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Abstract

We study V sets of numerical monoids and find upper and lower
bounds on the Ay set based on the delta sets of these monoids. The
paper then focuses on numerical monoids generated by an arithmetic
progression increasing by a constant. First, we determine exact so-
lutions for length sets and then we use these formulas to enumerate
Y sets. Next, we investigate if two such numerical monoids are iso-
morphic if their V sets are equal. Finally, we investigate if two such
numerical monoids are isomorphic if their length sets are equal.

1 Introduction

If M is a nonempty set and - is a binary operation on M, then the pair (M, -)
is a monoid if

l.a-(b-¢c)=(a-b)-cVabceM
2.d1le Msuchthatl-a=a-1=aVaec M.

A numerical monoid is an additive submonoid of N U {0}.



The set of elements of S are x € S such that x can be written in the form
t
T =2101 + -+ Ty = Zx,ai
i=1

for some z; € NU {0} where {ay,...,a;} is the generating set of S, often
denoted as S = (ay, ..., a).

Every numerical monoid S has a unique minimal set of generators. S is
primitive if ged{s | s € S}. Every numerical monoid S is isomorphic to a
unique primitive numerical monoid, so we always assume that S is a primitive
numerical monoid.

Definition 1.1. The set of lengths of m € S is

L(m) = {sz | z; e NU{0},m = Zmiaz} :

If it is not clear which monoid we are considering, we use the notation
Ls(m) to indicate £(m) of S . Also, define L(m) = max L(m) and I(m) =
min £(m). We define the set of lengths of S as L(S) = {L(m) | m € S}.

Example 1.2. Let S = (2,3). £(21) ={7,8,9,10}.
First, we must list all the factorizations of 21 in S.

2 = 9-2+1-3
= 6-2+3-3
= 3:2+45-3
= 0-24+7-3

Thus, £(21) = {7,8,9,10}, L(21) = 10, and (21) = 7.
Definition 1.3. The elasticity of m € S, denoted p(m), is

p(m) = %

The elasticity of S is then defined as p(S) = sup{p(m) | m € S}. For
example, in S = (2,3), p(21) = 2.



Definition 1.4. Let m € S and suppose L(m) = {ny,...,n:} with the n;’s
listed in increasing order. The delta set of m is
A(m)={n; —n;_1 |2 <i<t}
For example, in S = (2,3), A(21) = {1}.

The delta set of S is
A(S) = | A(m).
mesS
Definition 1.5. W(n) ={m € S |n € L(m)}.
Example 1.6. Let S = (2,3). W(7) = {14, 15,16, 17,18,19,20,21}.
Let us investigate which length sets contain 7 as an element.

L£(14) = {5,6,7}
{5,6,7}
{6,7,8}
{6,7,8}
{6,7,8,9}
{7,8,9}
{7,8,9,10}
= {7,8,9,10}

Thus, W(7) = {14, 15,16, 17, 18, 19, 20, 21}

Definition 1.7. V(n) = U L(m).
meWw(n)
For example, in S = (2,3), V(7) = {5,6,7,8,9,10}.

— e N N N N

If it is not clear which monoid we are considering, we use the notation

Vs(n) to indicate V(n) of S.
Definition 1.8. ®(n) = |V(n)|.
Definition 1.9. Suppose V(n) = {vi,...,vn} The delta set of V(n) is
Ay(n) ={vip —vic1, | 2 <i <t}
For example, in S = (2,3), Ay(7) ={1}.
Also, define Ay(S) = (_JAy(n). Let V* = max Ay(S) and V, = min Ay(S).

neN



2 YV Sets and Ay Sets of Numerical Monoids

Let S = (a1, aq,...,a;) where {aj,...,a;} is the minimal set of generators.

By [1], there exists a method for calculating max A(S) in finite time and
min A(S) = ged{a; —a;—1 |1 €{2,3,...,t}} =d.

Thus A(S) C {d,2d,...,qd} for ¢ € N [2].

Let A(S) = {b1,ba, ..., b} with max A(S) = b, = qd.

Lemma 2.1. V, = min A(S5).

Proof. 4 n such that V, = v;,, — v;_1, where v,,, and v,_;,, are consecutive
elements in V(n). Then, 3 x, y € W(n) such that {v;,,,n} C L(w;) and
{vicin,n} C L(wa).

k
n—=Vin = Z bixi
i=1
k
n—y-1n= Z biy;
i=1

Thus,
V, = (n - Ui—lm,) - (n - Ui,n) = sz(yz - %)
So,
Vi > ged{b1, by, ..., b} = ged(A(S)) = min A(S).

Assume V, > min A(S) = d. Then, Vi, v; ,—v;_1, > d. Since min A(S) = d,
dw € S such that L(u) = {ly,...,l,} and [, — l,_1 = d. Let n € L(u), so
{lh R lT} - V(”)

Then, since v;,, — vi_1, > d V 4, [, and [, are not consecutive elements
in V(n). Thus, 3 z € V(n) such that [,_; < z < [, and I, — z € Ay(S), but
d=1,—1l,_1 > 1, — z, which is a contradiction.

Therefore, V, = min A(S). O



Lemma 2.2. V* <maxA(S) = by.

Proof. 3 n such that V* =v;,, — v;_1, where v;,, and v;_;, are consecutive
elements in V(n).

Then, 3 x € W(n) such that L(z) O {v;,,n}. Let L(x) = {n4,...,n;}

with v; , = ny.

Thus, V(n) D {n1,...,n;} and since max A(S) = by, then v;, — v;_1, <
ng —ng_q < by for 2 <t < g,

For t = 1, then v;,, = ny. If ny = minV(n), then v;_;, does not exist,
so there must be an m = v;_y, € V(n). Thus, 3 y € W(n) such that
L(y) 2 {m,n}. Let L(y) = {m4,...,m,} with v;_y,, = m,.

V(n) 2 {my,...,m,} and since maxA(S) = by, then my,; — my, < by.
So, if ny = mgq1, then v;,, —vi_1,, < Mgy —my < by, I my < ny < Mmgyq,
then v; p, — vi_1,, < Mgy — my < by, O

Lemma 2.3. Ay(S) C{d,2d,...,qd} for some q € N.

Proof. From Lemma 2.1, V, = d and from Lemma 2.2, V* < b, = qd for
some ¢ € N. Suppose 3 j where d < j < gd but dtj and j € Ap(S).

3 n such that j € Ay(n) and so 3 ¢,7 — 1 such that j = v;,, — vi_1.

3 z such that L(x) D {v;,,,n} where

k
N —Vin = E blIz
i=1

3 y such that L£(y) 2 {vi_1n,n} where

k
n—v-n= E biyi-
i=1

k
Then, j = v — Vic1n = (N — V1) — (N —Vip) = Zbi(yi — x;). Since d|b;

i=1
V 4, thus d|j, which is a contradiction. O
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Corollary 2.4. If A(S) = {g}, then Ay(S) = {g}.
Proof. Since A(S) = {g}, minA(S) = maxA(S) = ¢g. From Lemmas 2.1

and 2.2, V, = V* = g and therefore Ay (S) = {g}. O
Theorem 2.5. Sfi;lai < lim inf @ < lim sup@ < ﬁ?a;lai

t t t t
Proof. Let inai = Zyiai € S. Let sz = n,ZyZ- = m. From [3],
i=1 i=1 i=1

i=1

It follows that
a; . m _ oa ain agn
— < — < —= —<m< —.

a ~ n ay at ay

Therefore we can bound the size of V(n). So,

—(%_%)n+1<¢(n)<—(%_%)n+1
V* - - V.
Thus,
2 _ 2 2 _ 2
ay —ay ay —ap
—_— 1< < 1
V*aiay n+ls®n)< Viaia; nt
By taking the limit, we get that
2 _ 9 2 _ 2
&% 4% < lim inf () < lim sup (n) < & al.
V*aja; — n—oo n n—00 n V.aia;
]
. n a2—a2
Corollary 2.6. If Ay(S) = {g}, then nhg)lo? = oo
Proof. Ay(S) = {g} implies V, = V* = ¢g. By Theorem 2.5,
2 2 2 2
G — 9% < lim inf ®(n) < lim sup () < @ = 4
gaja; n—oo n n—oo n gaja;
Therefore,
iy 2 @i —at
n—oo M gaja;
O



3 Numerical Monoids Generated by an In-
terval

Lemma 3.1. Let S = (a,a+ k,...,a+ wk) where w < (a — 1).
W(n) = {an,an +k,...,an + nwk}.
Proof. Assume 3r € W(n) such that r < an. Then,
r=og-a+- 4oy (a+wk) < an.
Sincea<a+k<---<a+ wk,
Qo a+ar-a+---+ oy --a<an.

Thus,
o+ o1+ oy < n.

There is a contradiction and therefore r > an. Clearly an € W(n), so
min W(n) = an.

Assume 3r € W(n) such that r > (a + wk)n. Then,
r=0-a+-+ By (a+wk) > (a+wk)n.

Since a +wk >a+ (w—1)k>--->a+k >aq,

Bo - (a+wk)+ fr - (a+wk)+ B (a+wk)+-- -+ By - (a +wk) > (a+wk)n.

Thus,
Bo+ B+ B2+ + By >n.

There is a contradiction and therefore r < (a + wk)n. Clearly (a + wk)n €
W(n), so max W(n) = (a + wk)n.

Therefore, W(n) = {an,an + k, ..., an + nwk}. O

Lemma 3.2. If n € S, then n = cia + cok with ¢1,c0 € N and 0 < ¢ < a.



Proof. If n € S, then

w

n = Zbi(a + ik)

1=0

1=0 1=0

= ad1 + kdg
Let dy = pa + ¢o with 0 < ¢y < a.

n = ady+ (pa+qk
= a(d1 —l—pk) + Cgk .

= acy + ke

Theorem 3.3. Let S = (a,a+k,...,a+wk). With0 < ¢y < a,

Co — LW Co — LW
E(Cla—i‘CQk):{Cl—i‘/{?";_’_—wlk—‘ ’Cl+k’762l—§-—wlk—‘ +l€,...701}

Proof. Let n = cia+ cok € S with 0 < ¢y < a. Let x € L(n).

Let n =boa+bi(a+ k) + -+ by(a + wk) and then z = Zbi‘ So,

i=0
n=aY b+kY ib=ar+k) ib.
i=0 i=0 i=0
Thus, n = xa = c;a mod k. Since ged(a, k) = 1, then, x = ¢; mod k.

Then, £(n) C ¢; + kNg. Let ¢; + kd € L(n). Then, we know that
a(cy + kd) < n < (a+wk)(c; + kd).

atuE O T
2R [ <d< | & .

8

It follows that




So,

, e Cy — CLW
min L(n) =c; + k [%-‘ =c+k [;jt—wlk-‘
Also,
max L(n )—01+kL ? J = .
Thus, £(n) C {c1 +k [2=92] oy + k2292 + k... o1}

Now we need to show that ¢; + dk € L(n).

Since a(c; + dk) < n < (a + wk)(c; + dk) and n = a(c; + dk) mod k,
then
n —a(c + dk) = pk.

We have that
a(cr +dk) — a(cy + dk) <n —alcy + dk) < (a + wk)(c; + dk) — a(cy + dk).

Then
0 < pk <wk(cy +dk) = 0 < p <w(c + dk).

So, n = a(c; + dk) + kp. Let p = w{ﬁJ + q with 0 < ¢ < w. Thus,
w

n= {gJ (a+wk)+ (a+qgk)+ (a1 +dk—1— LgJ)a

Then, there exists a factorization of n with length

LEJ +1+<c1+dk:—1— L%J) = ¢1 + dk.

w
So, ¢1 + dk € L(n).

Thus, £(n) D {c1 + k (szllﬂ a+k (CZJrfUl]ﬂ + k,...,c1} and therefore

L) ={a+k[Gpl at b [9 + k. al 0

Corollary 3.4. Let S = (a,a+k,...,a+ wk). A(S) = {k}.

, cw C2 — W
Proof. Since Lg(cia+cok) =<1+ k a—l——wlk .01+ k { c2z+ wlk —‘ + k, ,cl},
Ag(cia + cok) = {k} and therefore A(S) = {k}. O
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Lemma 3.5. Let S = (a,a+ k,...,a + wk). Given z,x +k € S, either
lz) = l(z+ k) or l(x) + k = l(x + k) and either L(x) = L(z + k) or
L(z)+ k= L(z+k).

Proof. Let x = cia+cok where 0 < ¢y < a. If ¢3 = a—1, then z+k = cya+(a—
Dk+k = (c1+k)a. If0 < ¢ < ay, then x4+k = cra+ck+k = cia+(ca+1)k.

Case 1: If ¢ = a — 1, then

_ citk)w caw—(a—1)
l(.l‘+k>—l(§€) = (Cl+k_k \‘(,H_—w;{;J) o (Cl _kL atwk J)
c1+k)w crw—(a—1
)
We see that
A RN (I E= =)

ciw—(a—1) +wk
< k ( : atwk Czliwlg + 2) :

Thus
—(a—1 1
p(c1g L) cp (1o [latbe) Jav=la=DN .
a+ wk a+ wk a + wk a+ wk

Since k (1 — LMJ + {C”‘F—MJ) € Z, thus l(z + k) —l(z) =0 or k.

a+wk a+wk

Also, L(x + k) — L(z) = (c1+ k) —c1 =k

Case 2: If ¢ < a — 1, then

ot B~ i) = (o k|2t ) — (o -k 22t )
- (o] - )
We see that

() <o (| ) < Greer).

Since k QCW*(H)J - [C“”*“‘*U*ID € Z, thus I(z + k) — I(z) = 0 or k.

a+wk a+wk

Also, L(z + k) — L(xz) = ¢; — ¢; = 0. O
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Theorem 3.6. Let S = (a,a+k,...,a+ wk).

WMzﬁn—k{Tm Jm—k{7w)J+h”wn+kFEﬁ.

a+ wk a+ wk a

Proof. Let 1 = ap + q where p = Léj and 0 < ¢ < a. From Theorem 3.3,

l(an + k) = l(a(n + pk) + gk) =n+kp — k Vnzlfiuul)c_ qJ ,
L(an + ik) = L(a(n + pk) + gk) = n + kp.

For 0 <i < nw —1, from Lemma 3.5, [(an +ik) < l(an+ (i + 1)k) and since
min W(n) = an, then

l(an +ik) = l(an) =n — k LL Tika .

Also, from Lemma 3.5, L(an+ik) < L(an+ (i+ 1)k) and since max W (n) =
an + nwk, then

L(z) = L(an + nwk) =n+k {%J :

From Corollary 3.4, A(S) = k and then from Corollary 2.4, Ay(S) = k.
Since V(n) = U L(m), therefore

mew(n)

R N P R P RE S L 1 3

4 Equality of V Sets and Length Sets

Theorem 4.1. Let S = (a,a+ k,...,a+ wk) where w < a—1 and S’ =
(c,e+t,...,c+vt) wherev<c—1and SZ 5. Vs(n) =Vs(n) VneNif
and only if k =1t and = =.

w
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Proof. Vs(n) = Vs/(n) implies that

. . nw nv
i) =iy o) | 2 = 255

Let n = (a + wk)(c + vt). So, kw(c+ vt) = tv(a + wk) and thus avt = cwk.

However, A(S) = k and A(S') = t, so from Corollary 2.4, Ay(S) = k
and AV(S') =t, thus k =t and therefore £ = .

w

Given £ = t and ¢ = 2, show that Vs(n) = Vg(n). Since k = ¢, thus
Ay(S) = Ay(S’). Since £ = 2, thus ¢ = la and v = lw for some [ € Q.

min Ve () :n—t{ ne J = n—k {nl—wJ :n—k{ no J — min Vs(n).

c+ vt la + lwk a+ wk

max Vg (n) =n -+t L@J =n+k {nl_wJ =n+k {%J = max Vg(n).

c la a

Therefore, Vs(n) = Vg/(n) ¥ n € N. O

Definition 4.2. Let S = (a,a+k,...,a+wk). A set of lengths has a jump
if 3z,x+k €S such that l(x) + k=1(z + k) and L(x) + k = L(x + k).

Lemma 4.3. Let S = (a,a+k,...,a+wk). L(S) has a jump if and only if
ged(a, w) = 1.

Proof. Given that £(5) has a jump, show that ged(a, w) = 1. Let I(z) = m,

sol(x+k) =1l(x)+k = m+k. Let x = doa+- - -+d,,(a+wk) where Zdi =m.
i=0

If © # (a + wk)m, then d, < m, so select some i < k such that d; # 0.

r+k=dyat+---+(d;—1)(a+ik)+ (diz1 +1)(a+ (i+1)k)+- - -+ dy(a+wk)

where Zdi = m. So, this is a factorization of x + k of length m, but

=0
l(x + k) =m+k, so there is a contradiction. Thus, z = (a + wk)m.

Let L(x + k) = m+nk, so L(x) = L(x + k) —k = m+ (n — 1)k. Say

that © + k = dpa + - - - + dy(a + wk) where Zdi:m+nk.
i=0

12



If x + k # a(m + nk), then dy < m + nk, so select ¢ > 0 such that d; # 0.
r=doa+- -+ (di1+1)(a+ (i —1)k)+ (di — 1)(a+ik) + -+ dy(a + wk)
where Zdi = m + nk. So, this is a factorization of x of length m + nk,

i=0
but L(z) = m+(n—1)k, so there is a contradiction. Thus, x+k = a(m+nk).

x = (a + wk)m implies © — am = wmk and =z + k = a(m + nk) implies

xr—am = ank — k. So, wmk = ank — k or equivalently na —mw = 1. There-
fore, there are positive integral solutions for m, n if and only if ged(a, w) = 1.

Given ged(a,w) = 1, show that £(S) has a jump. 3 vy, vy such that av; +
wvy = 1. Let x = —vy(a+ wk), then x = ((v; — 1)k — v9)a+ (a — 1)k. Then,

¢1 = (1 — 1)k — vy) and ¢ = a — 1.
o+ k)= (Ue)+ k) = (er+h+k| S8 )) — (o +k|222] + k)
([t | | oot
)
= k(o =1) = (n-1)

= 0.

Lxz+k)— (L(z)+k)=(c1+k)—(c1+ k) =0.
Since l(x) + k =l(z + k) and L(z) + k = L(x + k), £(S) has a jump. O

Definition 4.4. Let S = (a,a+k,...,a+wk). Leti = ap+q with0 < g <a
fori>a. f:N— S such that f(i) = f(ap+q) =ap+qgk €S.

Theorem 4.5. Let S = (a,a + k,...a + wk) where w < a—1 and S" =
(c,e+t,...c+vt) wherev <c—1and S22 S L(S)=L(S) if and only if
k=t £=2 ged(a,w) > 2, and ged(c,v) > 2.

Proof. Given L(S) = L(5'), we know that p(S) = p(S’), which implies
atwh — ctvt g0 £ = L Also, we know that A(S) = A(S’), so k =t and

a c
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thus ¢ = %,
a w

Without loss of generality, let ¢ > a. Assume ged(a, w) = 1. From Lemma
4.3, we know that S has a jump and we need S’ to have the same jump.

However, ¢ = £ implies cw = av. Since ged(a,w) = 1, thus alc. Then,

¢ = ja and v = jw where j € N with j > 2 since ¢ > a. So,
ged(c, v) = ged(ja, jw) = j = 2.

Therefore, from Lemma 4.3, there are no jumps in S” and thus £(S) # L£(5’).
Thus, ged(a, w) > 2 and ged(c,v) > 2.

Given k = t, £ = 2 gcd(a,w) > 2 and ged(c,v) > 2, show that L£(S) =
L(S").

Let i« = ap + ¢ where 0 < g < a. Also, WGkHOWﬁZE:M

w atwk”

Case 1: Assume <! € Z, then 0 < % < c. Therefore,
L)) = Lep+3F)

s
= ptk W}

_ [v(£1—p)
- p+k ct+uk -‘

= ptk —W”’“ﬂ

= p+k[EET]
= l(ap + qk)

= 1(f()).
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Also,
Lf([S]) = L(ep+ k)

=P
= L(ap+ qk)
= L(f(i)).

Case 2: Assume % ¢ Z. Then, since 0 < ¢ < a,

os{ﬂk[ww <e.

Case A: Assume 0 < (%W < c¢—1. Then,
(F([ST)) = Uep+ [ k)

~ e[l

Fea,
- p+k Z+vkp—‘

[ 2<q—wp
= p+k a+wk -‘

= pk[iEl

= (ap + qk)

= U(f(@)).
Also, L(f([5])) = Llep + [ k) = p = L(ap + qk) = L(f(i)).
Case B: Assume [%] = c. Since & ¢ Z, then |%| =¢— 1.

Assume [(f(|2])) # 1(f(@)). It follows that {(cp + [ <2]) # I(ap + q). So,

[2] —pv g — pw
p+k{ c+ vk “ #p—i_k{a—kwk—"

15



Thus,

Therefore,

Thus, there must be some integer contained in the interval {

dov (LB
c+ vk c+vk
So, there is at most one element in the interval in ﬁZ. In fact, the lower
bound is the only possibility for an integer in the interval and therefore

(&) —pv
c+ vk
Since |%| = ¢ — 1, then (¢ + vk)|(c — 1 — pv).

However,

1
c+ vk’

|
a a

c+ vk

€ Z.

Let d = ged(c,v). Then, d|c and d|v, so d|(c + vk). Thus, d|(c — 1 — pv), so
d|1, but that is a contradiction since d # 1.

()=

L(1(|2))) = Ll ab) =p = Llap-+ ab) = L0760

Then,

Also,

a

Thus, £(S5) C L(S’) and since we did not assume any conditions on S or 5,
then we also have that £(S") C £(S). Therefore, £(.S) = L(.5"). O
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Corollary 4.6. Let S = (a,a + k,...,a + wk) where w < a—1 and S’ =
(c,e+t,...,c+vt) wherev <c—1and S 2 S". If Vs(n) =Vg(n) Vn €N,
then L(S) = L(S") if and only if ged(a,w) > 2 and ged(c,v) > 2.

Proof. From Theorem 4.1, Vs(n) = Vg/(n) implies £ = ¢t and £ = 2, so
from Theorem 4.5, we also need ged(a,w) > 2 and ged(c,v) > 2 in order
for £L(S) = L(S"). Given ged(a, w) =1 or ged(e,v) = 1, from Theorem 4.5,
Vs(n) = Ve (n) ¥ n € Nimplies L(S) # L(S"). O

Corollary 4.7. Let S = (a,a + k,...,a + wk) where w < a—1 and S’ =
(c,e+t,...,cH+vt) where v < ¢c—1 and S 2 S'. If L(S) = L(S'), then
Vs(n) = st(n) VneN.,

Proof. From Theorem 4.5, £(S) = L£(S’) implies that k = ¢ and £ = 2, so
from Theorem 4.1, Vg(n) = Vs/(n) ¥V n € N. O
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