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Abstract

If given n ∈ N and Γ, a multiplicatively closed subset of Zn, then
the set HΓ = {n ∈ Z : x ∈ N : x + nZ ∈ Γ} ∪ {1} is a multiplicative
submonoid of N0 known as a congruence monoid. Much work has
been done to characterize the factorial (every element has unique fac-
torization) and half-factorial (lengths of irreducible factorizations of
an element remain constant) properties of such objects. Our paper
further examines the specific semi-regular case, when Γ contains both
units and non-units. We delve into characterizing the half-factoriality
problem for semi-regular congruence monoids, as well as finding suffi-
cient conditions for a congruence monoid such that min ∆ (HΓ) > 1.

1 Introduction

For some integer n > 0, let Γ be a multiplicatively closed subset of Z/nZ.
Consider the set

HΓ = {n ∈ Z : x ∈ N : x + nZ ∈ Γ} ∪ {1}

under multiplication . HΓ is refered to as a Congruence Monoid. This con-
struction, which can be generalized to any integral domain R (see [4]) is a
multiplicative submonoid of N0, and plays an important role in the study of
non-unique factorizations.

In 2003, M. Banister, J. Chaika, S.T Chapman and W. Meyerson wrote
a paper on ”‘The Arithmetic of Congruence Monoids”’ which examined and
characterized specific cases of factorization for both the general congruence
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monoid as well as a more specific case the ACM (Arithmetical Congruence
Monoid), which occurs when Γ contains only a single element (see [1]for more
results on ACM ’s). Much is known about these objects. For example, the
trendy Hilbert monoid

1 + 4N0 = {1, 5, 9, 13, 17, 21}

is characterized as an ACM and furthermore demonstrates non-unique fac-
torizations, as can be seen by 441 = 21 ∗ 21 = 9 ∗ 49 (where 9, 21 and 21
are irreducible in 1 + 4N0, see [6] and [5]). What the Hilbert Monoid best
demonstrates for this paper is a property called half factoriality. Given any
congruence monoid HΓ we define the set of irreducibles as A (HΓ) = {x ∈
HΓ : x = rs → r /∈ HΓ, s /∈ HΓ, r = 1 or s = 1} and say that HΓ is half
factorial iff for any x ∈ HΓ such that x = p1 . . . pt = q1 . . . qk with each pi and
qj ∈ A (HΓ), then t = k. This important property is not so easy to prove in
general for congruence monoids. Halter-Koch succeeded in characterizing the
case when Γ ⊆ (Zn)x (called regular (see [4]), while M. Banister, J. Chaika,
S.T Chapman and W. Meyerson succeeded in characterizing the case when
Γ∩Zx

n = ∅ (called singular) (see [1]). Yet the last case remained unclassified.
Called semi-regular, occuring when HΓ is neither regular nor singular, the
half-factorial semi-regular problem provided a large part of the motivation
for the work in this paper. In section 1 we provide strong conditions for a
semi-regular congruence monoid to be half-factorial and demonstrate several
cases where a semi-regular congruence monoid is not half-factorial.

In section two we introduce a new concept, that of a ∆-set. Given x ∈ HΓ,
then the set of lengths of x is

L (x) = {k ∈ N : x = a1 . . . ak where ai ∈ A (HΓ) .

If we order L (x) = {n1, . . . nt} from smallest to largest, then we can define
∆ (x) = {ni − ni−1 : 2 ≤ i ≤ t}, which one can think of as an indication of
how differently x can factor. To delineate how ”differently” HΓ as a whole
can factor, we define

∆ (HΓ) = ∪1 6=x∈HΓ
∆ (x) .

Much work has been done on the ∆-set’s of monoids. One such important
result came from A. Geroldinger ([3, lemma 3]), which characterized the
minimum of the ∆-set of any monoid, by proving that

min ∆ (HΓ) = gcd ∆ (HΓ) .

This gives us a comprehensive tool for finding the minimum of many con-
gruence monoids, especially in the cases of ACM’s. But it was not known
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whether there existed a congruence monoid with the minimum of the ∆-set
6= 1 such that ∆ (HΓ) 6= ∅. The main result of section two constructs a
family of semi-regular congruence monoids with that min ∆ (HΓ) > 1.
To do so we examine a slightly weaker condition than half factoriality, namely
congruence half factoriality. We say that a congruence monoid HΓ is a con-
gruence half-factorial monoid of order r (or CHFM) if ∀x ∈ HΓ such that
x = p1 . . . pt = q1 . . . qk with each pi and qj ∈ A (HΓ), then t ≡ k mod r. A
half-factorial congruence monoid is always CHFM of order r for all r > 1,
but the converse of this statement does not always hold, as in many examples
of CHFMs in the Krull case (see [2]for more examples and information). Fi-
nally we end the introduction with the definitions of elasticity and minimal
essential H-sets.

The elasticity of an element x ∈ HΓ, denoted ρ (x), is given by the ratio
of max (L) to min (L), and the elasticity of HΓ is then defined to be

ρ (HΓ) = sup{ρ (x) : x ∈ HΓ}.

If HΓ is half-factorial then ρ (HΓ) = 1. Let G ⊆ N be a monoid. A finite set
of prime numbers R is called G-Essential if there exists a ∈ G such that R is
the set of all primes dividing a. We say R is minimal if it is minimal by set
inclusion. A result by Halter-Koch (see [4, lemma 3]) proves that a congru-
ence monoid HΓ has finite elasticity if and only if every minimal HΓ-essential
set is a singleton. This has an important impact in the types of elements in
a half-factorial semi-regular congruence monoid.

I would like to thank Dr. Scott Chapman and Paul Baginki for their
priceless support, mentoring and help, and well as my family, and the NSF
for funding this project.

1.1 Semi-Regular Congruence Monoids and Half-Factoriality

Let G = HΓ ∩ {q : gcd (q, n) = 1}. If G is a monoid under multiplication,
then it can be considered regular with respect to minimal modulus n. We
define

φ : G → Zn

such that φ (g) = g mod n ∀g ∈ G. Letting G be the image of G under φ,
clearly G ⊆ Z×

n .

Proposition 1.1. If HΓ is a half factorial semi-regular congruence monoid
of minimal modulus n then [Z×

n : G] ≤ 2.
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Proof. Suppose HΓ is a half-factorial semi-regular confruence monoid with
minimal modulus n, such that [Z×

n : G] > 2 (by assumption). Let α ∈ Z×
n /G

By Direchlet’s theorem ∃ α−1 ∈ Z×
n /G such that q1G = α, q2G = α−1 and

q1q2 ∈ HΓ. As |Z×
n /G| > 2, q1 6= q2 and by definition of G, we can conclude

q1 /∈ HΓ and q2 /∈ HΓ. There exists a smallest k such that qk
1 ∈ HΓ and

by the properties of inverses qk
2 ∈ HΓ. But that implies (q1q2)

k =
(
qk
1

) (
qk
2

)
.

As q1q2 ∈ A (HΓ), qk
1 ∈ A (HΓ) and qk

2 ∈ A (HΓ), factorization is not half-
factorial. Hence by contradition half-factoriality implies [Z×

n : G] ≤ 2.

Proposition 1.2. If HΓ is a semi-regular congruence monoid of minimal
modulus n = pk then HΓ is not half-factorial.

Before we prove this proposition, we’re going to prove the following
lemma.

Lemma 1.3. Suppose HΓ is a semi-regular congruence monoid of minimal
modulus n = pk such that k ≥ 2. Let the subgroup of Zn generated by pi,
〈pi〉, be a subset of Γ and θi = gcd (i, k). Then pθi ∈ 〈pi〉 and is the smallest
element of 〈pi〉 in HΓ.

Proof. We define an mapping

ϕ :
(
Zn/ (Zn)× , ∗

)
→ (Zk, +)

taking pi to its respective equivalence class in Zk. By definition, ∃ a, b ∈ Z
such that ai + bk = θi. Modulo k this implies ai ≡ θi, and thus θi ∈ Zk.
By the surjectivity of the mapping we can choose a such that pθ

i ∈ 〈pi〉. We
will show that this is the smallest element of 〈pi〉 in HΓ by contradiction.
Assume that ∃γ ∈ N such that γ < θ and pγ ∈ 〈pi〉. Under ϕ ∃ a such that
ai ≡ γ modulo k. But that implies that ∃ c ∈ Z such that ai = γ + ck, and
therefore ai− ck = γ, contradicting the gcd-ness of θ.

Corollary 1.4. Assuming that HΓ is a half-factorial semi-regular congruence
monoid of minimal modulus n = pk and 〈ph

1〉, 〈pi
2〉 . . . 〈pj

m〉 ⊂ Γ where 〈pi〉
refers to the cyclic subgroup of Zn generated by piand m is the number of
distinct subgroups, then θi 6= θj 6= 1, and θi 6= nθj for any pi and pj ∈ Γ and
n ∈ Z.

Proof. If θi = 1 and G = Z×
n , then p ∈ Γ and HΓ = N0. If θi = 1 and

[Z×
n : G] = 2, then p ∈ Γ and we can construct irreducibles given any prime

unit qj /∈ G, q1q2 ∈ A (HΓ), and qpk ∈ A (HΓ). We know q1q2 ∈ A (HΓ)
because G is index 2. The multiplicative structure of 〈pi〉 implies that the
only multiples of pj (for any j < k) in HΓ are units g ∈ G. Thus, since 0 ∈ Γ,
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the smallest power j of p such that qpj ∈ HΓ is k, and qpk ∈ A (HΓ). But

that implies that
(
qpk

)2
= (q2) pk which has a factorization length difference

of pk − 1, also implying that HΓ is very much not half-factorial. If θi = nθj

for any pi and pj ∈ Γ and n ∈ Z, then 〈pj〉 ⊆ 〈pi〉, and the subgroups are not
distinct, contradicting the given assumption.

Now we will finally prove Proposition (1.2)!

Proof. Let HΓ be a semi-regular congruence monoid of minimal modulus
n = pk such that Γ is generated by {G, 〈pi

1〉, . . . 〈pj
m〉} where 〈pi

m〉 is defined
as above, and θi 6= nθj for any n ∈ Z and θi and θj defined as above.

Case 1: Let G = Z×
n and 〈pi〉 ⊂ Γ, (ie m = 1). Then we can find many

an N ∈ N such that iN ≥ k and (pi)
N ∈ HΓ, which implies that 0 ∈ HΓ

and therefore hpk ∈ HΓ for any h ∈ N0. Now, ppk ∈ HΓ, and furthermore
is an atom (as 1 + k 6= n gcd (i, k) because any prime dividing gcd (i, k) also
divides k, and therefore will not divide k + 1). But pθ ∈ A (HΓ), and thus

we can do the old switcheroo,
(
ppk

)θ
=

(
pθ

) (
pk

)θ
, which has a factorization

length difference of k + 1− θ > 0.

Now, if G = Z×
n and m = 2, say 〈pi〉, 〈pj〉 ⊂ Γ, then gcd (θi, θj) = 1

or, (suprisingly enough!), gcd (θi, θj) 6= 1. If gcd (θi, θj) = 1, then 〈pθi〉 ∩
〈pθj〉 = ∅, and pθi and pθj ∈ A (HΓ). Again, we apply the old switcheroo:(
pθi

)θj =
(
pθj

)θi . By Corollary (1.4), θi 6= θj and the factorization is non-half
factorial. If gcd (θi, θj) 6= 1 then 〈pθi〉 ∩ 〈pθj〉 6= ∅, but by Corollary (1.4)
θi 6= nθj for any n ∈ N. Furthermore, by Lemma (1.3), pθi and pθj are
still the smallest elements of 〈pi〉 and 〈pj〉 respectively. Thus pθi and pθj are

still in A (HΓ) and
(
pθi

)θj =
(
pθj

)θi (no time to switch on the old switcheroo).

Case 2: Let [Z×
n : G] = 2 and 〈pi〉 ⊂ Γ, (ie m = 1). Like above, we

can raise (pi) to some N ∈ N power such that iN ≥ k, which implies
that 0 ∈ HΓ and therefore pk ∈ HΓ. Also as shown above in the proof
of Corollary (1.4), given any prime unit q /∈ G, we have q1q2 ∈ A (HΓ),
and qpk ∈ A (HΓ) are true. By Lemma (1.3), pθi ∈ A (HΓ). If we suppose
rθi = k and apply a twisteroo (if you will a twist on the old switch), then(
pkq

)2
=

(
prθiq

)2
=

(
pθi

)2r
(q2), fostering a fancy factorization difference of

2r − 1, and thus HΓ is not half-factorial.

If m 6= 1 then assuming that each 〈pi
1〉, . . . 〈pj

m〉 is distinct and θi 6= nθj

(for any pi and pj ∈ Γ and n ∈ Z), then θi, . . . θj ∈ A (HΓ), and given any

two,
(
pθi

)θj =
(
pθj

)θi , rendering factorization not half-factorial.
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Proposition 1.5. Let HΓ be congruence monoid of minimal modulus n =
pe1

1 . . . pek
k such that each pj is distinct and Γ = Z×

n ∪{〈p1〉∪ . . .∪〈pi〉}. Then
HΓ is not semi-regular (contrary to what one might want to believe!), and in
fact is regular of minimal modulus n = pi+1

ei+1 . . . pek
k .

Proof. We will show that for every pi which is introduced into Γ, the mod-
ulus of HΓ decreases. As the modulus is decreasing, no non-units get in-
troduced into HΓ and thus it stays regular. To see this, note first that
if n = pe1

1 pe2
2 . . . pek

k and n′ = pe2
2 . . . pek

k , that since gcd (p1, n
′) = 1 that

〈p1〉 ⊂ Z×
n′ and furthermore, 〈p1〉 ∪ Zn

× = Z×
n′ . Let n′′ = pe3

3 . . . pek
k . Then

since gcd (p1, p2, n
′′) = 1, we can deduce that {〈p1〉 ∪ 〈p2〉} ⊂ Z×

n′′ and
{〈p1〉 ∪ 〈p2〉} ∪ Zn

× = Z×
n′′ . Repeating this process i times, if we denote

ni = pi+1
ei+1 . . . pk

ek , then clearly {〈p1〉 ∪ . . . ∪ 〈pi〉} ∪ Zn
× = Z×

ni . But now,
the assumption that Γ = 〈p1〉∪ . . .∪〈pi〉∪Z×

n implies that Γ = Z×
ni . But then

HΓ no longer has minimal modulus n; it has minimal modulus ni. When con-
sidered under modulus ni, HΓ is no longer semi-regular, and it’s half factorial
properties can be found in [1].

Proposition 1.6. Let HΓ be a semi-regular congruence monoid of minimal
modulus n = pe1

1 . . . pek
k such that each pj is distinct and ∃ at least one prime

pi with pi‖n. If Γ = Z×
n ∪ 〈pi〉 ∪ {0}, where pi‖n then HΓ is a half-factorial

semi-regular congruence monoid.

Proof. Note: If 〈p1〉 6⊂ Γ and 0 ∈ Γ then the minimal essential H-Set of
n = {p1, p2 . . . pk} and HΓ has infinite elasticity. By a result in [4], this
would imply that HΓ is not half-factorial.

Let 〈pi〉 ⊂ Γ and refer to those that pj | n but pj /∈ HΓ with a subscript
j. Then n = pip

e1
j1

. . . pjy
ey where 1 + y = k and letting G = Z×

n , Γ =

G ∪ 〈pi〉 ∪ {0}. Given any element x ∈ HΓ x = q ∗ pe1
j1

. . . pjy
ey ∗ pi

f1 where
gcd (q, n) = 1. The only irreducibles of HΓ are:

1. q such that q is prime and gcd (q, n) = 1.

2. pi.

3. pe1
j1

. . . pjy
ey ∗ pi such that pe1

j1
. . . pjy

ey | n.

While the first two irreducible classes are obvious (as primes in HΓ), the
third results from 0 ∈ Γ, allowing every multiple of n ∈ HΓ. These are the
only irreducibles as pj /∈ Γ.
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1.2 ∆-Sets and CHFM

We will now construct a CHFM of minimal modulus n = pk and order r > 1
such that min (∆ (HΓ)) 6= 1.

Proposition 1.7. Let HΓ be a semi-regular congruence monoid with minimal
modulus n = pk and Γ = {G, 〈p〉} such that

[
(Zn)× : G

]
= 2. For every

k ∈ N that 2k−1 ∈ P, ∃ a family of CHFM (namely HΓ of minimal modulus
pk) which has min (∆ (HΓ)) = 2k − 1.

*A note: G is unique and generated by a primitive root squared under
a theorem by [1]. There also exists a common primitive root of

(
Zpk

)×
for

any k ∈ N dependant upon p and we will assume that G is generated by the
smallest primitive root of (Zp)

× (when more than one exists).

Before proving Proposition (1.7), we will prove two Lemma’s.

If we are going to change the minimal modulus of HΓ from n = pk to
n = pi, we will deliniate the change by writing the modulus as a subscript.
So, let Gpi = HΓ ∩ {q : gcd (q, pi) = 1} and recall the previous definition

φ : Gpi → Zpi

such that φ (g) = g mod pi ∀g ∈ Gpi . Let Gi be the image of Gpi under φ.

Lemma 1.8. If HΓ is defined as above such that for any i ≤ k,
[(

Zpi

)×
: Gpi

]
=

2, then, Gp = Gpi.

Proof. By a result from [1] we know that a regular congruence monoid under
modulus of definition n is regular under any of its possible moduli of definition
n′ where n′ | n. As Gpi ⊂

(
Zpi

)×
, Gpi (as a multiplicative sub-congruence

monoid of HΓ with modulus n = pi) is regular. However, we know that Gpi

is generated by the same primitive root squared as Gp ( like all Gpl for l ≤ k
are). Thus, if we consider Gpi as its own congruence monoid independant
from HΓ, pi is not a minimal modulus at all; it’s logically p. Therefore
Gp = Gpi .

Corollary 1.9. For g ∈ Gpk , a ≤ k and l ∈ Z, the element (g + pal) ∈ Gpk .

Proof. Since modulo p, (g + pal) ≡ g, we know that (g + pal) ∈ Gp. But
Lemma (1.8) implies that (g + pτ l) ∈ Gpk .

Lemma 1.10. If HΓ is a semi-regular congruence monoid with minimal mod-
ulus n = pk with Γ = {G, 〈p〉} such that

[
(Zn)× : G

]
= 2, then the only

irreducible elements are of the form:
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1. n such that n is prime in Z and n mod pk ∈ G.

2. p.

3. q1q2, where q1 and q2 are prime in Z, and q1 and q2 ∈
(
Zpk

)× \G (we
will refer to these as prime involutions in the class group of G).

4. pkq1 where q1 is a prime involution in the class group of G.

Proof. Let x ∈ A (HΓ). By the definition of Γ, we know that x = pτg mod pk

or x = 0 mod pk, where 0 ≤ τ ≤ k, and g ∈ G.

Case 1: If τ = 0, then x = g mod pk, and either x is prime, in which
case it’s automatically irreducible (case 1), or x = g + lpk. If x = g + lpk,
as p 6| x, x ∈ Gpk , and is the product of at least two elements q1q2 such that

q1 and q2 ∈ (Zn)×. In addition, Gpk is index two which implies that given
two involutions q1 and q2 (not neccessarily prime), that q1q2 ∈ HΓ. Thus
x must be the product of an even number of prime involutions in the class
group of G, otherwise one would be able to factor out some prime g ∈ G.
The smallest even number is 2 and thus (case 3) q1q2 is an atom (when q1

and q2 are prime involutions).

Case 2: If τ > 0 and g = 1 then x = pτ mod pk and clearly for
x ∈ A (HΓ), τ = 1 and x = p (case 2). If τ > 0 and g 6= 1, then
x = gpτ + lpk = (p)τ (g + lpa) where τ + a = k. But p is an atom and
by Corollary (1.9), (g + lpa) ∈ Gpk . As Gpk ⊂ HΓ, we can see (g + lpa) ∈ HΓ

and thus x /∈ A (HΓ).

Case 3: If x ≡ 0 modulo pk, then x = qpk for some q ∈ Z. q must be
prime, otherwise it would be itself reducible, and it must be an involution
oftherwise x would be reducible. Referencing a result in Corollary (1.4), the
smallest power m of p such that qpm ∈ HΓ is m = k. Thus x = qpk and these
are the only irreducibles.

We will now prove the main theorem of section 2!

Proof. As the atoms of HΓ are of the forms n, p, q1q2, pkq1 (consistant with
the definitions given in Lemma (1.10)), to describe differences in factorization
lengths of any element z ∈ HΓ, we need only consider atoms of the last
three types (as the first type are primes). Thus, factoring z = (p)x (q)y into
irreducibles, z =

(
pkq

)a
(q1q2)

b (p), we get a relationship between the number
of atoms in a factorization a + b + c and x and y, namely, as x = ka + c and
y = a + 2b, 2x + y = 2ka + a + 2b + 2c = 2a + 2b + 2c + a(2k − 1). Modulus

viii



2k− 1, 2a + 2b + 2c is determined by x and y uniquely, and as 2k− 1 is odd
and 2a + 2b + 2c is even, modulus 2k− 1 we can see that a + b + c is as well.

Furthermore, p2kn2k =
(
p2k

)
(n2) =

(
pkn

)2
has a difference of factorization

lengths of 2k − 1. This implies that if HΓ is to be CHFM of order r, that
r | (2k − 1). Thus, as 2k − 1 is prime, r must equal 2k − 1. However by
definiton of CHFM, this implies that gcd (∆ (HΓ)) = 2k − 1. But we know
that gcd (∆ (HΓ)) = min (∆ (HΓ)). Thus, min (∆ (HΓ)) = 2k − 1.
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