On Factorization Properties of Semi-Regular Congruence Monoids

Jessica Bauman Department of Mathematics Trinity University REU 2006

July 28, 2006

Abstract

If given $n \in \mathbb{N}$ and Γ , a multiplicatively closed subset of \mathbb{Z}_n , then the set $H_{\Gamma} = \{n \in \mathbb{Z} : x \in \mathbb{N} : x + n\mathbb{Z} \in \Gamma\} \cup \{1\}$ is a multiplicative submonoid of \mathbb{N}_0 known as a *congruence monoid*. Much work has been done to characterize the *factorial* (every element has unique factorization) and *half-factorial* (lengths of irreducible factorizations of an element remain constant) properties of such objects. Our paper further examines the specific *semi-regular* case, when Γ contains both units and non-units. We delve into characterizing the half-factoriality problem for semi-regular congruence monoids, as well as finding sufficient conditions for a congruence monoid such that min $\Delta(H_{\Gamma}) > 1$.

1 Introduction

For some integer n > 0, let Γ be a multiplicatively closed subset of $\mathbb{Z}/n\mathbb{Z}$. Consider the set

$$H_{\Gamma} = \{ n \in \mathbb{Z} : x \in \mathbb{N} : x + n\mathbb{Z} \in \Gamma \} \cup \{1\}$$

under multiplication . H_{Γ} is referred to as a Congruence Monoid. This construction, which can be generalized to any integral domain R (see [4]) is a multiplicative submonoid of \mathbb{N}_0 , and plays an important role in the study of non-unique factorizations.

In 2003, M. Banister, J. Chaika, S.T Chapman and W. Meyerson wrote a paper on "'The Arithmetic of Congruence Monoids"' which examined and characterized specific cases of factorization for both the general congruence monoid as well as a more specific case the ACM (Arithmetical Congruence Monoid), which occurs when Γ contains only a single element (see [1]for more results on ACM's). Much is known about these objects. For example, the trendy *Hilbert monoid*

$$1 + 4\mathbb{N}_0 = \{1, 5, 9, 13, 17, 21\}$$

is characterized as an ACM and furthermore demonstrates non-unique factorizations, as can be seen by 441 = 21 * 21 = 9 * 49 (where 9, 21 and 21 are irreducible in $1 + 4\mathbb{N}_0$, see [6] and [5]). What the Hilbert Monoid best demonstrates for this paper is a property called *half factoriality*. Given any congruence monoid H_{Γ} we define the set of irreducibles as $A(H_{\Gamma}) = \{x \in$ $H_{\Gamma}: x = rs \to r \notin H_{\Gamma}, s \notin H_{\Gamma}, r = 1 \text{ or } s = 1$ and say that H_{Γ} is half factorial iff for any $x \in H_{\Gamma}$ such that $x = p_1 \dots p_t = q_1 \dots q_k$ with each p_i and $q_i \in A(H_{\Gamma})$, then t = k. This important property is not so easy to prove in general for congruence monoids. Halter-Koch succeeded in characterizing the case when $\Gamma \subseteq (\mathbb{Z}_n)^x$ (called regular (see [4]), while M. Banister, J. Chaika, S.T Chapman and W. Meyerson succeeded in characterizing the case when $\Gamma \cap \mathbb{Z}_n^x = \emptyset$ (called singular) (see [1]). Yet the last case remained unclassified. Called semi-regular, occuring when H_{Γ} is neither regular nor singular, the half-factorial semi-regular problem provided a large part of the motivation for the work in this paper. In section 1 we provide strong conditions for a semi-regular congruence monoid to be half-factorial and demonstrate several cases where a semi-regular congruence monoid is not half-factorial.

In section two we introduce a new concept, that of a Δ -set. Given $x \in H_{\Gamma}$, then the set of lengths of x is

$$L(x) = \{k \in N : x = a_1 \dots a_k \text{ where } a_i \in A(H_{\Gamma}).$$

If we order $L(x) = \{n_1, \ldots n_t\}$ from smallest to largest, then we can define $\Delta(x) = \{n_i - n_{i-1} : 2 \le i \le t\}$, which one can think of as an indication of how differently x can factor. To delineate how "differently" H_{Γ} as a whole can factor, we define

$$\Delta\left(H_{\Gamma}\right) = \bigcup_{1 \neq x \in H_{\Gamma}} \Delta\left(x\right).$$

Much work has been done on the Δ -set's of monoids. One such important result came from A. Geroldinger ([3, lemma 3]), which characterized the minimum of the Δ -set of any monoid, by proving that

$$\min \Delta \left(H_{\Gamma} \right) = \gcd \Delta \left(H_{\Gamma} \right).$$

This gives us a comprehensive tool for finding the minimum of many congruence monoids, especially in the cases of ACM's. But it was not known whether there existed a congruence monoid with the minimum of the Δ -set $\neq 1$ such that $\Delta(H_{\Gamma}) \neq \emptyset$. The main result of section two constructs a family of semi-regular congruence monoids with that min $\Delta(H_{\Gamma}) > 1$.

To do so we examine a slightly weaker condition than half factoriality, namely congruence half factoriality. We say that a congruence monoid H_{Γ} is a congruence half-factorial monoid of order r (or CHFM) if $\forall x \in H_{\Gamma}$ such that $x = p_1 \dots p_t = q_1 \dots q_k$ with each p_i and $q_j \in A(H_{\Gamma})$, then $t \equiv k \mod r$. A half-factorial congruence monoid is always CHFM of order r for all r > 1, but the converse of this statement does not always hold, as in many examples of CHFMs in the Krull case (see [2]for more examples and information). Finally we end the introduction with the definitions of elasticity and minimal essential H-sets.

The elasticity of an element $x \in H_{\Gamma}$, denoted $\rho(x)$, is given by the ratio of max (L) to min (L), and the elasticity of H_{Γ} is then defined to be

$$\rho(H_{\Gamma}) = \sup\{\rho(x) : x \in H_{\Gamma}\}.$$

If H_{Γ} is half-factorial then $\rho(H_{\Gamma}) = 1$. Let $G \subseteq N$ be a monoid. A finite set of prime numbers R is called *G*-Essential if there exists $a \in G$ such that R is the set of all primes dividing a. We say R is minimal if it is minimal by set inclusion. A result by Halter-Koch (see [4, lemma 3]) proves that a congruence monoid H_{Γ} has finite elasticity if and only if every minimal H_{Γ} -essential set is a singleton. This has an important impact in the types of elements in a half-factorial semi-regular congruence monoid.

I would like to thank Dr. Scott Chapman and Paul Baginki for their priceless support, mentoring and help, and well as my family, and the NSF for funding this project.

1.1 Semi-Regular Congruence Monoids and Half-Factoriality

Let $\mathcal{G} = H_{\Gamma} \cap \{q : \gcd(q, n) = 1\}$. If \mathcal{G} is a monoid under multiplication, then it can be considered regular with respect to minimal modulus n. We define

 $\phi: \mathcal{G} \to \mathbb{Z}_n$

such that $\phi(g) = g \mod n \ \forall g \in \mathcal{G}$. Letting G be the image of \mathcal{G} under ϕ , clearly $G \subseteq \mathbb{Z}_n^{\times}$.

Proposition 1.1. If H_{Γ} is a half factorial semi-regular congruence monoid of minimal modulus n then $[\mathbb{Z}_n^{\times}:G] \leq 2$.

Proof. Suppose H_{Γ} is a half-factorial semi-regular confruence monoid with minimal modulus n, such that $[\mathbb{Z}_n^{\times}:G] > 2$ (by assumption). Let $\alpha \in \mathbb{Z}_n^{\times}/G$ By Direchlet's theorem $\exists \alpha^{-1} \in \mathbb{Z}_n^{\times}/G$ such that $q_1G = \alpha$, $q_2G = \alpha^{-1}$ and $q_1q_2 \in H_{\Gamma}$. As $|\mathbb{Z}_n^{\times}/G| > 2$, $q_1 \neq q_2$ and by definition of G, we can conclude $q_1 \notin H_{\Gamma}$ and $q_2 \notin H_{\Gamma}$. There exists a smallest k such that $q_1^k \in H_{\Gamma}$ and by the properties of inverses $q_2^k \in H_{\Gamma}$. But that implies $(q_1q_2)^k = (q_1^k) (q_2^k)$. As $q_1q_2 \in A(H_{\Gamma})$, $q_1^k \in A(H_{\Gamma})$ and $q_2^k \in A(H_{\Gamma})$, factorization is not halffactorial. Hence by contradition half-factoriality implies $[\mathbb{Z}_n^{\times}:G] \leq 2$.

Proposition 1.2. If H_{Γ} is a semi-regular congruence monoid of minimal modulus $n = p^k$ then H_{Γ} is not half-factorial.

Before we prove this proposition, we're going to prove the following lemma.

Lemma 1.3. Suppose H_{Γ} is a semi-regular congruence monoid of minimal modulus $n = p^k$ such that $k \ge 2$. Let the subgroup of \mathbb{Z}_n generated by p^i , $\langle p^i \rangle$, be a subset of Γ and $\theta_i = \gcd(i, k)$. Then $p^{\theta_i} \in \langle p^i \rangle$ and is the smallest element of $\langle p^i \rangle$ in H_{Γ} .

Proof. We define an mapping

$$\varphi: \left(\mathbb{Z}_n / \left(\mathbb{Z}_n\right)^{\times}, *\right) \to \left(\mathbb{Z}_k, +\right)$$

taking p^i to its respective equivalence class in \mathbb{Z}_k . By definition, $\exists a, b \in \mathbb{Z}$ such that $ai + bk = \theta_i$. Modulo k this implies $ai \equiv \theta_i$, and thus $\theta_i \in \mathbb{Z}_k$. By the surjectivity of the mapping we can choose a such that $p_i^{\theta} \in \langle p^i \rangle$. We will show that this is the smallest element of $\langle p^i \rangle$ in H_{Γ} by contradiction. Assume that $\exists \gamma \in \mathbb{N}$ such that $\gamma < \theta$ and $p^{\gamma} \in \langle p^i \rangle$. Under $\varphi \exists a$ such that $ai \equiv \gamma$ modulo k. But that implies that $\exists c \in \mathbb{Z}$ such that $ai = \gamma + ck$, and therefore $ai - ck = \gamma$, contradicting the gcd-ness of θ .

Corollary 1.4. Assuming that H_{Γ} is a half-factorial semi-regular congruence monoid of minimal modulus $n = p^k$ and $\langle p_1^h \rangle, \langle p_2^i \rangle \dots \langle p_m^j \rangle \subset \Gamma$ where $\langle p^i \rangle$ refers to the cyclic subgroup of \mathbb{Z}_n generated by p^i and m is the number of distinct subgroups, then $\theta_i \neq \theta_j \neq 1$, and $\theta_i \neq n\theta_j$ for any p^i and $p^j \in \Gamma$ and $n \in \mathbb{Z}$.

Proof. If $\theta_i = 1$ and $G = \mathbb{Z}_n^{\times}$, then $p \in \Gamma$ and $H_{\Gamma} = \mathbb{N}_0$. If $\theta_i = 1$ and $[\mathbb{Z}_n^{\times} : G] = 2$, then $p \in \Gamma$ and we can construct irreducibles given any prime unit $q_j \notin G$, $q_1q_2 \in A(H_{\Gamma})$, and $qp^k \in A(H_{\Gamma})$. We know $q_1q_2 \in A(H_{\Gamma})$ because G is index 2. The multiplicative structure of $\langle p^i \rangle$ implies that the only multiples of p^j (for any j < k) in H_{Γ} are units $g \in G$. Thus, since $0 \in \Gamma$,

the smallest power j of p such that $qp^j \in H_{\Gamma}$ is k, and $qp^k \in A(H_{\Gamma})$. But that implies that $(qp^k)^2 = (q^2) p^k$ which has a factorization length difference of $p^k - 1$, also implying that H_{Γ} is very much not half-factorial. If $\theta_i = n\theta_j$ for any p^i and $p^j \in \Gamma$ and $n \in \mathbb{Z}$, then $\langle p^j \rangle \subseteq \langle p^i \rangle$, and the subgroups are not distinct, contradicting the given assumption.

Now we will finally prove Proposition (1.2)!

Proof. Let H_{Γ} be a semi-regular congruence monoid of minimal modulus $n = p^k$ such that Γ is generated by $\{G, \langle p_1^i \rangle, \ldots, \langle p_m^j \rangle\}$ where $\langle p_m^i \rangle$ is defined as above, and $\theta_i \neq n\theta_j$ for any $n \in \mathbb{Z}$ and θ_i and θ_j defined as above.

Case 1: Let $G = \mathbb{Z}_n^{\times}$ and $\langle p^i \rangle \subset \Gamma$, (ie m = 1). Then we can find many an $N \in \mathbb{N}$ such that $iN \geq k$ and $(p^i)^N \in H_{\Gamma}$, which implies that $0 \in H_{\Gamma}$ and therefore $hp^k \in H_{\Gamma}$ for any $h \in \mathbb{N}_0$. Now, $pp^k \in H_{\Gamma}$, and furthermore is an atom (as $1 + k \neq n \gcd(i, k)$ because any prime dividing $\gcd(i, k)$ also divides k, and therefore will not divide k + 1). But $p^{\theta} \in A(H_{\Gamma})$, and thus we can do the old switcheroo, $(pp^k)^{\theta} = (p^{\theta}) (p^k)^{\theta}$, which has a factorization length difference of $k + 1 - \theta > 0$.

Now, if $G = \mathbb{Z}_n^{\times}$ and m = 2, say $\langle p^i \rangle, \langle p^j \rangle \subset \Gamma$, then $\operatorname{gcd}(\theta_i, \theta_j) = 1$ or, (suprisingly enough!), $\operatorname{gcd}(\theta_i, \theta_j) \neq 1$. If $\operatorname{gcd}(\theta_i, \theta_j) = 1$, then $\langle p^{\theta_i} \rangle \cap \langle p^{\theta_j} \rangle = \emptyset$, and p^{θ_i} and $p^{\theta_j} \in A(H_{\Gamma})$. Again, we apply the old switcheroo: $(p^{\theta_i})^{\theta_j} = (p^{\theta_j})^{\theta_i}$. By Corollary (1.4), $\theta_i \neq \theta_j$ and the factorization is non-half factorial. If $\operatorname{gcd}(\theta_i, \theta_j) \neq 1$ then $\langle p^{\theta_i} \rangle \cap \langle p^{\theta_j} \rangle \neq \emptyset$, but by Corollary (1.4) $\theta_i \neq n\theta_j$ for any $n \in \mathbb{N}$. Furthermore, by Lemma (1.3), p^{θ_i} and p^{θ_j} are still the smallest elements of $\langle p^i \rangle$ and $\langle p^j \rangle$ respectively. Thus p^{θ_i} and p^{θ_j} are still in $A(H_{\Gamma})$ and $(p^{\theta_i})^{\theta_j} = (p^{\theta_j})^{\theta_i}$ (no time to switch on the old switcheroo).

Case 2: Let $[\mathbb{Z}_n^{\times}:G] = 2$ and $\langle p^i \rangle \subset \Gamma$, (ie m = 1). Like above, we can raise (p^i) to some $N \in \mathbb{N}$ power such that $iN \geq k$, which implies that $0 \in H_{\Gamma}$ and therefore $p^k \in H_{\Gamma}$. Also as shown above in the proof of Corollary (1.4), given any prime unit $q \notin G$, we have $q_1q_2 \in A(H_{\Gamma})$, and $qp^k \in A(H_{\Gamma})$ are true. By Lemma (1.3), $p^{\theta_i} \in A(H_{\Gamma})$. If we suppose $r\theta_i = k$ and apply a twisteroo (if you will a twist on the old switch), then $(p^k q)^2 = (p^{r\theta_i} q)^2 = (p^{\theta_i})^{2r} (q^2)$, fostering a fancy factorization difference of 2r - 1, and thus H_{Γ} is not half-factorial.

If $m \neq 1$ then assuming that each $\langle p_1^i \rangle, \ldots \langle p_m^j \rangle$ is distinct and $\theta_i \neq n\theta_j$ (for any p^i and $p^j \in \Gamma$ and $n \in \mathbb{Z}$), then $\theta_i, \ldots, \theta_j \in A(H_{\Gamma})$, and given any two, $(p^{\theta_i})^{\theta_j} = (p^{\theta_j})^{\theta_i}$, rendering factorization not half-factorial. **Proposition 1.5.** Let H_{Γ} be congruence monoid of minimal modulus $n = p_1^{e_1} \dots p_k^{e_k}$ such that each p_j is distinct and $\Gamma = \mathbb{Z}_n^{\times} \cup \{\langle p_1 \rangle \cup \dots \cup \langle p_i \rangle\}$. Then H_{Γ} is not semi-regular (contrary to what one might want to believe!), and in fact is regular of minimal modulus $n = p_{i+1}^{e_{i+1}} \dots p_k^{e_k}$.

Proof. We will show that for every p_i which is introduced into Γ , the modulus of H_{Γ} decreases. As the modulus is decreasing, no non-units get introduced into H_{Γ} and thus it stays regular. To see this, note first that if $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ and $n' = p_2^{e_2} \dots p_k^{e_k}$, that since $\gcd(p_1, n') = 1$ that $\langle p_1 \rangle \subset \mathbb{Z}_{n'}^{\times}$ and furthermore, $\langle p_1 \rangle \cup \mathbb{Z}_n^{\times} = \mathbb{Z}_{n'}^{\times}$. Let $n'' = p_3^{e_3} \dots p_k^{e_k}$. Then since $\gcd(p_1, p_2, n'') = 1$, we can deduce that $\{\langle p_1 \rangle \cup \langle p_2 \rangle\} \subset \mathbb{Z}_{n''}^{\times}$ and $\{\langle p_1 \rangle \cup \langle p_2 \rangle\} \cup \mathbb{Z}_n^{\times} = \mathbb{Z}_{n''}^{\times}$. Repeating this process i times, if we denote $n^i = p_{i+1}^{e_{i+1}} \dots p_k^{e_k}$, then clearly $\{\langle p_1 \rangle \cup \dots \cup \langle p_i \rangle\} \cup \mathbb{Z}_n^{\times} = \mathbb{Z}_{n'}^{\times}$. But now, the assumption that $\Gamma = \langle p_1 \rangle \cup \ldots \cup \langle p_i \rangle \cup \mathbb{Z}_n^{\times}$ implies that $\Gamma = \mathbb{Z}_{n'}^{\times}$. But then H_{Γ} no longer has minimal modulus n; it has minimal modulus n^i . When considered under modulus n^i , H_{Γ} is no longer semi-regular, and it's half factorial properties can be found in [1].

Proposition 1.6. Let H_{Γ} be a semi-regular congruence monoid of minimal modulus $n = p_1^{e_1} \dots p_k^{e_k}$ such that each p_j is distinct and \exists at least one prime p_i with $p_i || n$. If $\Gamma = \mathbb{Z}_n^{\times} \cup \langle p_i \rangle \cup \{0\}$, where $p_i || n$ then H_{Γ} is a half-factorial semi-regular congruence monoid.

Proof. Note: If $\langle p_1 \rangle \not\subset \Gamma$ and $0 \in \Gamma$ then the minimal essential *H*-Set of $n = \{p_1, p_2 \dots p_k\}$ and H_{Γ} has infinite elasticity. By a result in [4], this would imply that H_{Γ} is not half-factorial.

Let $\langle p_i \rangle \subset \Gamma$ and refer to those that $p_j \mid n$ but $p_j \notin H_{\Gamma}$ with a subscript j. Then $n = p_i p_{j_1}^{e_1} \dots p_{j_y}^{e_y}$ where 1 + y = k and letting $G = \mathbb{Z}_n^{\times}$, $\Gamma = G \cup \langle p_i \rangle \cup \{0\}$. Given any element $x \in H_{\Gamma} x = q * p_{j_1}^{e_1} \dots p_{j_y}^{e_y} * p_i^{f_1}$ where $\gcd(q, n) = 1$. The only irreducibles of H_{Γ} are:

1. q such that q is prime and gcd(q, n) = 1.

- 2. p_i .
- 3. $p_{j_1}^{e_1} \dots p_{j_y}^{e_y} * p_i$ such that $p_{j_1}^{e_1} \dots p_{j_y}^{e_y} | n$.

While the first two irreducible classes are obvious (as primes in H_{Γ}), the third results from $0 \in \Gamma$, allowing every multiple of $n \in H_{\Gamma}$. These are the only irreducibles as $p_j \notin \Gamma$.

1.2 \triangle -Sets and CHFM

We will now construct a CHFM of minimal modulus $n = p^k$ and order r > 1such that min $(\Delta(H_{\Gamma})) \neq 1$.

Proposition 1.7. Let H_{Γ} be a semi-regular congruence monoid with minimal modulus $n = p^k$ and $\Gamma = \{G, \langle p \rangle\}$ such that $[(\mathbb{Z}_n)^{\times} : G] = 2$. For every $k \in N$ that $2k - 1 \in \mathbb{P}$, \exists a family of CHFM (namely H_{Γ} of minimal modulus p^k) which has min $(\Delta(H_{\Gamma})) = 2k - 1$.

*A note: G is unique and generated by a primitive root squared under a theorem by [1]. There also exists a common primitive root of $(\mathbb{Z}_{p^k})^{\times}$ for any $k \in \mathbb{N}$ dependent upon p and we will assume that G is generated by the smallest primitive root of $(\mathbb{Z}_p)^{\times}$ (when more than one exists).

Before proving Proposition (1.7), we will prove two Lemma's.

If we are going to change the minimal modulus of H_{Γ} from $n = p^k$ to $n = p^i$, we will deliniate the change by writing the modulus as a subscript. So, let $\mathcal{G}_{p^i} = H_{\Gamma} \cap \{q : \gcd(q, p^i) = 1\}$ and recall the previous definition

 $\phi:\mathcal{G}_{p^i}\to\mathbb{Z}_{p^i}$

such that $\phi(g) = g \mod p^i \ \forall g \in \mathcal{G}_{p^i}$. Let G_i be the image of \mathcal{G}_{p^i} under ϕ .

Lemma 1.8. If H_{Γ} is defined as above such that for any $i \leq k$, $\left[\left(\mathbb{Z}_{p^i} \right)^{\times} : G_{p^i} \right] = 2$, then, $\mathcal{G}_p = \mathcal{G}_{p^i}$.

Proof. By a result from [1] we know that a regular congruence monoid under modulus of definition n is regular under any of its possible moduli of definition n' where $n' \mid n$. As $G_{p^i} \subset (\mathbb{Z}_{p^i})^{\times}$, \mathcal{G}_{p^i} (as a multiplicative sub-congruence monoid of H_{Γ} with modulus $n = p^i$) is regular. However, we know that G_{p^i} is generated by the same primitive root squared as G_p (like all G_{p^i} for $l \leq k$ are). Thus, if we consider \mathcal{G}_{p^i} as its own congruence monoid independant from H_{Γ} , p^i is not a minimal modulus at all; it's logically p. Therefore $\mathcal{G}_p = \mathcal{G}_{p^i}$.

Corollary 1.9. For $g \in \mathcal{G}_{p^k}$, $a \leq k$ and $l \in Z$, the element $(g + p^a l) \in \mathcal{G}_{p^k}$.

Proof. Since modulo p, $(g + p^a l) \equiv g$, we know that $(g + p^a l) \in \mathcal{G}_p$. But Lemma (1.8) implies that $(g + p^{\tau} l) \in \mathcal{G}_{p^k}$.

Lemma 1.10. If H_{Γ} is a semi-regular congruence monoid with minimal modulus $n = p^k$ with $\Gamma = \{G, \langle p \rangle\}$ such that $[(\mathbb{Z}_n)^{\times} : G] = 2$, then the only irreducible elements are of the form: 1. n such that n is prime in \mathbb{Z} and n mod $p^k \in G$.

2. p.

3. q_1q_2 , where q_1 and q_2 are prime in \mathbb{Z} , and q_1 and $q_2 \in (\mathbb{Z}_{p^k})^{\times} \setminus G$ (we will refer to these as prime involutions in the class group of G).

4. p^kq_1 where q_1 is a prime involution in the class group of G.

Proof. Let $x \in A(H_{\Gamma})$. By the definition of Γ , we know that $x = p^{\tau}g \mod p^k$ or $x = 0 \mod p^k$, where $0 \le \tau \le k$, and $g \in G$.

Case 1: If $\tau = 0$, then $x = g \mod p^k$, and either x is prime, in which case it's automatically irreducible (case 1), or $x = g + lp^k$. If $x = g + lp^k$, as $p \mid x, x \in \mathcal{G}_{p^k}$, and is the product of at least two elements q_1q_2 such that q_1 and $q_2 \in (\mathbb{Z}_n)^{\times}$. In addition, G_{p^k} is index two which implies that given two involutions q_1 and q_2 (not necessarily prime), that $q_1q_2 \in H_{\Gamma}$. Thus x must be the product of an even number of prime involutions in the class group of G, otherwise one would be able to factor out some prime $g \in G$. The smallest even number is 2 and thus (case 3) q_1q_2 is an atom (when q_1 and q_2 are prime involutions).

Case 2: If $\tau > 0$ and g = 1 then $x = p^{\tau} \mod p^{k}$ and clearly for $x \in A(H_{\Gamma}), \tau = 1$ and x = p (case 2). If $\tau > 0$ and $g \neq 1$, then $x = gp^{\tau} + lp^{k} = (p)^{\tau} (g + lp^{a})$ where $\tau + a = k$. But p is an atom and by Corollary (1.9), $(g + lp^{a}) \in \mathcal{G}_{p^{k}}$. As $\mathcal{G}_{p^{k}} \subset H_{\Gamma}$, we can see $(g + lp^{a}) \in H_{\Gamma}$ and thus $x \notin A(H_{\Gamma})$.

Case 3: If $x \equiv 0$ modulo p^k , then $x = qp^k$ for some $q \in \mathbb{Z}$. q must be prime, otherwise it would be itself reducible, and it must be an involution of therwise x would be reducible. Referencing a result in Corollary (1.4), the smallest power m of p such that $qp^m \in H_{\Gamma}$ is m = k. Thus $x = qp^k$ and these are the only irreducibles.

We will now prove the main theorem of section 2!

Proof. As the atoms of H_{Γ} are of the forms n, p, q_1q_2, p^kq_1 (consistant with the definitions given in Lemma (1.10)), to describe differences in factorization lengths of any element $z \in H_{\Gamma}$, we need only consider atoms of the last three types (as the first type are primes). Thus, factoring $z = (p)^x (q)^y$ into irreducibles, $z = (p^k q)^a (q_1 q_2)^b (p)$, we get a relationship between the number of atoms in a factorization a + b + c and x and y, namely, as x = ka + c and y = a + 2b, 2x + y = 2ka + a + 2b + 2c = 2a + 2b + 2c + a(2k - 1). Modulus

2k-1, 2a+2b+2c is determined by x and y uniquely, and as 2k-1 is odd and 2a+2b+2c is even, modulus 2k-1 we can see that a+b+c is as well. Furthermore, $p^{2k}n^{2k} = (p^{2k})(n^2) = (p^k n)^2$ has a difference of factorization lengths of 2k-1. This implies that if H_{Γ} is to be CHFM of order r, that $r \mid (2k-1)$. Thus, as 2k-1 is prime, r must equal 2k-1. However by definiton of CHFM, this implies that $gcd(\Delta(H_{\Gamma})) = 2k-1$. But we know that $gcd(\Delta(H_{\Gamma})) = \min(\Delta(H_{\Gamma}))$. Thus, $\min(\Delta(H_{\Gamma})) = 2k-1$. \Box

References

- M. Banister J. Chaika S.T Chapman and W. Meyerson. On the arithmetic of congruence monoids. *Colloquium Mathematicum (submitted for publication)*, 2005.
- [2] S.T Chapman and W.W Smith. On the hfd, chfd, and k-hfd properties in dedekind domains. *Comm. Algebra*, 1992.
- [3] A. Geroldinger. On the arithmetic of certain not integrally closed neotherian integral domains. *Comm. Algebra*, 1991.
- [4] A. Geroldinger and F. Halter-Koch. Congruence monoids. ACTA Arith., 2004.
- [5] R.D James and I. Niven. Unique factorization in multiplicative systems. Proc. Amer. Math. Soc., 1954.
- [6] F. Halter Koch. Arithmetical semigroups defined by congruences. Semigroup Forum, 1991.