Length Sets and \mathcal{V} Sets of Numerical Monoids

Natalie Hine João Paixão

2006 Research Experience for Undergraduates Trinity University

July 27, 2006

Abstract

We study \mathcal{V} sets of numerical monoids and find upper and lower bounds on the $\Delta_{\mathcal{V}}$ set based on the delta sets of these monoids. The paper then focuses on numerical monoids generated by an arithmetic progression increasing by a constant. First, we determine exact solutions for length sets and then we use these formulas to enumerate \mathcal{V} sets. Next, we investigate if two such numerical monoids are isomorphic if their \mathcal{V} sets are equal. Finally, we investigate if two such numerical monoids are isomorphic if their length sets are equal.

1 Introduction

If M is a nonempty set and \cdot is a binary operation on M, then the pair (M, \cdot) is a monoid if

1.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c \ \forall \ a, b, c \in M$$

2. $\exists 1 \in M$ such that $1 \cdot a = a \cdot 1 = a \ \forall \ a \in M$.

A numerical monoid is an additive submonoid of $\mathbb{N} \cup \{0\}$.

The set of elements of S are $x \in S$ such that x can be written in the form

$$x = x_1 a_1 + \dots + x_t a_t = \sum_{i=1}^t x_i a_i$$

for some $x_i \in \mathbb{N} \cup \{0\}$ where $\{a_1, \ldots, a_t\}$ is the generating set of S, often denoted as $S = \langle a_1, \ldots, a_t \rangle$.

Every numerical monoid S has a unique minimal set of generators. S is primitive if $gcd\{s \mid s \in S\}$. Every numerical monoid S is isomorphic to a unique primitive numerical monoid, so we always assume that S is a primitive numerical monoid.

Definition 1.1. The set of lengths of $m \in S$ is

$$\mathcal{L}(m) = \left\{ \sum_{i=1}^{t} x_i \mid x_i \in \mathbb{N} \cup \{0\}, m = \sum_{i=1}^{t} x_i a_i \right\}.$$

If it is not clear which monoid we are considering, we use the notation $\mathcal{L}_S(m)$ to indicate $\mathcal{L}(m)$ of S. Also, define $L(m) = \max \mathcal{L}(m)$ and $l(m) = \min \mathcal{L}(m)$. We define the set of lengths of S as $\mathcal{L}(S) = {\mathcal{L}(m) | m \in S}$.

Example 1.2. Let $S = \langle 2, 3 \rangle$. $\mathcal{L}(21) = \{7, 8, 9, 10\}$.

First, we must list all the factorizations of 21 in S.

$$21 = 9 \cdot 2 + 1 \cdot 3
= 6 \cdot 2 + 3 \cdot 3
= 3 \cdot 2 + 5 \cdot 3
= 0 \cdot 2 + 7 \cdot 3$$

Thus, $\mathcal{L}(21) = \{7, 8, 9, 10\}, L(21) = 10, \text{ and } l(21) = 7.$

Definition 1.3. The elasticity of $m \in S$, denoted $\rho(m)$, is

$$\rho(m) = \frac{L(m)}{l(m)}.$$

The elasticity of S is then defined as $\rho(S) = \sup\{\rho(m) \mid m \in S\}$. For example, in $S = \langle 2, 3 \rangle$, $\rho(21) = \frac{10}{7}$.

Definition 1.4. Let $m \in S$ and suppose $\mathcal{L}(m) = \{n_1, \ldots, n_t\}$ with the n_i 's listed in increasing order. The delta set of m is

$$\Delta(m) = \{ n_i - n_{i-1} \mid 2 \le i \le t \}.$$

For example, in $S = \langle 2, 3 \rangle$, $\Delta(21) = \{1\}$.

The delta set of S is

$$\Delta(S) = \bigcup_{m \in S} \Delta(m).$$

Definition 1.5. $W(n) = \{m \in S \mid n \in \mathcal{L}(m)\}.$

Example 1.6. Let $S = \langle 2, 3 \rangle$. $W(7) = \{14, 15, 16, 17, 18, 19, 20, 21\}$.

Let us investigate which length sets contain 7 as an element.

$$\mathcal{L}(14) = \{5, 6, 7\}$$

$$\mathcal{L}(15) = \{5, 6, 7\}$$

$$\mathcal{L}(16) = \{6, 7, 8\}$$

$$\mathcal{L}(17) = \{6, 7, 8\}$$

$$\mathcal{L}(18) = \{6, 7, 8, 9\}$$

$$\mathcal{L}(19) = \{7, 8, 9\}$$

$$\mathcal{L}(20) = \{7, 8, 9, 10\}$$

$$\mathcal{L}(21) = \{7, 8, 9, 10\}$$

Thus, $W(7) = \{14, 15, 16, 17, 18, 19, 20, 21\}.$

Definition 1.7.
$$V(n) = \bigcup_{m \in W(n)} \mathcal{L}(m)$$
.

For example, in $S = \langle 2, 3 \rangle$, $V(7) = \{5, 6, 7, 8, 9, 10\}$.

If it is not clear which monoid we are considering, we use the notation $\mathcal{V}_S(n)$ to indicate $\mathcal{V}(n)$ of S.

Definition 1.8. $\Phi(n) = |\mathcal{V}(n)|$.

Definition 1.9. Suppose $V(n) = \{v_{1,n}, \dots, v_{t,n}\}$ The delta set of V(n) is

$$\Delta_{\mathcal{V}}(n) = \{v_{i,n} - v_{i-1,n} \mid 2 \le i \le t\}.$$

For example, in $S = \langle 2, 3 \rangle$, $\Delta_{\mathcal{V}}(7) = \{1\}$.

Also, define $\Delta_{\mathcal{V}}(S) = \bigcup_{n \in \mathbb{N}} \Delta_{\mathcal{V}}(n)$. Let $\mathcal{V}^* = \max \Delta_{\mathcal{V}}(S)$ and $\mathcal{V}_* = \min \Delta_{\mathcal{V}}(S)$.

2 \mathcal{V} Sets and $\Delta_{\mathcal{V}}$ Sets of Numerical Monoids

Let $S = \langle a_1, a_2, \dots, a_t \rangle$ where $\{a_1, \dots, a_t\}$ is the minimal set of generators.

By [1], there exists a method for calculating $\max \Delta(S)$ in finite time and

$$\min \Delta(S) = \gcd \{ a_i - a_{i-1} \mid i \in \{2, 3, \dots, t\} \} = d.$$

Thus $\Delta(S) \subseteq \{d, 2d, \dots, qd\}$ for $q \in \mathbb{N}$ [2].

Let $\Delta(S) = \{b_1, b_2, \dots, b_k\}$ with $\max \Delta(S) = b_k = qd$.

Lemma 2.1. $\mathcal{V}_* = \min \Delta(S)$.

Proof. \exists n such that $\mathcal{V}_* = v_{i,n} - v_{i-1,n}$ where $v_{i,n}$ and $v_{i-1,n}$ are consecutive elements in $\mathcal{V}(n)$. Then, \exists x, $y \in \mathcal{W}(n)$ such that $\{v_{i,n}, n\} \subseteq \mathcal{L}(w_1)$ and $\{v_{i-1,n}, n\} \subseteq \mathcal{L}(w_2)$.

$$n - v_{i,n} = \sum_{i=1}^{k} b_i x_i$$

$$n - v_{i-1,n} = \sum_{i=1}^{k} b_i y_i$$

Thus,

$$\mathcal{V}_* = (n - v_{i-1,n}) - (n - v_{i,n}) = \sum_{i=1}^k b_i (y_i - x_i).$$

So,

$$\mathcal{V}_* \ge \gcd\{b_1, b_2, \dots, b_k\} = \gcd(\Delta(S)) = \min \Delta(S).$$

Assume $\mathcal{V}_* > \min \Delta(S) = d$. Then, $\forall i, v_{i,n} - v_{i-1,n} > d$. Since $\min \Delta(S) = d$, $\exists u \in S$ such that $\mathcal{L}(u) = \{l_1, \ldots, l_r\}$ and $l_p - l_{p-1} = d$. Let $n \in \mathcal{L}(u)$, so $\{l_1, \ldots, l_r\} \subseteq \mathcal{V}(n)$.

Then, since $v_{i,n} - v_{i-1,n} > d \, \forall i, l_p \text{ and } l_{p-1} \text{ are not consecutive elements}$ in $\mathcal{V}(n)$. Thus, $\exists z \in \mathcal{V}(n)$ such that $l_{b-1} < z < l_b \text{ and } l_b - z \in \Delta_{\mathcal{V}}(S)$, but $d = l_p - l_{p-1} > l_p - z$, which is a contradiction.

Therefore, $V_* = \min \Delta(S)$.

Lemma 2.2. $\mathcal{V}^* \leq \max \Delta(S) = b_k$.

Proof. $\exists n \text{ such that } \mathcal{V}^* = v_{i,n} - v_{i-1,n} \text{ where } v_{i,n} \text{ and } v_{i-1,n} \text{ are consecutive elements in } \mathcal{V}(n).$

Then, $\exists x \in \mathcal{W}(n)$ such that $\mathcal{L}(x) \supseteq \{v_{i,n}, n\}$. Let $\mathcal{L}(x) = \{n_1, \dots, n_j\}$ with $v_{i,n} = n_t$.

Thus, $V(n) \supseteq \{n_1, \ldots, n_j\}$ and since $\max \Delta(S) = b_k$, then $v_{i,n} - v_{i-1,n} \le n_t - n_{t-1} \le b_k$ for $2 \le t \le j$.

For t = 1, then $v_{i,n} = n_1$. If $n_1 = \min \mathcal{V}(n)$, then $v_{i-1,n}$ does not exist, so there must be an $m = v_{i-1,n} \in \mathcal{V}(n)$. Thus, $\exists y \in \mathcal{W}(n)$ such that $\mathcal{L}(y) \supseteq \{m, n\}$. Let $\mathcal{L}(y) = \{m_1, \ldots, m_p\}$ with $v_{i-1,n} = m_q$.

 $\mathcal{V}(n) \supseteq \{m_1, \dots, m_p\}$ and since $\max \Delta(S) = b_k$, then $m_{q+1} - m_q \le b_k$. So, if $n_1 = m_{q+1}$, then $v_{i,n} - v_{i-1,n} \le m_{q+1} - m_q \le b_k$. If $m_q < n_1 < m_{q+1}$, then $v_{i,n} - v_{i-1,n} < m_{q+1} - m_q \le b_k$.

Lemma 2.3. $\Delta_{\mathcal{V}}(S) \subseteq \{d, 2d, \dots, qd\}$ for some $q \in \mathbb{N}$.

Proof. From Lemma 2.1, $\mathcal{V}_* = d$ and from Lemma 2.2, $\mathcal{V}^* \leq b_k = qd$ for some $q \in \mathbb{N}$. Suppose $\exists j$ where $d \leq j \leq qd$ but $d \nmid j$ and $j \in \Delta_{\mathcal{V}}(S)$.

 $\exists n \text{ such that } j \in \Delta_{\mathcal{V}}(n) \text{ and so } \exists i, i-1 \text{ such that } j = v_{i,n} - v_{i-1,n}.$

 $\exists x \text{ such that } \mathcal{L}(x) \supseteq \{v_{i,n}, n\} \text{ where }$

$$n - v_{i,n} = \sum_{i=1}^{k} b_i x_i.$$

 $\exists y \text{ such that } \mathcal{L}(y) \supseteq \{v_{i-1,n}, n\} \text{ where }$

$$n - v_{i-1,n} = \sum_{i=1}^{k} b_i y_i.$$

Then, $j = v_{i,n} - v_{i-1,n} = (n - v_{i-1,n}) - (n - v_{i,n}) = \sum_{i=1}^k b_i(y_i - x_i)$. Since $d|b_i \neq i$, thus d|j, which is a contradiction.

Corollary 2.4. If $\Delta(S) = \{g\}$, then $\Delta_{\mathcal{V}}(S) = \{g\}$.

Proof. Since $\Delta(S) = \{g\}$, $\min \Delta(S) = \max \Delta(S) = g$. From Lemmas 2.1 and 2.2, $\mathcal{V}_* = \mathcal{V}^* = g$ and therefore $\Delta_{\mathcal{V}}(S) = \{g\}$.

Theorem 2.5. $\frac{a_t^2 - a_1^2}{\mathcal{V}^* a_1 a_t} \leq \lim_{n \to \infty} \inf \frac{\Phi(n)}{n} \leq \lim_{n \to \infty} \sup \frac{\Phi(n)}{n} \leq \frac{a_t^2 - a_1^2}{\mathcal{V}_* a_1 a_t}$

Proof. Let
$$\sum_{i=1}^{t} x_i a_i = \sum_{i=1}^{t} y_i a_i \in S$$
. Let $\sum_{i=1}^{t} x_i = n, \sum_{i=1}^{t} y_i = m$. From [3], $\rho(S) = \frac{a_t}{a_1}$.

It follows that

$$\frac{a_1}{a_t} \leq \frac{m}{n} \leq \frac{a_t}{a_1} \Rightarrow \frac{a_1 n}{a_t} \leq m \leq \frac{a_t n}{a_1}.$$

Therefore we can bound the size of $\mathcal{V}(n)$. So,

$$\frac{\left(\frac{a_t}{a_1} - \frac{a_1}{a_t}\right)n}{\mathcal{V}^*} + 1 \le \Phi(n) \le \frac{\left(\frac{a_t}{a_1} - \frac{a_1}{a_t}\right)n}{\mathcal{V}_*} + 1$$

Thus,

$$\frac{a_t^2 - a_1^2}{\mathcal{V}^* a_1 a_t} n + 1 \le \Phi(n) \le \frac{a_t^2 - a_1^2}{\mathcal{V}_* a_1 a_t} n + 1$$

By taking the limit, we get that

$$\frac{a_t^2 - a_1^2}{\mathcal{V}^* a_1 a_t} \le \lim_{n \to \infty} \inf \frac{\Phi(n)}{n} \le \lim_{n \to \infty} \sup \frac{\Phi(n)}{n} \le \frac{a_t^2 - a_1^2}{\mathcal{V}_* a_1 a_t}.$$

Corollary 2.6. If $\Delta_{\mathcal{V}}(S) = \{g\}$, then $\lim_{n \to \infty} \frac{\Phi(n)}{n} = \frac{a_t^2 - a_1^2}{ga_1 a_2}$.

Proof. $\Delta_{\mathcal{V}}(S) = \{g\}$ implies $\mathcal{V}_* = \mathcal{V}^* = g$. By Theorem 2.5,

$$\frac{a_t^2 - a_1^2}{ga_1a_t} \le \lim_{n \to \infty} \inf \frac{\Phi(n)}{n} \le \lim_{n \to \infty} \sup \frac{\Phi(n)}{n} \le \frac{a_t^2 - a_1^2}{ga_1a_t}$$

Therefore,

$$\lim_{n \to \infty} \frac{\Phi(n)}{n} = \frac{a_t^2 - a_1^2}{ga_1a_t}.$$

3 Numerical Monoids Generated by an Interval

Lemma 3.1. Let $S = \langle a, a+k, \dots, a+wk \rangle$ where $w \leq (a-1)$.

$$\mathcal{W}(n) = \{an, an + k, \dots, an + nwk\}.$$

Proof. Assume $\exists r \in \mathcal{W}(n)$ such that r < an. Then,

$$r = \alpha_0 \cdot a + \dots + \alpha_w \cdot (a + wk) < an.$$

Since $a < a + k < \cdots < a + wk$,

$$\alpha_0 \cdot a + \alpha_1 \cdot a + \dots + \alpha_w \cdot a < an.$$

Thus,

$$\alpha_0 + \alpha_1 + \dots + \alpha_w < n.$$

There is a contradiction and therefore $r \geq an$. Clearly $an \in \mathcal{W}(n)$, so $\min \mathcal{W}(n) = an$.

Assume $\exists r \in \mathcal{W}(n)$ such that r > (a + wk)n. Then,

$$r = \beta_0 \cdot a + \dots + \beta_w \cdot (a + wk) > (a + wk)n.$$

Since $a + wk > a + (w - 1)k > \dots > a + k > a$,

$$\beta_0 \cdot (a+wk) + \beta_1 \cdot (a+wk) + \beta_2 \cdot (a+wk) + \dots + \beta_w \cdot (a+wk) > (a+wk)n.$$

Thus,

$$\beta_0 + \beta_1 + \beta_2 + \dots + \beta_w > n.$$

There is a contradiction and therefore $r \leq (a + wk)n$. Clearly $(a + wk)n \in \mathcal{W}(n)$, so $\max \mathcal{W}(n) = (a + wk)n$.

Therefore,
$$W(n) = \{an, an + k, \dots, an + nwk\}.$$

Lemma 3.2. If $n \in S$, then $n = c_1 a + c_2 k$ with $c_1, c_2 \in \mathbb{N}$ and $0 \le c_2 < a$.

Proof. If $n \in S$, then

$$n = \sum_{i=0}^{w} b_i (a+ik)$$
$$= a \sum_{i=0}^{w} b_i + k \sum_{i=0}^{w} ib_i$$
$$= ad_1 + kd_2.$$

Let $d_2 = pa + c_2$ with $0 \le c_2 < a$.

$$n = ad_1 + (pa + q)k$$
$$= a(d_1 + pk) + c_2k .$$
$$= ac_1 + kc_2$$

Theorem 3.3. Let $S = \langle a, a+k, \dots, a+wk \rangle$. With $0 \le c_2 < a$,

$$\mathcal{L}(c_1 a + c_2 k) = \{c_1 + k \left[\frac{c_2 - c_1 w}{a + w k} \right], c_1 + k \left[\frac{c_2 - c_1 w}{a + w k} \right] + k, \dots, c_1 \}$$

Proof. Let $n = c_1 a + c_2 k \in S$ with $0 \le c_2 < a$. Let $x \in \mathcal{L}(n)$.

Let $n = b_0 a + b_1 (a + k) + \dots + b_w (a + wk)$ and then $x = \sum_{i=0}^{w} b_i$. So,

$$n = a \sum_{i=0}^{w} b_i + k \sum_{i=0}^{w} ib_i = ax + k \sum_{i=0}^{w} ib_i.$$

Thus, $n \equiv xa \equiv c_1a \mod k$. Since gcd(a,k) = 1, then, $x \equiv c_1 \mod k$.

Then, $\mathcal{L}(n) \subset c_1 + k\mathbb{N}_0$. Let $c_1 + kd \in \mathcal{L}(n)$. Then, we know that

$$a(c_1 + kd) \le n \le (a + wk)(c_1 + kd).$$

It follows that

$$\left\lceil \frac{\frac{n}{a+wk} - c_1}{k} \right\rceil \le d \le \left\lfloor \frac{\frac{n}{a} - c_1}{k} \right\rfloor.$$

So,

$$\min \mathcal{L}(n) = c_1 + k \left\lceil \frac{\frac{n}{a + wk} - c_1}{k} \right\rceil = c_1 + k \left\lceil \frac{c_2 - c_1 w}{a + wk} \right\rceil.$$

Also,

$$\max \mathcal{L}(n) = c_1 + k \left| \frac{\frac{n}{a} - c_1}{k} \right| = c_1.$$

Thus,
$$\mathcal{L}(n) \subset \{c_1 + k \left\lceil \frac{c_2 - c_1 w}{a + wk} \right\rceil, c_1 + k \left\lceil \frac{c_2 - c_1 w}{a + wk} \right\rceil + k, \dots, c_1 \}.$$

Now we need to show that $c_1 + dk \in \mathcal{L}(n)$.

Since $a(c_1 + dk) \le n \le (a + wk)(c_1 + dk)$ and $n \equiv a(c_1 + dk) \mod k$, then

$$n - a(c_1 + dk) = pk.$$

We have that

$$a(c_1 + dk) - a(c_1 + dk) \le n - a(c_1 + dk) \le (a + wk)(c_1 + dk) - a(c_1 + dk).$$

Then

$$0 \le pk \le wk(c_1 + dk) \Rightarrow 0 \le p \le w(c_1 + dk).$$

So,
$$n = a(c_1 + dk) + kp$$
. Let $p = w \left\lfloor \frac{p}{w} \right\rfloor + q$ with $0 \le q < w$. Thus,

$$n = \left\lfloor \frac{p}{w} \right\rfloor (a + wk) + (a + qk) + (c_1 + dk - 1 - \left\lfloor \frac{p}{w} \right\rfloor) a.$$

Then, there exists a factorization of n with length

$$\left\lfloor \frac{p}{w} \right\rfloor + 1 + \left(c_1 + dk - 1 - \left\lfloor \frac{p}{w} \right\rfloor \right) = c_1 + dk.$$

So, $c_1 + dk \in \mathcal{L}(n)$.

Thus,
$$\mathcal{L}(n) \supset \{c_1 + k \left\lceil \frac{c_2 - c_1 w}{a + w k} \right\rceil, c_1 + k \left\lceil \frac{c_2 - c_1 w}{a + w k} \right\rceil + k, \dots, c_1 \}$$
 and therefore $\mathcal{L}(n) = \{c_1 + k \left\lceil \frac{c_2 - c_1 w}{a + w k} \right\rceil, c_1 + k \left\lceil \frac{c_2 - c_1 w}{a + w k} \right\rceil + k, \dots, c_1 \}.$

Corollary 3.4. Let $S = \langle a, a+k, \dots, a+wk \rangle$. $\Delta(S) = \{k\}$.

Proof. Since
$$\mathcal{L}_S(c_1a+c_2k) = \left\{c_1 + k \left\lceil \frac{c_2 - c_1w}{a + wk} \right\rceil, c_1 + k \left\lceil \frac{c_2 - c_1w}{a + wk} \right\rceil + k, \dots, c_1 \right\},$$

 $\Delta_S(c_1a + c_2k) = \{k\} \text{ and therefore } \Delta(S) = \{k\}.$

Lemma 3.5. Let $S = \langle a, a+k, \ldots, a+wk \rangle$. Given $x, x+k \in S$, either l(x) = l(x+k) or l(x) + k = l(x+k) and either L(x) = L(x+k) or L(x) + k = L(x+k).

Proof. Let $x = c_1 a + c_2 k$ where $0 \le c_2 < a$. If $c_2 = a - 1$, then $x + k = c_1 a + (a - 1)k + k = (c_1 + k)a$. If $0 \le c_2 < a_1$, then $x + k = c_1 a + c_2 k + k = c_1 a + (c_2 + 1)k$.

Case 1: If $c_2 = a - 1$, then

$$l(x+k) - l(x) = \left(c_1 + k - k \left\lfloor \frac{(c_1 + k)w}{a + wk} \right\rfloor \right) - \left(c_1 - k \left\lfloor \frac{c_1 w - (a-1)}{a + wk} \right\rfloor \right)$$
$$= k \left(1 - \left\lfloor \frac{(c_1 + k)w}{a + wk} \right\rfloor + \left\lfloor \frac{c_1 w - (a-1)}{a + wk} \right\rfloor \right).$$

We see that

$$k\left(\frac{c_1w - (a-1)}{a + wk} - \frac{c_1w + wk}{a + wk}\right) < k\left(1 - \left\lfloor\frac{(c_1 + k)w}{a + wk}\right\rfloor + \left\lfloor\frac{c_1w - (a-1)}{a + wk}\right\rfloor\right)$$

$$< k\left(\frac{c_1w - (a-1)}{a + wk} \frac{c_1w + wk}{a + wk} + 2\right).$$

Thus

$$k\left(-1+\frac{1}{a+wk}\right) < k\left(1-\left\lfloor\frac{(c_1+k)w}{a+wk}\right\rfloor + \left\lfloor\frac{c_1w-(a-1)}{a+wk}\right\rfloor\right) < k\left(1+\frac{1}{a+wk}\right).$$

Since
$$k\left(1-\left\lfloor\frac{(c_1+k)w}{a+wk}\right\rfloor+\left\lfloor\frac{c_1w-(a-1)}{a+wk}\right\rfloor\right)\in\mathbb{Z}$$
, thus $l(x+k)-l(x)=0$ or k .

Also,
$$L(x+k) - L(x) = (c_1 + k) - c_1 = k$$

Case 2: If $c_2 < a - 1$, then

$$l(x+k) - l(x) = \left(c_1 - k \left\lfloor \frac{c_1 w - (a-1) - 1}{a + wk} \right\rfloor \right) - \left(c_1 - k \left\lfloor \frac{c_1 w - (a-1)}{a + wk} \right\rfloor \right)$$
$$= k \left(\left\lfloor \frac{c_1 w - (a-1)}{a + wk} \right\rfloor - \left\lfloor \frac{c_1 w - (a-1) - 1}{a + wk} \right\rfloor \right).$$

We see that

$$k\left(\frac{1}{a+wk}-1\right) < k\left(\left|\frac{c_1w-(a-1)}{a+wk}\right| - \left|\frac{c_1w-(a-1)-1}{a+wk}\right|\right) < k\left(\frac{1}{a+wk}+1\right).$$

Since
$$k\left(\left\lfloor \frac{c_1w-(a-1)}{a+wk}\right\rfloor - \left\lfloor \frac{c_1w-(a-1)-1}{a+wk}\right\rfloor\right) \in \mathbb{Z}$$
, thus $l(x+k) - l(x) = 0$ or k .

Also,
$$L(x+k) - L(x) = c_1 - c_1 = 0.$$

Theorem 3.6. Let $S = \langle a, a+k, \dots, a+wk \rangle$.

$$\mathcal{V}(n) = \{n - k \left\lfloor \frac{nw}{a + wk} \right\rfloor, n - k \left\lfloor \frac{nw}{a + wk} \right\rfloor + k, \dots, n + k \left\lfloor \frac{nw}{a} \right\rfloor \}.$$

Proof. Let i = ap + q where $p = \lfloor \frac{i}{a} \rfloor$ and $0 \le q < a$. From Theorem 3.3,

$$l(an+ik) = l(a(n+pk)+qk) = n+kp-k\left[\frac{(n+kp)w-q}{a+wk}\right],$$

$$L(an + ik) = L(a(n + pk) + qk) = n + kp.$$

For $0 \le i \le nw - 1$, from Lemma 3.5, $l(an + ik) \le l(an + (i + 1)k)$ and since $\min \mathcal{W}(n) = an$, then

$$l(an + ik) = l(an) = n - k \left| \frac{nw}{a + wk} \right|.$$

Also, from Lemma 3.5, $L(an+ik) \leq L(an+(i+1)k)$ and since $\max W(n) = an + nwk$, then

$$L(x) = L(an + nwk) = n + k \left\lfloor \frac{nw}{a} \right\rfloor.$$

From Corollary 3.4, $\Delta(S) = k$ and then from Corollary 2.4, $\Delta_{\mathcal{V}}(S) = k$. Since $\mathcal{V}(n) = \bigcup_{m \in w(n)} \mathcal{L}(m)$, therefore

$$\mathcal{V}(n) = \left\{ n - k \left| \frac{nw}{a + wk} \right|, n - k \left| \frac{nw}{a + wk} \right| + k, \dots, n + k \left\lfloor \frac{nw}{a} \right\rfloor \right\}.$$

4 Equality of V Sets and Length Sets

Theorem 4.1. Let $S = \langle a, a+k, \ldots, a+wk \rangle$ where $w \leq a-1$ and $S' = \langle c, c+t, \ldots, c+vt \rangle$ where $v \leq c-1$ and $S \ncong S'$. $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n) \ \forall \ n \in \mathbb{N}$ if and only if k = t and $\frac{c}{a} = \frac{v}{w}$.

Proof. $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n)$ implies that

$$\min \mathcal{V}_S(n) = \min \mathcal{V}_{S'}(n) \Rightarrow n - k \left\lfloor \frac{nw}{a + wk} \right\rfloor = n - t \left\lfloor \frac{nv}{c + vt} \right\rfloor.$$

Let n = (a + wk)(c + vt). So, kw(c + vt) = tv(a + wk) and thus avt = cwk.

However, $\Delta(S) = k$ and $\Delta(S') = t$, so from Corollary 2.4, $\Delta_{\mathcal{V}}(S) = k$ and $\Delta \mathcal{V}(S') = t$, thus k = t and therefore $\frac{c}{a} = \frac{v}{w}$.

Given k = t and $\frac{c}{a} = \frac{v}{w}$, show that $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n)$. Since k = t, thus $\Delta_{\mathcal{V}}(S) = \Delta_{\mathcal{V}}(S')$. Since $\frac{c}{a} = \frac{v}{w}$, thus c = la and v = lw for some $l \in \mathbb{Q}$.

$$\min \mathcal{V}_{S'}(n) = n - t \left| \frac{nv}{c + vt} \right| = n - k \left| \frac{nlw}{la + lwk} \right| = n - k \left| \frac{nw}{a + wk} \right| = \min \mathcal{V}_S(n).$$

$$\max \mathcal{V}_{S'}(n) = n + t \left\lfloor \frac{nv}{c} \right\rfloor = n + k \left\lfloor \frac{nlw}{la} \right\rfloor = n + k \left\lfloor \frac{nw}{a} \right\rfloor = \max \mathcal{V}_{S}(n).$$

Therefore, $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n) \ \forall \ n \in \mathbb{N}$.

Definition 4.2. Let $S = \langle a, a+k, \dots, a+wk \rangle$. A set of lengths has a jump if $\exists x, x+k \in S$ such that l(x)+k=l(x+k) and L(x)+k=L(x+k).

Lemma 4.3. Let $S = \langle a, a+k, \ldots, a+wk \rangle$. $\mathcal{L}(S)$ has a jump if and only if gcd(a, w) = 1.

Proof. Given that $\mathcal{L}(S)$ has a jump, show that $\gcd(a, w) = 1$. Let l(x) = m, so l(x+k) = l(x) + k = m + k. Let $x = d_0 a + \cdots + d_w (a + wk)$ where $\sum_{i=0}^{w} d_i = m$.

If $x \neq (a + wk)m$, then $d_w < m$, so select some i < k such that $d_i \neq 0$. $x + k = d_0 a + \cdots + (d_i - 1)(a + ik) + (d_{i+1} + 1)(a + (i+1)k) + \cdots + d_w(a + wk)$ where $\sum_{i=0}^{w} d_i = m$. So, this is a factorization of x + k of length m, but l(x + k) = m + k, so there is a contradiction. Thus, x = (a + wk)m.

Let L(x + k) = m + nk, so L(x) = L(x + k) - k = m + (n - 1)k. Say that $x + k = d_0 a + \dots + d_w (a + wk)$ where $\sum_{i=0}^{w} d_i = m + nk$.

If $x + k \neq a(m + nk)$, then $d_0 < m + nk$, so select i > 0 such that $d_i \neq 0$. $x = d_0 a + \cdots + (d_{i-1} + 1)(a + (i-1)k) + (d_i - 1)(a + ik) + \cdots + d_w(a + wk)$ where $\sum_{i=0}^{w} d_i = m + nk$. So, this is a factorization of x of length m + nk, but L(x) = m + (n-1)k, so there is a contradiction. Thus, x + k = a(m + nk).

x = (a + wk)m implies x - am = wmk and x + k = a(m + nk) implies x - am = ank - k. So, wmk = ank - k or equivalently na - mw = 1. Therefore, there are positive integral solutions for m, n if and only if gcd(a, w) = 1.

Given gcd(a, w) = 1, show that $\mathcal{L}(S)$ has a jump. $\exists v_1, v_2$ such that $av_1 + wv_2 = 1$. Let $x = -v_2(a + wk)$, then $x = ((v_1 - 1)k - v_2)a + (a - 1)k$. Then, $c_1 = ((v_1 - 1)k - v_2)$ and $c_2 = a - 1$.

$$l(x+k) - (l(x)+k) = \left(c_1 + k + k \left\lfloor \frac{(c_1+k)w}{a+wk} \right\rfloor\right) - \left(c_1 + k \left\lfloor \frac{c_1w-c_2}{a+wk} \right\rfloor + k\right)$$

$$= k \left(\left\lfloor \frac{((v_1-1)k-v_2)w+wk}{a+wk} \right\rfloor - \left\lfloor \frac{((v_1-1)k-v_2)w-a+1}{a+wk} \right\rfloor\right)$$

$$= k \left(\left\lfloor \frac{v_1(a+wk)-1}{a+wk} \right\rfloor - \left\lfloor \frac{(v_1-1)(a+wk)}{a+wk} \right\rfloor\right)$$

$$= k((v_1-1) - (v_1-1))$$

$$= 0.$$

$$L(x+k) - (L(x)+k) = (c_1+k) - (c_1+k) = 0.$$

Since l(x) + k = l(x + k) and L(x) + k = L(x + k), $\mathcal{L}(S)$ has a jump. \square

Definition 4.4. Let $S = \langle a, a+k, \dots, a+wk \rangle$. Let i = ap+q with $0 \le q < a$ for $i \ge a$. $f: \mathbb{N} \to S$ such that $f(i) = f(ap+q) = ap+qk \in S$.

Theorem 4.5. Let $S = \langle a, a+k, \dots a+wk \rangle$ where $w \leq a-1$ and $S' = \langle c, c+t, \dots c+vt \rangle$ where $v \leq c-1$ and $S \ncong S'$. $\mathcal{L}(S) = \mathcal{L}(S')$ if and only if k = t, $\frac{c}{a} = \frac{v}{w}$, $\gcd(a, w) \geq 2$, and $\gcd(c, v) \geq 2$.

Proof. Given $\mathcal{L}(S) = \mathcal{L}(S')$, we know that $\rho(S) = \rho(S')$, which implies $\frac{a+wk}{a} = \frac{c+vt}{c}$, so $\frac{c}{a} = \frac{vt}{wk}$. Also, we know that $\Delta(S) = \Delta(S')$, so k = t and

thus $\frac{c}{a} = \frac{v}{w}$.

Without loss of generality, let c > a. Assume gcd(a, w) = 1. From Lemma 4.3, we know that S has a jump and we need S' to have the same jump.

However, $\frac{c}{a} = \frac{v}{w}$ implies cw = av. Since $\gcd(a, w) = 1$, thus a|c. Then, c = ja and v = jw where $j \in \mathbb{N}$ with $j \geq 2$ since c > a. So,

$$gcd(c, v) = gcd(ja, jw) = j \ge 2.$$

Therefore, from Lemma 4.3, there are no jumps in S' and thus $\mathcal{L}(S) \neq \mathcal{L}(S')$. Thus, $\gcd(a, w) \geq 2$ and $\gcd(c, v) \geq 2$.

Given k = t, $\frac{c}{a} = \frac{v}{w}$, $\gcd(a, w) \ge 2$ and $\gcd(c, v) \ge 2$, show that $\mathcal{L}(S) = \mathcal{L}(S')$.

Let i = ap + q where $0 \le q < a$. Also, we know $\frac{c}{a} = \frac{v}{w} = \frac{c + vk}{a + wk}$.

Case 1: Assume $\frac{cq}{a} \in \mathbb{Z}$, then $0 \le \frac{cq}{a} < c$. Therefore,

$$l\left(f\left(\left\lceil\frac{ci}{a}\right\rceil\right)\right) = l\left(cp + \frac{cq}{a}k\right)$$

$$= p + k \left\lceil\frac{cq}{c+vk}\right\rceil$$

$$= p + k \left\lceil\frac{v\left(\frac{cq}{av} - p\right)}{c+vk}\right\rceil$$

$$= p + k \left\lceil\frac{cwq}{av} - pw\right\rceil$$

$$= p + k \left\lceil\frac{q - pw}{a+wk}\right\rceil$$

$$= l(ap + qk)$$

$$= l(f(i)).$$

Also,

$$L\left(f\left(\left\lceil\frac{ci}{a}\right\rceil\right)\right) = L\left(cp + \frac{cq}{a}k\right)$$

$$= p$$

$$= L(ap + qk)$$

$$= L(f(i)).$$

Case 2: Assume $\frac{cq}{a} \notin \mathbb{Z}$. Then, since $0 \le q < a$,

$$0 \le \left\lceil \frac{cq}{a} \right\rceil \le \left\lceil \frac{c(a-1)}{a} \right\rceil \le c.$$

Case A: Assume $0 \le \left\lceil \frac{cq}{a} \right\rceil \le c - 1$. Then,

$$l(f(\lceil \frac{ci}{a} \rceil)) = l(cp + \lceil \frac{cq}{a} \rceil k)$$

$$= p + k \left\lceil \frac{\lceil \frac{cq}{a} \rceil - vp}{c + vk} \right\rceil$$

$$= p + k \left\lceil \frac{\frac{cq}{a} - vp}{c + vk} \right\rceil$$

$$= p + k \left\lceil \frac{\frac{wc}{av}q - wp}{a + wk} \right\rceil$$

$$= p + k \left\lceil \frac{q - wp}{a + wk} \right\rceil$$

$$= l(ap + qk)$$

$$= l(f(i)).$$

Also, $L(f(\lceil \frac{ci}{a} \rceil)) = L(cp + \lceil \frac{cq}{a} \rceil k) = p = L(ap + qk) = L(f(i)).$

Case B: Assume $\left\lceil \frac{cq}{a} \right\rceil = c$. Since $\frac{cq}{a} \notin \mathbb{Z}$, then $\left\lfloor \frac{cq}{a} \right\rfloor = c - 1$.

Assume $l(f(\lfloor \frac{ci}{a} \rfloor)) \neq l(f(i))$. It follows that $l(cp + \lfloor \frac{cq}{a} \rfloor) \neq l(ap + q)$. So,

$$p + k \left\lceil \frac{\left\lfloor \frac{cq}{a} \right\rfloor - pv}{c + vk} \right\rceil \neq p + k \left\lceil \frac{q - pw}{a + wk} \right\rceil.$$

Thus,

$$\left\lceil \frac{\left\lfloor \frac{cq}{a} \right\rfloor - pv}{c + vk} \right\rceil \neq \left\lceil \frac{q - pw}{a + wk} \right\rceil.$$

Then,

$$\left\lceil \frac{\left\lfloor \frac{cq}{a} \right\rfloor - pv}{c + vk} \right\rceil \neq \left\lceil \frac{\frac{cq}{a} - \frac{pcw}{a}}{\frac{c}{a}(a + wk)} \right\rceil.$$

Therefore,

$$\left\lceil \frac{\left\lfloor \frac{cq}{a} \right\rfloor - pv}{c + vk} \right\rceil \neq \left\lceil \frac{\frac{cq}{a} - pv}{c + vk} \right\rceil.$$

Thus, there must be some integer contained in the interval $\left[\frac{\lfloor \frac{cq}{a} \rfloor - pv}{c + vk}, \frac{\frac{cq}{a} - pv}{c + vk}\right]$. However,

$$\left| \left(\frac{\frac{cq}{a} - pv}{c + vk} \right) - \left(\frac{\left\lfloor \frac{cq}{a} \right\rfloor - pv}{c + vk} \right) \right| = \left| \frac{\frac{cq}{a} - \left\lfloor \frac{cq}{a} \right\rfloor}{c + vk} \right| < \frac{1}{c + vk}.$$

So, there is at most one element in the interval in $\frac{1}{c+vk}\mathbb{Z}$. In fact, the lower bound is the only possibility for an integer in the interval and therefore

$$\frac{\left\lfloor \frac{cq}{a} \right\rfloor - pv}{c + vk} \in \mathbb{Z}.$$

Since $\lfloor \frac{cq}{a} \rfloor = c - 1$, then (c + vk) | (c - 1 - pv).

Let $d = \gcd(c, v)$. Then, d|c and d|v, so d|(c + vk). Thus, d|(c - 1 - pv), so d|1, but that is a contradiction since $d \neq 1$.

Then,

$$l\left(f\left(\left|\frac{ci}{a}\right|\right)\right) = l(f(i)).$$

Also,

$$L\left(f\left(\left|\frac{ci}{a}\right|\right)\right) = L(cp + qk) = p = L(ap + qk) = L(f(i)).$$

Thus, $\mathcal{L}(S) \subseteq \mathcal{L}(S')$ and since we did not assume any conditions on S or S', then we also have that $\mathcal{L}(S') \subseteq \mathcal{L}(S)$. Therefore, $\mathcal{L}(S) = \mathcal{L}(S')$.

Corollary 4.6. Let $S = \langle a, a+k, \ldots, a+wk \rangle$ where $w \leq a-1$ and $S' = \langle c, c+t, \ldots, c+vt \rangle$ where $v \leq c-1$ and $S \ncong S'$. If $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n) \ \forall \ n \in \mathbb{N}$, then $\mathcal{L}(S) = \mathcal{L}(S')$ if and only if $\gcd(a, w) \geq 2$ and $\gcd(c, v) \geq 2$.

Proof. From Theorem 4.1, $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n)$ implies k = t and $\frac{c}{a} = \frac{v}{w}$, so from Theorem 4.5, we also need $\gcd(a, w) \geq 2$ and $\gcd(c, v) \geq 2$ in order for $\mathcal{L}(S) = \mathcal{L}(S')$. Given $\gcd(a, w) = 1$ or $\gcd(c, v) = 1$, from Theorem 4.5, $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n) \ \forall \ n \in \mathbb{N}$ implies $\mathcal{L}(S) \neq \mathcal{L}(S')$.

Corollary 4.7. Let $S = \langle a, a+k, ..., a+wk \rangle$ where $w \leq a-1$ and $S' = \langle c, c+t, ..., c+vt \rangle$ where $v \leq c-1$ and $S \ncong S'$. If $\mathcal{L}(S) = \mathcal{L}(S')$, then $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n) \ \forall \ n \in \mathbb{N}$.

Proof. From Theorem 4.5, $\mathcal{L}(S) = \mathcal{L}(S')$ implies that k = t and $\frac{c}{a} = \frac{v}{w}$, so from Theorem 4.1, $\mathcal{V}_S(n) = \mathcal{V}_{S'}(n) \ \forall \ n \in \mathbb{N}$.

References

- [1] C. Bowles, S. T. Chapman, N. Kaplan and D. Reiser, On Delta Sets of Numerical Monoids, to appear in J. Algebra Appl.
- [2] A. Geroldinger, On the arithmetic of certain not integrally closed noetherian integral domains, *Comm. Algebra* **19**(1991), 685-698.
- [3] S. T. Chapman, M. Holden and T. Moore, Full elasticity in atomic monoids and integral domains, to appear in Rocky Mountain J. Math.