, A™].
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Figure 3: Three-piece linear function

There is a corresponding collection of h~, A%, ¢, and ¢ for each vari-
able and each objective function. The penalty for each separate variable
is added together to calculate the total penalty of = for the corresponding
objective, forming a separable piecewise function. Thus, the i*" objective
function is:

D;(x)

- o+ -4 N
i,y (@1lh 1y B0y €1y €1)) G2y (@21P 0)5 B 05 €G30y €G,2)) +
™
et d(i,n)(wn|h(i,n)v h(i,n)’ Ci,n)» c(i,n))

n
T
D i @il gy 1 gy €y -

j=1



The function we optimize is D : R” — RY | where

- g+ - ¥
D (x) Yi=rdap(@ilh gy by a0 €0,0)
- F
D (z) i1 dea(@ilhg 5 ki 50, .0)
n b= BF
Dy(2) 21 4w (@il )0 Ry )0 €50 €,

D(x) takes an n-vector and returns a p-vector in a lexicographically or-
dered space. The order in which the individual objectives are arranged is
determined by the modeler.

The Linear Piecewise Lexicographic Programming (LPwLgP) problem
statement in [1] is

min{D(z) : Az = 0},

where the assumption is made that [h(H_1 J),h(hLl ])] C [h(”)7 (”.)]. We
generalize this problem statement in two ways First, we remove the
restriction that [h,, F-H Y (l+1 ) E g iy h(Z 7], and second we allow the
right-hand side of the constraints to be non-zero. The General Linear

Piecewise Lexicographic Programming (GLPwLgP) problem is
min{D(z) : Az = b},

where A € R™*"™, m < n, and A has full row rank.
If we want to include the constraint & > 0, we do this by adding Do(z),
such that:

Do(z) > i—1 d0,5)(w;]0,00,1,1)

.
Di(2) Yimday @®ilh gy kG gy Ca g Cg)
Dp(:c) z?:l d(;luj)(“’j |h(_p,j): ha,j)’ c(_p,j): CE;,]-))

Since D(z) is lexicographically ordered, and Do(z) is its first element,
Dy(z) is the most important objective to minimize. We have arranged
the function so that if 3z 5 Az = b and £ > 0, min{Do(x) : Az = b} = 0.
On the other hand, if Ax > Ax =b and ¢ > 0, min{Do(z) : Ax = b} > 0.
Thus, if the problem statement without Dy,

min{D(z) : Az = b,z > 0},

produced no solutions, then Dy(z) # 0. Do(z) may or may not be used,
depending on whether we want to guarantee non-negativity.

Throughout the following sections we refer to matrices and vectors
with set subscripts. A vector with a set subscript is a subvector of the
original vector containing the components whose indices are in the set. A



matrix with a set subscript is a submatrix containing the columns of the
original matrix whose indices are in the set. For example,

0 0
1

= 1

-1 5
2

{1,2,4}

and
1 1 0 1 0
[2 -1 3]{1,3}:[2 3]'
2 Corners and an Analog to the Funda-
mental Theorem of LP

In this section we develop an analog to the fundamental theorem of linear
programming using functions that have much weaker conditions. We begin
by introducing the ideas behind the fundamental theorem of LP. The
following theorem helps to develop the fundamental theorem.

Theorem 1 (See [2] for proof) If a linear program has an optimal so-
lution, there exists an extreme point optimal solution.

Thereom 1 is important because there is a convenient algebraic description
of an extreme point. Let

N(z) = {j : 2; = 0}, and B(x) = {j : z; # 0}.

These sets allow the following definition of a basic solution, which are
equivalent to extreme points as indicated in Lemma 1.

Definition 1 (Basic Solution) A vector z° € P is basic if Ag(,o) has
linearly independent columns.

If Ap(y0y is invertible, the columns of Ap,0) form a unique basis, and z°
is non-degenerate. If 20 is basic and Ap (0 is not invertible, the columns

0

of Ag(,0y do not form a unique basis. In this case, z" is called degenerate.

Lemma 1 (See [2] for proof) A feasible element is basic if, and only
if, it is an extreme point of the feasible region.

From Lemma 1, we conclude that a basic solution is the same as an ex-
treme point solution. Since every linear program with an optimal solution
has an extreme point optimal solution, we use Lemma 1 to conclude the
following theorem.

Theorem 2 (See [2] for proof) If a linear program has an optimal so-
lution, then there exists a basic optimal solution.

Theorem 2 is known as the fundamental theorem of linear programming,
and we now show that this can be extended to accomodate lexicographic
minimization.

In this section we consider the multiple objective program (MOP)
min{F(z) : Az = b}, where F : R® — R7. The goal of this section is to



develop properties for F' that permit our extension of Theorem ??. The
properties fall into two catagories. First, we need a way to define an object
similar to a basic solution. The difficulty here is that the minimization
for (MOP) is over an affine space, and hence, there are no inequality
constraints. This means that all the variables are unbounded and that
the index sets B(z) and N(z) do not make sense. These index sets rely
only on the feasible element = and the coefficient matrix A, and are defined
independent of the objective function. Our approach is different in that
the index sets used in this section depend on the objective function. These
new index sets allow us to define a corner, which is an extension of the
idea of a basic solution. Second, we require that the objective function in
(MOP) has a monotonicity property over line segments within the optimal
set. This condition is precisely defined in Definition 3.
We assume that F' has the following form,

F(z) = (Fi(z),Fe(x),..., Fp(x))T, where
Fi(z) = Zn:f(i,j)(xj), forie€ {1,2,...,p} and z € R".
i=1

F;(x) is seperable, meaning that f(; ;y has only x; as its argument.

We describe the behavior of a function “near” a point by saying that
a function exhibits a behavior locally at a point if there exists a neigh-
borhood of that point over which that behavior holds. For example, a
function f is locally monotonic at x if there exists a neighborhood of «
over which f is monotonic. Similarly, f is locally constant at z if there
exists a neighborhood of x over which f is constant. We also state that a
function is strongly monotonic if it is either strictly increasing, strictly
decreasing, or constant.

Unless n = p = 1, the concept of monotonicity does not make sense
for F. However, we use the property that F' is seperable to capture, in
some sense, where F' changes monotonicity over each axis. We now want
to examine those points at which F' “changes monotonicity.” Let

H; = {zj: fu;) is not locally strongly monotonic at x;
for some ¢ € {1,2,...,p}}.

For example, suppose that F : R*> — R3 is defined by

2 2 2 T
F(z) = (Fi(z),F(z),Fsz)" = (Z f(l’j)(xj),zf(27j),zf(3,j)> , where
j=1 j=1 j=1

f(1,1)($1) = 1 +sinzi,
fan(z2) = (22)°
51 1 < 1
fen(@) = 0, ©1>21,11€Q
1, otherwise
f(2,2)($2) = —Zg,
fen(®) = €™, and
fea(x) = (z2-1)°



Notice that f(1,1) and f(s1) are strictly increasing. Thus, they do not
contribute any points to Hi. The function f, 1) is constant over (—co, 1),
but for x1 > 1 there is no point at which f(, 1y is locally strongly mono-
tonic. Thus f(, 1) contributes the entire interval [1,00) to H;. Similar to
the construction of Hi, we have that f(; 2y and f( 2y contribute no points
to H» because they are strictly monotonic. However, f3 ) is not locally
strongly monotonic at 2 = 1, and hence, Hy = {1}.

A component z; of x € R™ is cornered if x; € H;. The following
index sets indicate which components are cornered and which are not,

v(r) = {j:x;is cornered}, and

B(z) = {j:z; is not cornered}.

Notice that v(z) and S(z) are similar to N(z) and B(z), the difference
being that N and B indicate which components of z are 0 and not 0,
while v and 3 indicate which components are cornered and not cornered.
The index sets v(z) and B(x) allow us to define a corner in the following
manner.

Definition 2 (Corner Solution) z is a corner if the columns of Ag )
are linearly independent.

Notice that a corner is similar to a basic solution. Returning to our
previous example for F', suppose that the constraint Az = 0 is included.
If A =[1,0] the feasible region is the z» axis. Since 0 ¢ Hi, we cannot
corner xi. Suppose that we corner x». This is possible only if zo = 1,
since that is the only point in H>. Then we have that 8(z) = {2}, and
Ap(zy = [1], which is linearly independent. So, z = (0,1)” is the only
corner. If A =[1,—1], the feasible region is the line 1 = 2, and we have
corners at every point (z',z')7, so long as ' > 1. If 2’ = 1, B(z’, z') = 0,
and Ag(, . is vacuous (and hence its columns are linearly independent).
For this case we have that (z’,z’) is a degenerate corner. If z’' > 1,
ﬁ(.’l}l,.’lil) = {2}, and Aﬁ(zl,xl) = [—1]

Since our goal is to prove a result about the existence of a corner
optimal solution, we need to require that corners exists. Hence, we assume
that F' has the property that H; # 0, for all j € {1,2,...,n}. Other than
making sure a corner exists, we need for F' to have one other property. We
now examine what is would mean for a function to be monotonic along
arbitrary line segments. In order to describe a line segment in R" we
define

I(z',z?) {z:2z=(1-60)z"+ 6z 6 € (0,1)}, and
I(z',2>) = {z:z=01-0)z"+60¢€][0,1]}.

We state that if 8; < > implies either f(z(61)) > f(z(82)) or f(z(61)) <
f(z(82)) for all 61,82 € [0,1], then f is monotonic over I(z*, z%). Similarly,
if ; < 6 implies that f(z(61)) < f(x(62)) or that f(xz(61)) > f(z(62)),
for all 81,82 € (0,1), then f is strictly monotonic over I(z',z>). We use
this concept of monotonicity over a line segment in the following definition

the explains what it means for a function to be linearly monotonic.

Definition 3 (Linear Monotonicity) F is (strongly) linearly mono-
tonic if it is (strongly) monotonic on I(z',2?) for all x*,2> € R™. F is



(strongly) linearly monotonic over S if it is (strongly) monotonic
over I(z',2?) for all z*,2*> € S and I(z*,2*) N S° = 0.

We define the set

Q(z) = {z+aq:q€ Nul(Ad),v(z+ aq) =v(z),a >0} and
Q = U oW
z€O\C

where C is the set of corners and O is the set of optimal solutions. We
assume that the objective functions we deal with have the property that
they are strongly linearly monotonic over Q.

The following lemma shows that so long as an optimal solution is
not a corner, we find another optimal solution which has more cornered
compoents.

Lemma 2 If z° is an optimal solution that is not a corner, there erists
x' such that

(Z) wxlz(wo) = mg((to)i

(ii) v(z®) C v(z'), and
(iii) x' is optimal.
Proof: Note that since z° is not a corner, the columns of Ap(z0) are
linearly dependent. Tt follows that Nul(Ag(,0y) # {0}. Choose a direction
vector

q= [%] , where gg(,0y € Nul(Ag(,0)) \ {0} and g,,0y = 0.
v(20)

Let

mg(zO) + Qgg(z0)

x(a):$0+aq:|: ],WhereaZO.

0
Ty (29)
We have that z(a) is feasible because

Az(a) = A(:co + aq)
= Ap@o)[2h(e0) +adso)] + Ayo)2o(0)
Apa0)Zh(a0) + Ay @) Ty (20) + AAp(u0)d5(20)
= Az’ + adpo) a0
b.

We now find the smallest o that will corner z¢

for some j € B(z°).
However, we first need to ensure that ¢ directs mé towards h € H; for
some j € 3(z°). Suppose that for all j € B(z°), either z} > sup{H;} and
g >0, or 2} < inf{H;} and g; < 0. Then for all j € (z°) and a > 0,
x? + ag & H;. Thus it is impossible to corner m? for j € B(z°). However,
since gg(,0y € Nul(Ag(,0)), we also know that —qg,0y € Nul(Ag,0,). So,
if ¢ does not direct w;-) towards h € Hj, then —g does. Hence, we may
always choose ¢ € Nul(A), with gg(,0) € Nul(Ag(,0y) and g,,0y = 0, such



that ¢ directs z° towards a corner, and we assume throughout that ¢ has
this property.

Define

N . h_fl?? . 0 0

&y = infd——=:5€pB(z"),h € Hj,q; >0,h>x; ¢, and
qj

N . h_l'? . 0 0

&- = inf o :j€B(x),h € Hi,q; <0,h <z .
j

Now let & = inf {&4,a-}. Fix ' = 2(&) = ° + ag. Observe that for all
Jj € v(z°), we have that z = 29 + 4g; = z. Therefore we conclude that
37,1,(1-0) = xg(zo), which proves statement (¢).

By the definition of &', we know there must exist j € B(z°) such
that zj € H; and @} ¢ H;. So, j € v(z'), and because j ¢ v(z°) and
37,1,(1-0) = xS(xO), we have that v(z°) C v(z'). Hence, statement (i) is
proven.

Notice that by the definition of &, for « € [0, &), we have that z(a) &
H;. This implies that for a € [0,4], z(a) € Q. Since F is strongly
linearly monotonic over @), we have that F(z(a)) is monotonic over [0, &].
Additionally, since z° is not a corner, for j € B(x°) there exists some
neighborhood (2 —¢;, 29 +¢;) around zJ such that h & (2 —¢;, 29 +¢;),
for all h € H;. Let & = inf{% 1jE ,3(100)}. Then for all a € (—a, @),
and all j € 3(z°), (a) € H;. This implies that for a € (—a, @), z(a) € Q.
Since F' is srtrongly linearly monotonic over @, we have that F(z(a)) is
monotonic over (—a&, @). Then we have that F(z(«)) is monotonic over
(—a, &l

Since z° is optimal, we conclude that F(z°) <; F(z'). Suppose that
F(z°) <z F(z'). Let k1 € {1,2,...,p} be the smallest index such that
Fy, (2°) < Fy, (z"). Since Fy, (x(a)) is monotonic over (—a&, &), this im-
plies that Fj, (2°) > F, (z° — &g), which contradicts the fact that z° is
optimal. Thus F, (2°) = Fi, (z'). Now let k2 € {1,2,...,p} \ {y} be the
next smallest element such that F, (2°) < Fi,(z'). We again show this
contradicts the fact that z° is optimal. Continuing in this fashion, we
conclude that for all i € {1,2,...,p}, Fi(z°) = F;(z"). We conclude that
F(2°) = F(2'). This implies that ' is optimal, which proves statement
(ii7). W
Theorem 3 If the min{F(z) : Az = b} has a solution, then it has a
corner solution.

Proof: Let z° be an optimal solution. If z° is a corner, then the proof
is complete. If z° is not a corner, the previous lemma implies that there
exists an optimal solution ' such that mi(mo) = mg(mo) and v(z°) C v(z).
Then there exists some j € 8(z°) such that j ¢ B(z'). This implies that
there are fewer columns in Ag,0y than in Ap(,1y. There are two possible
cases. First, suppose that the columns of Ag(,1) are linearly independent.
Then z' is a corner optimal solution. Second, suppose that the columns
of Ap(,1y are linearly dependent. Then there exists an optimal solution

1

z? such that xz(wo) = z,(,0y and v(z') € N(z?). Again, there are two

v(z
possible cases. If the columns of Apg(,2) are linearly independent, z2

10



is a corner. If the columns of Ag(,2) are linearly dependent, there exists
another optimal solution =3 such that xi(mo) = xi(mo) and N(z”) C N(z?).
Continuing in this fashion, we find an optimal solution £ such that the
columns of Ap(;y are linearly independent. Thus & is a corner optimal
solution. W

We now show that the fundamental theorem of linear programming
follows from Thoerem 3. We make the assumption that (Ip) min{c”z :
Az = b,z > 0} has an optimal solution. For j = 1,2,... ,n, define
d; : R™ -+ R by

—z;j, <0
dj(m):{ 0, >0

n
and set D(z) = Y d;j(z). Notice that D has a minimum value of zero
j=1

over R. So, the definition of D, the fact that (Ip) is feasible, and the
lexicographic ordering implies that

argmin {( DT(x ) Az = b} = argmin {cTw 1Az =b,x > 0}. (1)

cC T

We denote the multiple objective program on the left-hand side of the
equality in 1 by MOP. Since the objective functions in M OP are (piece-
wise) linear, they meet the conditions of Theorem 3, and hence M OP has
a corner optimal solution. Let x be a corner optimal solution to MOP.
Since the second objective in MOP is linear, we have that H; = {0}
for j = 1,2,...n. This means that x has the following properties: 1)
N(z) =v(z), 2) tn = z, = 0, and 3) the columns of Ag(,) = Ag(,) are
linearly independent. The third observation, together with the fact that
z is optimal to (Ip) from (1), implies that x is a basic optimal solution to
(Ip). Hence, every corner optimal solution to MOP is a basic optimal so-
lution to (Ip), and Theorem ?? implies the fundamental theorem of linear
programming.

3 Connection with Linear Programming

In this section, we investigate the relationship between a corner optimal
solution and a basic optimal solution. First, we formulate a linear program
that provides an optimal set that is equipotent to the optimal set for the
GLPwLgP problem with two objectives. Set

01 = argmin{( Do ) : Ax zb} and
D,

0s = argmin{(¢c )"y + () p:Az=bz+y>h",x—p<hT,
z>0,72>0,p>0}

11



where

) ¢ty hii 1y
€12 C1,2 h_1,2
N I I N P
E k :
€(1,m) €(1,m) h(1,m)

Figure 4 is an extremely simplified example where

_ : Do\, _
Ol—argmln{( D, ).x—3},

, and At =

h+

(1,1)

+
h(1,2)

h

+
1,m)

and D1 = d(1,1)(z|1,2,1,5). Because the example is so simple, £ = 3 is

the only feasible point, and therefore the optimal point and corner.

di3)=5

Optimal Peint

Figure 4: Example of O,

In Theorem 4 we show that O1 = O;. For this example,

Oy =argmin{y+5p:z=3,c+y>1L,z—p<2,2>0,v>0,p >0},

and Figure 5 depicts the geometry describing Os. The feasible region for
O> is the part of the plane z = 3 that exists in the positive orthant and
p > 1. Oz contains only the point (z,7, p) = (3,0, 1), which is an extreme

point (and hence basic).

12



A Feasible Region

Optimal
Paint 1

Lr—f-”'.z -

3

Figure 5: Example of O,

We show a slightly more complex example of O in Figure 6, where

p— M DO . p—
01 _argmln{( D; ) .Ax—O},

A=[1-1], and Dy = d(l,l)(.’l:lll, 2,1,1) + d(l,z)(xz|3, 4,1,5).

Null (A

Figure 6: Another example of O

13



The feasible region for O; is the line in the positive orthant that represents
Null(A). Although the points on Null(A) are not extreme points, they are
corners by definition. From Theorem 3 we know that at least one of these
corners is optimal.

The example in Figure 6 only has one more variable than that in
Figure 4, but it is already impossible to draw a representation of the
linear program that is equipotent to Figure 6 because the LP has six
decision variables.

The goal of this section is to show that there exists a bijection between
01 and O such that a corner in O, is mapped to a basic optimal solution
in O2. We begin by showing that the optimal sets of O; and O» are
equipotent.

Theorem 4 We have that O1 = Oz, provided Oz # 0
Proof: Let:

F' = {z:Ax=0b}
Fi = {z:Ax=0bx>0}, and
F o= {(@,v,p) Az =ba+y>hT,z—p<ht x>0,v>0p>0}

Define P: Fi — F?: x> (z,7(z), p(z)), where

() hagy —w  ifay <hg
i 0 if 2 > hey

and

0 if ; <hf
pi(z) = o T )
J { x; —hzq,j) if ¢; > h) .

Let T € O1. Then, Oz # 0 = 3 z such that x > 0 and Az = b. So,
Do(#) = 0. Thus, € F}. Notice that P(z) = (z,v(x), p(z)) € F? —i.e.
P(z) is feasible to the math program in O;. Furthermore, notice that the
definition of y(z) and p(z) imply that Di(z) = (¢7)Tv(z) + (") p(x).
We show that P(z) is optimal. Let (2,4, ) € F2. Then,

Dy(z) = (¢7) (&) + (¢")"p(®@) < (¢7) (@) + (") p(&) = Dr(8).

By definition of v(z) and p(z), we have that

v(£)
p(%)

INIA

Thus,
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‘We now have that:
() (@) + (") p(z) )Ty (&) + (ch) p(&)
)"+ (c)"p.

IAIN
2>

This shows that for z € O1, P(z) = (z,v(z), p(x)) € F* is optimal. So,
x € Oy implies (z,v(x), p(x)) € Os.

Let z',z° € O1 be such that P(z') = P(2?). Then,

P(z') = (&', 7(z"), p(z")) = (&®,7(z%), p(z®)) = P(z?).

Thus, z' = z?, and P is one-to-one.

Let (%,79,p) € O2. Notice that Z € F}, and hence, Do(Z) = 0. So,

argmin {( go ) c Az = b} = argmin{D;(z) : Az = b,z > 0}.
1
By the definition of vy(z) and p(z),
Di(2) = (¢7) (@) + () p(@) < ()" 7+ (c)'h.
Since (&, 7, p) are optimal, nothing can be less than (¢7)" 7+ (¢)7 5. We
conclude that
Di(z) = () 7+ () "p.

Suppose that & € F} has the property that D;(#) < D1(Z). Then,

Di(#) = (¢7) (&) + (¢ p(@) < (¢7) (@) + (¢7) " p(@) = D1 (D).
However, as was shown above, D1 (%) = (¢7)77 + (¢")T 5. Thus,

() (@) + ()T p(@) < () T+ ()T

Since 4 and p are optimal, the above inequality is a contradiction. Thus,
D1(%) > D1(Z) which implies that Z € O;.

We know that 4 > «(Z). Suppose 3 ¢ such that 4; > ~;(Z). Since 7;
is optimal, we have reached a contradiction because y(z) would lead to a
smaller objective value. Thus, 7; = 7;(Z). A similar argument shows that
pi = pi(Z). Then, T € O such that

P(Z) = (%,7(%),p(T))
= (%,%p)

Thus, P is onto Oz and O1 =2 0,. B

We have shown that there exists a bijection between O; and O2. Now
we consider the relationship between optimal corners for the GLPwLgP
in O; and basic optimal solutions for the LP in O,. We show that P(z)
maps these corners to basic optimal solutions.
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Theorem 5 A corner

T € argmin {( g?gg

)oar-s)

has the property that P(x) is a basic optimal solution to

min{(C’)T'Y+(c+)Tp:Aw=b,x+72 h,x—p< h+,x,%p20}-

Proof: Let

T € argmin {( g?gg

be a corner. We define the following index sets:

L = {iep:zi<h;}

M = {ief:h] <=z <hl}
R = {i€pB:z;>hl}

H = {i€v:z;=h; }and
HY = {i€ev:z;=h}

Notice LUMUR=p,H UH" =v, and

L
T z
o= | on :<_ﬂ>
Ty
Ty—
T+
Now let
AlO 0 010
U= I|1I 0|-I]|0
I/10|-1 0|1
and
T
_r
Yy= P
su

)oar-i)

where su is a surplus vector such that £ +y — su = h™, and sl is a slack

vector such that © — p + sl = h*. We partition the vector y as follows:

rL YBL

Tm Y

Yz = TR Yy = Y8r
TH- YBy—

TH+ VB g+

Yp =

16

PBL
PBum
PBr
PB -
pBH+

Ysu =

Sugy,
SUB N,
S’LLﬂR
sug, _
SuBH+

Ysi =

slg,
SIBM
slgp
slg,, _
SZBH'I-



where 7y, p, su, and sl are subdivided so the system

Aym + qu + pr + Oysu + Oysl b
Uy: Iyﬂ? +Iy’y+0yp_1ysu+0ysl = h~™
Iym+0y7_Iyp+0ysu+Iysl h+

can be written as

Agror + Apyom + Agpzr + Ag-zy- + Ag+zy+ = b, (2)
zr+ysp —sug, = hg, (3)
TM + Y8y — SUBy, hgyys (4)
TR+ Y8y — SUBR hggs (5)
Tg- +Yg- — Sug- hy—, (6)
Tp+ +Yg+ —Sug+ = hgy, (7)
rr —pp, +slg, = hg'L, (8)
TM — Paa +8lgy, = hg’M, (9)
TR —ppgp +slp, = hi,, (10)
ry- —pu- +sly- h—, (11)
T+ — pu+ +slgs = h$+- (12)

Our goal is to subdivide the vector y into yp and yn, where yg > 0
and yv = 0. In Equation (6) zy- = hj_, and thus we know that
Y- = sug- = 0. In Equation (12) x5+ = h;+ so that pgy+ = sly+ = 0.
In Equation (4) £z > h™ = ~g,, = 0. Using similar logic and the
eqations indicated below, the following are zero:

0 Equation 0 Equation 0 Equation 0 Equation
Y8t (3) PBm (8) Sugy, (2) slgp 9)
V6r (4) Psr (7) Sty - (6) sly+ (11)
YH- (5) PH- (10)

Yu+ (6) Pu+ (11)
We define

N="m YV8r UYa- U Ta+ Upsy Ups, Upr-U
P+ Usug, Usug- Uslg, Uslg+.

Then, y, = 0, and hence, y, is a subvector of yn and 7 is a subset of N.

We define

E=zrUrzmyUzrUzy- Uyt Uy, UpgpU
sug,, U sug, Usug+ Uslg, Uslg,, Uslg-.
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Then,

L
M
TR
-
T+
V8L
Ye = PBr
SUB s
SUBR
SUg+
slg,

SlﬂM
sly-

Notice that yp is a subvector of y¢ and B is a subset of §.

Now let

b
&

b
)
o

Ay-

b
T
+

AﬁM

~

Il
OO OO NODODOOMN
OO OO OO OO MNO
oo ~NOOOCO OO OO
[=>Re R e e ] o o el R =l =]
OO OO OO NO QIO

|
OO OO OoONODOOO|IO
S oO oo NOOoCOOQOIO
S o O NODOIOCO OO QOO

OO oO~NOOCOONO
OO NOOOCONO O
ONO OO ONO OoOC
N OO OO NOO OO

so that Up is a submatrix of Us. We show the columns of Ug are linearly
independent.

Let z¢ be a vector partioned the same as y¢. Suppose Ugze = 0. Then we
get
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Appzr + Apy2v + Appzr + Ag-2y- + Ag+zp+ =

2L+, = ) 14)
ZM — SUgy = ) 15)
Zzr —sug, = 0, (16)
ZH- = ) 17)

Zg+ — Sug+

I
cooc oo Cc oo 00O
SooS S oo oS oo oD

®

Nt

zL+slg, = 0, (19)

zm +slg,, = 0, (20)

zr—pBr = 0, (21)

zg—- +slyg- = 0, (22)

Zg+ = 23)

By equations (16) and (22) zz- = 0 and zz+ = 0, and we rewrite equa-

tion (12) as

ABLZL + ABMZM + ABRZR =0.

Since our original vector z is a corner, we know the columns of the matrix
Ap are linearly indepedent. Therefore,

2 =0,z = 0,andzr = 0.

Using that zy-, 2y+, 21, 2Mm, and zgr are zero, it is easy to see that
z¢ = 0. Thus we conclude that x is a basic optimal solution of the set

argmin{(cf)T7+(C+)Tp:A$ =bx+y>h ,x—p<h¥,z,7,p> 0}-

We have shown that the fundamental theorem of linear programming
can be extended to include a much weaker set of functions that include
nonlinear and non-continuous functions. We have also shown that there
exists a bijection that maps corner optimal solutions for the GLPwLgP
to basic optimal solutions for an LP. This is very helpful because instead
of having to solve a complicated GLPwLgP with two objectives, we can
simply formulate the corresponding LP and solve it. Avenues for furthur
research include finding a correspondingLP for GLPwLgP problems with
more than two objectives, and determining if basic optimal solutions for
LP problems are mapped into corner optimal solutions for GLPwLgP
problems.
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