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Abstract

Consider the problem of determining maximal vectors g such that
the Diophantine system Mx = g has no solution. We provide a variety
of results to this end: conditions for the existence of g, conditions for
the uniqueness of g, bounds on g, determining g explicitly in several
important special cases, constructions for g, and a reduction for M .
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1 Introduction

We will begin where last year’s combinatorics group stopped. We will be
using the notation used in the paper that was recently submitted for pub-
lication. In fact, almost all of this introduction was copied straight from it
with the proofs removed.

Let m, x be column vectors from N0. Georg Frobenius focused atten-
tion on determining maximal g such that the linear Diophantine equation
mT x = g has no solutions. This problem has attracted substantial atten-
tion in the last 100+ years; for a survey, see a really cool book that Vadim
checked out from the library, which contains almost 500 references as well as
applications to algebraic geometry, coding theory, linear algebra, algorithm
analysis, discrete distributed systems, and random vector generation. A nat-
ural generalization of this problem (and essential to some applications) is
to determine maximal vector(s) g such that the system of linear Diophan-
tine equations Mx = g has no solutions. This has attracted relatively little
attention, perhaps because maximality must be subject to a partial vector or-
dering. We attempt to redress this injustice by providing a variety of results
in this multi-dimensional context.

We fix Rn. For any real matrix X and any S ⊆ R, we write XS for
{Xs : s ∈ Sk}, where k denotes the number of columns of X. Abusing this
notation slightly, we write X1 for the vector X1k. We fix M ⊆ Zn×(n+m),
and write M = [A|B], where A is n × n. We call AR≥0 the cone, and MN0

the monoid. |A| denotes henceforth the absolute value of det A. If |A| 6= 0,
then we follow others and call the cone volume. If, in addition, each column
of B lies in the cone, then we call M simplicial. Unless otherwise noted, we
assume henceforth that M is simplicial. Note that if n ≤ 2, then we may
always rearrange columns to make M simplicial.

Let u, v ∈ Rn. If u − v ∈ AZ, then we write u ≡ v and say that u, v are
equivalent mod A. If u − v ∈ AR≥0 , then we write u ≥ v. If u − v ∈ AR>0 ,
then we write u � v. Note that u � v implies u ≥ v, and u � v ≥ w implies
u � w; however, u 
 v does not necessarily imply that u � v. For v ∈ Rn, we
write [�v] = {u ∈ Zn : u � v}. We say that v is complete if [�v] ⊆MN0 . We
set G, more precisely G(M), to be the set of all ≥-minimal complete vectors.
We call elements of G Frobenius vectors ; they are the vector analogue of g
that we will investigate.

Set Q = (1/|A|)Zn ⊆ Q. Although G is defined in Rn, in fact it is a
subset of Qn, by the following result. Furthermore, the columns of B are
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in AQ≥0 ; hence MQ≥0 = AQ≥0 and without loss we henceforth work over Q
rather than over R.

Proposition 1.1. Let v ∈ Rn. There exists v? ∈ Qn with [� v] = [�Av?]
and v ≥ Av?.

In general, MN0 does not form an ≤-lattice, because A−1B does not have
integer entries and thus lub is not well-defined. However, because

(
Q≥0

)n
is a

chain product, our partial order ≤ is a lattice over Q. For x = Ax′, y = Ay′,
we see that lub(x, y) = Az′, where z′ is defined via (z′)i = max((x′)i, (y

′)i).
For u ∈ Qn, we set V (u) =

(
u + AQ∩(0,1]

)
∩Zn. It was known to Dedekind

that |V (u)| = |A|, and that V (u) is a complete set of coset representatives
mod A (as restricted to Zn).

The following equivalent conditions on M generalize the one-dimensional
notion of relatively prime generators. We assume henceforth, unless other-
wise noted, that M possesses these properties. We call such M dense.

Theorem 1.2. The following are equivalent:

1. G is nonempty.

2. MZ = Zn.

3. For all unit vectors ei (1 ≤ i ≤ n), ei ∈MZ.

4. There is some v ∈MN0 with v + ei ∈MN0 for all unit vectors ei.

5. The GCD of all the n× n minors of M has absolute value 1.

6. The elementary divisors of M are all 1.

Classically, there is a second type of Frobenius number f , maximal so
that mT x = f has no solutions with x from N (rather than N0). This does
not add much; it was shown that f = g + mT 1. A similar situation holds in
the vector context.

Proposition 1.3. Call v f-complete if [�v] ⊆MN. Set F to be all ≥-minimal
f-complete vectors. Then F = G + M1.

For vector u and i ∈ [1, n], let Ci(u) = {v : v ∈ Zn \ MN0 , v = u +
Aw, (w)i = 0, (w)j ∈ (0, 1] for j 6= i} and let C(u) =

⋃
i∈[1,n] C

i(u), a disjoint

union. Call elements of C(u) critical. Note that if v ∈ Ci(u), then v + Aei ∈
V (u). Critical elements characterize G, as shown by the following.
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Theorem 1.4. Let x be complete. x ∈ G if and only if Ci(x) 6= ∅, ∀i ∈ [1, n].

Theorem 1.5. Fix A and vector c ≥ 0. Set C = c(1n)T , a square matrix,
and fix k ∈ N. Set M = [A|A + C|A + 2C| · · · |A + kC]. Suppose that M is
dense. Then G(M) = {Ax + |A|c− A1 − c : x ∈ Nn

0 , ‖x‖1 = d(|A| − 1)/ke}.

Let MIN = {x : x ∈ MN0 ; for all y ∈ MN0 , if y ≡ x then y ≥ x}. Pro-
vided M is dense, MIN will have at least one representative of each of the
|A| equivalence classes mod A. MIN is a generalization of a one-dimensional
method; the following result shows that it characterizes G.

Theorem 1.6. Let g ∈ G. Then g = lub(N) − A1 for some complete set
of coset representatives N ⊆ MIN. Further, if n < |A| then there is some
N ′ ⊆ N with |N ′| = n and lub(N) = lub(N ′).

Theorem 1.7. MIN ⊆ {Bx : x ∈ Nm
0 , ||x||1 ≤ |A| − 1}.

Corollary 1.8. If m = 1 then G = {|A|B − A1 −B}.

2 Adjacency

2.1 General

Definition 2.1. Let gi ∈ G be distinct vectors. A vector v ∈MR≥0
is inside

the gi iff glb(gi) ≤ v ≤ lub(gi).

Definition 2.2. Let gi ∈ G be distinct vectors. A vector v ∈MR≥0
is strictly

inside the gi iff glb(gi) ≺ v ≺ lub(gi).

Definition 2.3. The distinct vectors g1 . . . , gk ∈ G are adjacent iff there is
no g ∈ G strictly inside the set {gi}. We write {gi} adjacent as ∧̊[gi]. When
we refer to only two vectors we may also write g1∧̊g2 for simplicity.

Definition 2.4. Let Bi = {B ⊆ G | |B| = i and ∧̊[B]}. If some B ∈ Bi is
maximal under inclusion we say it is a block. Let B be the set of blocks.

Definition 2.5. Let O(M) = {lub(B) | B ∈ B}. This is the O-set.

The following Theorem characterizes, based on n, how large blocks in B
can be.
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Theorem 2.6. If Bi 6= ∅, then i ≤ n.

Proof. Suppose that i = n + 1. For B ∈ Bi let o = lub(B) such that
B = {g1, . . . , gn+1} ⊆ G. Since each gi ∈ B contributes one or more Aek

components to o, by being maximal in that direction, we have by the pigeon-
hole principle that one of the gi is strictly inside of B. Thus we have reached
a contradiction and Bn+1 = ∅. This argument holds when i > n + 1 as well.

Theorem 2.7. For all Bi ∈ Bi there exists B ∈ B such that Bi ⊆ B.

Proof. If Bi ∈ B, then we are done. Suppose that Bi /∈ B. Clearly Bi is not
maximal under inclusion; there must be some B′ ∈ Bi+1 such that Bi ⊆ B′.
If again we have B′ /∈ B, the process continues. By Theorem 2.6 this process
is finite and so ∃B′′ ∈ B such that Bi ⊆ B′′.

The following Corollary shows that for all g ∈ G there exists some B ∈ B
such that g ∈ B.

Corollary 2.8.
⋃

B∈B B = G.

Proof. Clearly
⋃

B∈B B ⊆ G. By definition B1 = G since ∀g ∈ G it is true
that ∧̊[g]. By Theorem 2.7 we then have G ⊆

⋃
B∈B B so that

⋃
B∈B B = G.

Theorem 2.9. Let B ⊆ G. Then lub(B) /∈MN0 if and only if ∧̊[B].

Proof. Suppose ∧̊[B]. Let L = A−1lub(B) and suppose that lub(B) ∈ MN0 .
Since AL ∈ MN0 , we have that L ∈ A−1MN0 . Now let L′ = L − ε(In)1

where In is the identity matrix. Thus [≥ L] ⊆ A−1MN0 implies that L′ is
complete in A−1MN0 and therefore AL′ is complete in MN0 . Since L′ < L
we have AL′ < lub(B). Thus ∃g ∈ G(M) such that g is strictly inside B, a
contradiction.

Now suppose that lub(B) /∈ MN0 . Then for all v ∈ [≺ lub(B)] we have
v /∈ G(M) and therefore there are no frobenius vectors strictly inside B so
that ∧̊[B].
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Corollary 2.10. O(M) ∩MN0 = ∅.

Proof. By construction, for all o ∈ O(M) we have o = lub(B) where B ∈ B.
Thus ∧̊[B] and the Corollary follows by Theorem 2.9.

2.2 Adjacency in two dimensions: the Ladder

The concept of adjacency can be used when looking at various properties of
the sets of Frobenius vectors. For example, in two dimensions, it could be
used to prove that since Frobenius vectors are incomparable to each other,
they lie in a chain or a “ladder”, where the least upper bound of each con-
secutive pair of vectors is the cut-off for each “step”.

The following two propositions have already been proved earlier in the
paper, and they are very useful in the two-dimensional case.

Proposition 2.11. Let g1, g2 ∈ G(M). Then g1∧̊g2 iff lub(g1, g2) /∈ (M)N0.

Proposition 2.12. O(M) ∩ (M)N0 = ∅.

Below follows a description of various properties of adjacent Frobenius
vectors in two dimensions and a proof that they all lie in a form of a “ladder”
in two dimensions.

Definition 2.13. Let M = [a1, a2|B], for some vector g, and let the angle
of g be the angle that g makes with a2. We write the angle of a as Θa.

Proposition 2.14. Let g1, g2 ∈ G(M). Then Θg1 = Θg2 iff g1 = g2.

Proof. If g1 = g2 then both g1 and g2 have the same coordinates, and there-
fore the angles that they make with the origin would be equal.

Let Θg1 = Θg2 = α. Let Θa1 > Θa2 . Then, by the Definition 2.13,
Θa1 ≥ Θg1 , ..., Θgk

≥ Θa2 , where k = |G(M)|. Both g1 and g2 lie on the same
line with the origin. Therefore let g2 = βg1, β > 1. Then let g1 = Σαiai,
αi ≥ 0 since g1 ≥ 0. Then g2 = Σβiαiai. g2 − g1 = Σ(β − 1)αiai so g2 > g1

which is a contradiction, because unless the g-vectors are equal to each other,
they can not be comparable.

Proposition 2.15. Let g1, g2 ∈ G(M), g1 6= g2. Let Θg1 > Θg2, a =
lub(g1, g2) and b = glb(g1, g2). Then Θg1 > Θa > Θg2 and Θg1 > Θb > Θg2.
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Proof. Suppose A−1g1 = (x1, y1), A−1g2 = (x2, y2). Then Θg1 > Θg2 ⇔
y1/x1 > y2/x2. Since g1||g2, A−1g1||A−1g2. Then y1 > y2 and x2 > x1.
Since both a and b lie on the intersection of the cones of g1 and g2, both
A−1a and A−1b lie on the intersection of the cones of A−1g1 and A−1g2.
A−1A = [[1, 0], [0, 1]] therefore the cones are parallel to the first quadrant,
and A−1a = (x2, y1), A

−1b = (x1, y2).
Since y1 > y2 ⇒ y1/x2 > y2/x2 ⇒ Θa > Θg2 .
x2 > x1 ⇒ y1/x1 > y1/x2 ⇒ Θg1 > Θa ⇒ Θg1 > Θa > Θg2 .
y1 > y2 ⇒ y1/x1 > y2/x1 ⇒ Θg1 > Θb.
x2 > x1 ⇒ y2/x1 > y2/x2 ⇒ Θb > Θg2 ⇒ Θg1 > Θb > Θg2 .

Proposition 2.16. For any 3 vectors x, y, z, x 6= y 6= z, if Θx ≥ Θy ≥ Θz

then at least one of the following has to be true:
1. y ≤ x
2. y ≤ z
3. y ≥ x
4. y ≥ z
5. glb(x, z) ≺ y ≺ lub(x, z)

Proof. Suppose that y||x and y||z, that is the first four conditions of the
Proposition 2.16 do not apply. Then let A−1x = [x1, y1], A−1z = [x2, y2], and
A−1y = [x3, y3]. Since y||x then either:
(1) x1 > x3 and y1 < y3 or
(2) x1 < x3 and y1 > y3.
Since y||z then either:
(3) x2 > x3 and y2 < y3 or
(4) x2 < x3 and y2 > y3.
Note that since x1 < x2 and y1 < y2 only 3 out of the 4 combinations
are possible: (1) and (3), (2) and (3), (2) and (4). However the (1),(3)
combination results in y3/x3 > y1/x1 ⇒ Θy > Θx which contradicts the
assumption. The (2),(4) combination results in y3/x3 < y2/x2 ⇒ Θy < Θz

which also contradicts the initial assumption. Therefore, the only possible
relationship is when x1 < x3 < x2 and y1 > y3 > y2. Therefore, since
lub(A−1x, A−1y) = [x2, y1] and glb(A−1x, A−1y) = [x1, y2], glb(x, z) ≺ y ≺
lub(x, z).

Corollary 2.17. Let g1, g2 ∈ G(M), g1 6= g2. Then g1∧̊g2 iff there is no
other g ∈ G(M), g 6= g1, g 6= g2 such that Θg1 > Θg > Θg2.
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Proof. Let g1∧̊g2. Since g1, g2, g ∈ G(M), g1||g2||g, and therefore by Propo-
sition 2.16, glb(g1, g2) ≺ g ≺ lub(g1, g2)⇒ g is strictly inside g1 and g2 which
contradicts the definition of adjacent vectors.

Let g1, g2 ∈ G(M) and let there be no g ∈ G(M) such that Θg1 >
Θg > Θg2 . Then since by Proposition 2.15, Θg1 > Θlub(g1,g2) > Θg2 and
Θg1 > Θglb(g1,g2) > Θg2 , there is no Frobenius vector that is strictly inside g1

and g2, therefore g1∧̊g2.

Theorem 2.18 (The Ladder). Let k = |G(M)|. Then all vectors gi ∈ G(M)
can be relabeled in such a way that Θg1 > Θg2 > · · · > Θgk

and for each gi

and gi+1 under the new labeling system, gi∧̊gi+1.

Proof. By the Proposition 2.14 gi = gk iff Θgi
= Θgk

⇒ if gi 6= gk then
Θgi
6= Θgk. If Θgi

6= Θgk then either Θgi
> Θgk

or Θgi
< Θgk

. Therefore, since
there are k different Frobenius vectors, there are k unique angles, which can
be listed by decreasing order of magnitude. Hence, g1, ..., gk can be relabeled
in such a way that Θg1 > Θg2 > · · · > Θgk

. Then, under this labeling system,
each pair gi and gi+1 has to be adjacent by the Proposition 2.17, since there
are no other vectors g ∈ G(M) for which Θgi

> Θg > Θgi+1
.

Proposition 2.19. Let k = |G(M)|. Then |O(M)| = k − 1.

Proof. By the Theorem 2.18 all of the vectors gi ∈ G(M) can be relabeled
in such a way that Θg1 > Θg2 > · · · > Θgk

⇒ there are k− 1 pairs of vectors
gi, gi+1 that are adjacent and correspond to a unique element of O. Any
other pair of vectors in G(M) would have at least one other vector with an
angle that lies between their angles ⇒ by the Proposition 2.17 they would
not be adjacent ⇒ by the Proposition 2.12 their least upper bound would
not be in O(M). Therefore, |O(M)| = k − 1.

Proposition 2.20 (The Big Chain). Let n = |O(M)|. Then all of the points
in Oi ∈ O(M) can be relabeled in such a way that ΘO1 > ΘO2 > · · · > ΘOn,
and each pair of points Oi and Oi+1 lies on the cone of a unique Frobenius
vector.

Proof. By the Proposition 2.19, |G(M)| = n + 1, and by the Theorem 2.18
all of the elements in G(M) can be relabeled in such a way that Θg1 >
Θg2 > · · · > Θgn+1 . Therefore, there are n pairs of adjacent vectors of the
form gi, gi+1, each corresponding to a specific element Oi such that, by the
Proposition 2.15, Θgi

> ΘOi
> Θgi+1

. Therefore, all elements of O(M) can
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be relabeled in such a way that ΘO1 > ΘO2 > · · · > ΘOn . In fact, the chain
could be extended to Θg1 > ΘO1 > Θg2 > ΘO2 > · · · > ΘOi

> Θgi+1
.

Proposition 2.21. If O1, O2 ∈ O(M), O1 6= O2 then O1||O2

Proof. Suppose that O1 is comparable to O2. WLOG let O1 > O2. But by
the definition of the least upper bound, for any ~v,~v > O2, ~v ∈M ⇒ O1 = O2

which is a contradiction to the hypothesis.

Applications of the Ladder and the Big Chain in the 4-2 case.

The fact that both the elements of G(M) and O(M) form a chain in two
dimensions can be used to prove various properties of the g-set in two di-
mensions. For example, in the 4 − 2 case, suppose that M1 = [a1, a2|b1, b2],
and M2 = [a1, a2|b1, b2 + b1], and [a1, a2|b1] is dense. Then the chain prop-
erty of the Frobenius vectors in two dimensions could be used to prove that
|G(M2)| ≤ |G(M1)|.

Lemma 2.22. Let Oi ∈ O(M2) and Oi ∈ (M1)N0. Then Oi = d − b1 where
d ∈ [a1, a2|b1 + b2]N0.

Proof. Let c? = lub(g1, g2), and let g1, g2 ∈ G(M2) such that g1∧̊g2. By the
Proposition 2.11, c? /∈ (M2)N0 . c? ∈ (M1)N0 . Let c? = c1a1+c2a2+c3b1+c4b2,
where c1, c2, c3, c4 ∈ N0. There could be multiple ways to express c? in
terms of the vectors a1, a2, b1, b2 and let’s consider the one with the minimal
coefficient in front of b2. Suppose c3 > c4. Then c? = c1a1 + c2a2 + (c3 −
c4)b1 + c4(b2 + b1) ⇒ c? ∈ (M2)N0 which contradicts the assumption that
c? /∈ (M2)N0 . Therefore, c3 < c4. Let c4 − c3 > 1. Let d = c? + b1.
d = c1a1 + c2a2 +(c3 +1)b1 + c4b2. Since the coefficients in front of a1, a2 stay
the same, c4 is still the least possible coefficient in front of b2. c3 + 1 < c4,
therefore d can not be expressed as a multiple of a1, a2, b1, (b2 + b1) and
therefore d /∈ (M2)N0 . But d > c? which contradicts the hypothesis that
c? = lub(g1, g2) because d � g for some g ∈ G(M2) ⇒ c3 = c4 − 1 and
c? = c1a1 + c2a2 + (c4 − 1)b1 + c4b2 = c1a1 + c2a2 + c4(b1 + b2)− b1.

Lemma 2.23. For each Oi ∈ O(M2) there exists Oj ∈ O(M1) such that
Oj = Oi − cb1; c ∈ N0.

Proof. By the Lemma 2.22, Oi = c1a1 + c2a2 + c3(b1 + b2) − b1. Let d? =
Oi − c3b1 = c1a1 + c2a2 + c3b2 − b1. Oi /∈ (M2)N0 by the Proposition 2.12,
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therefore −1 is the maximum possible coefficient in front of b1 for Oi ⇒ −1
is the maximum coefficient in front of b1 for d?, hence d? /∈ (M1)N0 , since one
of the coefficients is negative. Now follows a proof by induction that every
vector greater than d? is in (M1)N0 .
Let c? = A−1Oi and c′ = A−1d?. Let ā1 = A−1a1 = [1, 0], ā2 = A−1a2 =
[0, 1], b̄1 = A−1b1, b̄2 = A−1b2.
Base case: c′ + [ε, 0] and c′ + [0, ε] ∈ A−1(M1)N0 .
Since [a1, a2|b1] is dense, then A−1[a1, a2|b1] is also dense ⇒ [ε, 0] = n1ā1 +
n2ā2 +n3b̄1; n1, n2, n3 ∈ Z. c? + [ε, 0] ∈ A−1(M2)N0 . c? + [ε, 0] = c1ā1 + c2ā2 +
(c4−1)b̄1+c4b̄2+n1ā1+n2ā2+n3b̄1 ⇔ (c1+n1)ā1+(c2+n2)ā2+(c4−1+n3)b̄1+
c4b̄2 ∈ A−1(M2)N0 ⇒ c1+n1 ≥ 0; c2+n2 ≥ 0; and c4−1+n3 ≥ c4 ⇒ n3−1 ≥ 0.
Now c′ + [ε, 0] or c′ + [0, ε] would equal to (c1 + n1)ā1 + (c2 + n2)ā2 + (n3 −
1)b̄1 + c4b̄2, therefore, since all of the coefficients are non-negative, c′ + [0, ε]
and c′ + [ε, 0] ∈ A−1(M1)N0 .
Assume that c′+[a, b] ∈ A−1(M1)N0 , where [a, b] > 0. c?+[a, b] ∈ A−1(M2)N0 .
Let c′ + [a, b] = d1ā1 + d2ā2 + d3b̄1 + d4b̄2, where d1, d2, d3, d4 ∈ N0. c? +
[a, b] = d1ā1 + d2ā2 + (d3 + c4)b̄1 + d4b̄2. c? + [a, b] + [0, ε] ∈ A−1(M2)N0 .
Both c? + [a, b] and c? + [a, b] + [0, ε] ∈ A−1(M1)Z ⇒ [0, ε] ∈ A−1(M1)Z ⇒
[0, ε] = s1ā1 + s2ā2 + s3b̄1 + s4b̄2 ⇒ s1, s2, s3, s4 ∈ Z. By the base case
c′ + [0, ε] ∈ A−1(M1)N0 ⇒ (c1 + s1)ā1 + (c2 + s2)ā2 + (s3− 1)b̄1 + (s4 + c4)b̄2 ∈
A−1(M1)N0 ⇒ s3−1 ≥ 0⇒ s3 ≥ 1. c?+[a, b]+[0, ε] = (d1+s1)ā1+(d2+s2)ā2+
(d3 +c4 +s3)b̄1 +(d4 +c4)b̄2 ∈ A−1(M2)N0 ⇒ d1 +s1 > 0; d2 +s2 > 0; d4 +c4 >
0⇒ c′ + [a, b] + [0, ε] = (d1 + s1)a1 + (d2 + s2)a2 + (d3 + s3)b1 + (d4 + s4)b2.
Since d3 ≥ 0 and s3 ≥ 1 ⇒ d3 + s3 ≥ 1 ⇒ c′ + [a, b] + [0, ε] ∈ A−1(M1)N0 .
The argument for c′ + [a, b] + [ε, 0] is exactly the same. Since c′ /∈ A−1(M1)N0

and c′ is complete, c′ ∈ O(A−1M1)⇒ d? ∈ O(M1).

Lemma 2.24. Let Oj1 , Oj2 ∈ O(M1) such that Oj1 +c1b1 = Oi1 , Oi1 ∈ O(M2)
and Oj2 + c2b1 = Oi2 , Oi2 ∈ O(M2), where c1, c2 ∈ N0. Then if Oj1 = Oj2

then Oi1 = Oi2.

Proof. Let Oj1 = Oj2 = p. Then Oi1 = p + c1b1 Oi2 = p + c2b1. Suppose
Oi1 6= Oi2 then c1 6= c2. WLOG let c2 > c1. Then Oi2 = Oi1 + (c2 − c1)b1 ⇒
Oi2 > Oi1 but that contradicts Proposition 2.21, because Oi1 can not be
comparable to Oi2 , therefore Oi1 = Oi2 .

Proposition 2.25. |G(M2)| ≤ |G(M1)|.
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Proof. Let |O(M2)| = k. Since, by Lemma 2.23 there is a function f :
O(M2)→ O(M1) And by Lemma 2.24, f is injective ⇒ |O(M1)| ≥ |O(M2)|.
Since by the Proposition 2.19, |G(M2)| = |O(M2)| + 1 and |G(M1)| =
|O(M1)|+ 1, |G(M2)| ≤ |G(M1)|.

Theorem 2.26. Let M1 = [a1, a2|b1, b2] and M2 = [a1, a2|b1, b2 +c ·b1], where
c ∈ N0, and [a1, a2|b1] is dense. Then |G(M2)| ≤ |G(M1)|.

Proof. Let N0 = M1, N1 = [a1, a2|b1, b2+b1], ..., Ni = [a1, a2|b1, b2+b1 ·i], Nc =
[a1, a2|b1, b2 + b1 · c] = M2. By the Proposition 2.25, G(N0) ≥ G(N1) ≥ · · · ≥
G(Nc)⇒ G(M1) ≥ G(M2).

The last theorem shows that the number of Frobenius vectors can only
decrease as one of the b-vectors is added to another in the 4− 2 case by the
means of establishing a relationship between the elements of the O-sets for
the two sets of generating vectors. The concept of the chain could possibly be
used for further research about the properties of the g-set in two dimensions,
and the concept of adjacency can be used for the multi-dimensional proofs.

3 Order of bi and the MIN set

Much of the time, information regarding frobenius vectors comes directly
from a knowledge of the MIN set. The relationship between frobenius vec-
tors and the least upper bounds of subsets of MIN is fundamentally im-
portant in this process. From some of the basic definitions of MIN we can
prove theorems concerning the calculation of these vectors, specifically in
cases where a unique frobenius vector is present. The following arguments
are based on the relationship of the orders of the B vectors to the set MIN .

Consider the monoid MN0 where M = [A|B]. Let bi be the columns of B.
We say ordA (bi) is the smallest k ∈ N such that kbi ≡ 0 mod A. We define
the following function:

Ω(M) =
m∏

i=1

ordA (bi) .

Let SM = {
∑m

i=1 cibi | 0 ≤ ci < ordA (bi)}. We see that |SM | = Ω(M). A
known theorem states that the set MIN is totally dependent on B. In fact,
we show that MIN is a subset of a specific finite subset of BN0 , namely SM .

Proposition 3.1. MIN ⊆ SM .
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Proof. By Theorem 1.7 we have that MIN ⊆ BN0 so now suppose that
v ∈ MIN but v /∈ SM . Since v ∈ MIN ⊆ BN0 there exists some v′ ∈ Nm

0

such that v = Bv′. Now for some j ∈ [1, n], it must be that (v′)j ≥ ordA (bj).
Therefore v ≡> v − bjordA (bj) and thus v /∈ MIN , a contradiction. Hence
MIN ⊆ SM .

Theorem 3.2. If Ω(M) < |A|, then G(M) = ∅. Furthermore, if gcd(M) = 1
and Ω(M) = |A|, then G(M) = {

∑m
i=1(ordA (bi)− 1)bi − A1}.

Proof. Suppose that Ω(M) < |A|. Thus no subset of SM can be a complete
set of minimal residues, and therefore there must exist some equivalence class
ω that has no representatives in the monoid. Thus there can be no complete
points and hence G(M) = ∅.

Now, let Ω(M) = |A|. Due to gcd(M) = 1 we know that G(M) is
nonempty and therefore there must be at least one minimal complete set
of residues so that |MIN | ≥ |A|. By Proposition 3.1, MIN ⊆ SM , and
|SM | = Ω(M) we have that

|A| ≤ |MIN | ≤ |SM | = Ω(M) = |A|

So |MIN | = |A| and particularly, MIN = SM . Thus for every g ∈ G(M),
there is L ⊆ MIN with |L| = |A| such that g + A1 = lub(L), but then
L = MIN so that

g + A1 = lub(MIN)⇒ g =
m∑

i=1

(ordA (bi)− 1)bi − A1

Hence we have G(M) = {
∑m

i=1(ordA (bi)− 1)bi − A1}.

Several special cases involving a diagonal A matrix follow rather nicely
from the above theorem.

12



Corollary 3.3. Let A be a in Smith-Normal form with diagonal [k1, . . . , kn]
where ki ∈ N0. Let B be the n × n matrix (bij) with columns bj. Also, let

kp

kn−q+1
| bpq for n + 1 < p + q ≤ 2n, and suppose gcd(M) = 1; then there is a

unique frobenius vector

G(M) =

{(
n∑

j=1

(kj − 1)bn−j+1

)
− A1

}
.

Proof. Since knbi1 ≡ 0 mod kn for all i, and all other diagonal entries divide
kn, we have that ordA (b1) ≤ kn. For all j such that 1 ≤ j < n we will show
that ordA (bn−j+1) ≤ kj.

For some j such that 1 ≤ j < n we choose some column bn−j+1; consider
kjbn−j+1 mod kj. Clearly for the entries bi(n−j+1) where 1 ≤ i ≤ j we have
that kjbi(n−j+1) ≡ 0 mod ki since all such ki | kj. Now when j < i ≤ n we

have n + 1 < i + (n− j + 1) ≤ 2n so that the condition kp

kn−q+1
| bpq applies.

Thus there exists y ∈ N such that

kjbi(n−j+1) = kj

(
ki

kn−(n−j+1)+1

)
y

= kj

(
ki

kj

)
y

= kiy ≡ 0 mod ki

Therefore, for all i we have ordki

(
bi(n−j+1)

)
≤ ki ⇒ ordA (bn−j+1) ≤ kj for

all 1 ≤ j ≤ n. Hence for all j we have ordA (bn−j+1) ≤ kj. This shows that

Ω(M) ≤
n∏

j=1

kj = |A|

But since gcd(M) = 1, we have |A| ≤ |MIN | ≤ Ω(M) ≤ |A| so that Ω(M) =

|A| and Theorem 3.2 shows that G(M) =
{(∑n

j=1(kj − 1)bn−j+1

)
− A1

}
.

Corollary 3.4. Let A = dI where d ∈ N and I the identity matrix, B the
same dimension as A, and suppose gcd(M) = 1; then G(M) = {(d− 1)B1−
A1}.

13



Proof. Follows directly from Corollary 3.3.

Later sections will discuss the cases when there exists some s ∈ N such
that sb1 ≡ b2 mod A. Here we explore the case when no such s exists. In
the next section, we see how any monoid can be reduced into a case where
such an s exists, but under certain circumstances the following provides a
simplified solution for cases in which there is a unique frobenius vector.

Theorem 3.5. Without loss of generality, let 1 < ordA (bj) ≤ ordA (bi). If
there is an si ∈ N such that sibi ≡ bj mod A for i, j ∈ [1, m] with i 6= j then
for every pair bi, bj we have gcd(ordA (bi) , ordA (bj)) = ordA (bj).

Proof. Now suppose that there exists an si ∈ N such that sibi ≡ bj mod A.
Then we have

ordA (bj) = ordA (sibi) =
ordA (bi)

gcd(si, ordA (bi))

Thus ordA (bj) | ordA (bi) so that gcd(ordA (bi) , ordA (bj)) = ordA (bj).

Corollary 3.6. Without loss of generality, let 1 < ordA (bj) ≤ ordA (bi). If
all bi, bj where i, j ∈ [1, m] with i 6= j are pairwise relatively prime, then there
is no si ∈ N such that sibi ≡ bj mod A.

Proof. The proof follows immediately from Theorem 3.5.

We now demonstrate a partial solution for the case when there is no such
si ∈ N so that sibi ≡ bj mod A for i, j ∈ [1, m] with i 6= j, namely when the
orders of the bi are pairwise relatively prime.

Theorem 3.7. A monoid MN0 such that ordA (bi) are pairwise relatively
prime will have at most one frobenius vector, G(M) = {lub(SM)− A1}.

14



Proof. Consider ordA (bi). We know that for all i, ordA (bi) | |A|. Suppose
|A| =

∏r
i=1 pki

i where the pi are distinct primes. So all possible orders for
the bi must be some combination of elements from the multiset of prime
divisors of |A|. Furthermore, when ordA (bi) are pairwise relatively prime,
the orders of the bi can have no terms in common. Thus Ω(M) ≤ |A|. When
gcd(M) 6= 1 some equivalence class has no representatives in MN0 and so
G(M) = ∅. If gcd(M) = 1, by Theorem 3.2 we have G(M) = ∅ when
Ω(M) < |A| and G(M) = {lub(SM)− A1} when Ω(M) = |A|.

4 Useful Theorems

The following Theorems are general, basic results which appear in the proofs
of later concepts.

Let N ⊂MIN be a complete set of residues. We’ve seen in Theorem 1.6
that for any g ∈ G, we can write g + A1 = lub(N) for some complete set of
residues. We will now prove two other properties of lub(N).

Theorem 4.1. lub(N)− A1 is complete.

Proof. Let v = lub(N) − A1, and let u ∈ [� v]. Let w be the element in N
congruent to u. We know that u � v, v + A1 ≥ w and u ≡ w. Thus for
each i = 1, . . . , n we have (u)i > (v)i, (v)i + 1 ≥ (w)i, and (u)i − (w)i ∈ Z.
Now (u)i − (w)i ≥ (u)i − ((v)i + 1) > −1, and (u)i − ((v)i + 1) ≥ 0. Thus
w ≤ v + A1 ≤ u and u ∈MN0 . Finally, [�v] ⊂MN0 and v is complete.

Theorem 4.2. Suppose ω = lub(N), where ω ∈ N . Then ω − A1 ∈ G.

Proof. By Theorem 4.1, ω −A1 is complete. Thus there exists a g ∈ G such
that g ≤ ω − A1. By Theorem 1.6, there exists a complete set of residues
N

′ ⊂ MIN such that g = lub(N
′
)− A1. Choose ω

′ ∈ N
′
such that ω ≡ ω

′
.

But ω
′ ≤ lub(N

′
) = g + A1 ≤ ω so ω = ω

′
. Now lub(N

′
) ≥ ω

′
= ω. Thus

ω − A1 = lub(N
′
)− A1 ∈ G.
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5 Reduction formula

When solving the Frobenius number problem with three generators, Selmer
found it useful to consider only the case where the three generators are rel-
atively prime. We would like to take a similar approach to the Frobenius
vector problem where m = n = 2.

In 1960, Johnson proved that f(a1, da2, . . . , dak) = d·f(a1, . . . , ak), where
a1 need not be the smallest generator. Using this reduction formula, the
Frobenius problem can be reduced to the case where any k − 1 of the k
generators have a gcd of 1. When k = 3, this reduces the problem down to
the case were the three generators are pairwise relatively prime. This is the
reduction formula Selmer used to solve the three generator case.

The next two theorems provide a perfect generalization of Johnson’s for-
mula into multiple dimensions. Loosely speaking, the first theorem considers
the case where all vectors but a column of A are multiples of matrix D, and
the second theorem considers the case where all vectors but a column of B
are multiples of D. For notation simplicity we assume without loss of gen-
erality that the column receiving special treatment is either the first column
of M in the first theorem, or the last column of M in the second theorem.

Theorem 5.1. Let M = [a1|M ′] and N =
[

Da1

|D|

∣∣∣DM ′
]

be integer matrices

where D ∈ Mn[Z] with |D| 6= 0 and gcd(N) = 1 with M or N simplicial.
Then D · F (M) = F (N).

To prove this theorem we will first prove that the transformations between
S(M)N0 and S(N)N0 preserve inequality, congruence, least upper bounds, the
MIN set, the G-set, and finally the F-set. Let A and A

′
be the left-most

n by n submatrices of M and N respectively. Because in general M and N
have different left n by n sub-matrices, the symbols ≥, ≡, lub, and MIN are
all ambiguous. For the duration of this proof we will always use a subscript
to specify the context of each.

Lemma 5.2. For any vectors v and w, we have v ≥M w ⇐⇒ Dv ≥N Dw.

Proof. Notice that for any vector u, we know that: u ≥M 0
⇐⇒ There exist non-negative reals α1, . . . , αn such that

∑
αiai = u

⇐⇒ There exist non-negative reals α1, . . . , αn such that
∑

αiDai = Du
⇐⇒ Du ≥N 0.
Now by letting u = v−w we can see that v−w ≥M 0 ⇐⇒ D(v−w) ≥N 0,
which proves the lemma.
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All columns of M are ≥M 0 ⇐⇒ all columns of N are ≥N 0. Because
one of M and N is simplicial, they must both be simplicial.

Lemma 5.3. For any vectors v and w, we have v ≡M w ⇐⇒ Dv ≡N Dw.

Proof. Notice that for any vector u, we know that: u ≡M 0
=⇒ There exist integers c1, . . . , cn such that

∑
ciai = u

=⇒ There exist integers c1, . . . , cn such that
∑

ciDai = Du
=⇒ Du ≡N 0.
Now by letting u = v−w we can see that v−w ≡M 0 =⇒ D(v−w) ≡N 0,
which proves that multiplication by D preserves congruence. Because S(N)N0

is dense, it contains all residue classes mod A
′
, as does the set D · BN0 .

Thus multiplication by D is onto. Finally, |A′| =
∣∣∣Da1

|D| , Da2, . . . , Dam

∣∣∣ =

1
|D|

∣∣∣Da1, Da2, . . . , Dam

∣∣∣ = 1
|D| |DA| = |A|, so the number of residues mod A

is equal to the number of residues mod A
′
, and thus multiplication by D is

a bijection of residue classes.

Lemma 5.4. For any vectors v1, . . . , vk, we have D · lubM(v1, . . . , vk) =
lubN(Dv1, . . . , Dvk).

Proof. For i = 1, . . . , k we have lubM(v1, . . . , vk) ≥M vi, so by Lemma 5.2 D ·
lubM(v1, . . . , vk) ≥N Dvi, thus D · lubM(v1, . . . , vk) ≥N lubN(Dv1, . . . , Dvk).
Similarly, for i = 1, . . . , k we have lubN(Dv1, . . . , Dvk) ≥N Dvi, so by Lemma
5.2 D−1 · lubN(Dv1, . . . , Dvk) ≥M vi, and D−1 · lubN(Dv1, . . . , Dvk) ≥M

lubM(v1, . . . , vk), and thus lubN(Dv1, . . . , Dvk) ≥N D · lubM(v1, . . . , vk).

Lemma 5.5. D ·MINM = MINN .

Proof. It has been proven that both sets are contained in D · BN0 . The sets
are the elements that are minimal in their congruence class. From Lemmas
5.2 and 5.3 the two sets both use the same congruence condition and the
same partial ordering, and thus the two sets are equal.

We now have proven enough structural similarities to prove Theorem 5.1.
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Proof. Let T be the set of points that can be written as the lubM of a complete
set of residues from MINM , and let T

′
be the set of points that can be written

as the lubN of a complete set of residues from MINN . It has been proven
that G(M)+A1 is contained in T . Also, all vectors in T are g-complete, thus
G(M) + A1 is equal to the set of minimal elements in T . By Lemma 5.2 this
implies that D ·G(M)+DA1 is equal to the set of minimal elements in D ·T .
Similarly, G(N) + A

′
1 is equal to the set of minimal elements in T

′
. From

Lemmas 5.4 and 5.5, we can see that D · T = T
′
. Thus D ·G(M) + DA1 =

G(N) + A
′
1. This result can be stated more succinctly in terms of the F -

set. It becomes D · (F (M)− A1 −B1) + DA1 = F (N)− A
′
1 −DB1 + A

′
1 or

D · F (M) = F (N).

Because the result of the second theorem mirrors the result of the first
theorem, we will reuse much of the notation. We certainly are not assuming
that Lemmas 5.2, 5.3, 5.4 and 5.5 remain valid in this new context.

Theorem 5.6. Let M = [M ′, bm] and N =
[
DM ′

∣∣∣Dbm

|D|

]
be integer matrices

where D ∈ Mn[Z] with |D| 6= 0 and gcd(N) = 1 with M or N simplicial.
Then D · F (M) = F (N).

First we will see that multiplication by D preserves both types of inequal-
ity.

Lemma 5.7. For any vectors v and w, we have v ≥M w ⇐⇒ Dv ≥N Dw,
and v �M w ⇐⇒ Dv �N Dw.

Proof. Notice that for any vector u, we know that: u ≥M 0
⇐⇒ There exist non-negative reals α1, . . . , αn such that

∑
αiai = u

⇐⇒ There exist non-negative reals α1, . . . , αn such that
∑

αiDai = Du
⇐⇒ Du ≥N 0.
Now by letting u = v−w we can see that v−w ≥M 0 ⇐⇒ D(v−w) ≥N 0,
which proves the first part of the lemma. The exact same argument with
positive real for the αi proves the second part.

All columns of M are ≥M 0 ⇐⇒ all columns of N are ≥N 0. Because
one of M and N is simplicial, they must both be simplicial. Now we will
prove Theorem 5.6.
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Proof. Throughout this proof we will consider congruence (mod D), where we
define congruence as a ≡D b iff a− b ∈ D ·Zn. We are considering the cosets
of Zn

D·Zn under addition, so we have an equivalence relation and a group under
addition. Suppose for contradiction that SN does not contain some residues
(mod D), say r. Now the sets SN and r+DZ are disjoint. Let v be any vector
in Rn. We know that both DA1 ≡D 0 and DA1 = Da1+· · ·+Dan �N 0. Thus
for sufficiently large k ∈ Z, we have v− r ≺N k ·DA1, or v ≺N k ·DA1 + r ∈
Zn/SN . Thus v is not complete and |G(N)| = 0. This contradicts the fact
that gcd(N) = 1. Thus SN contains all residues (mod D). All but the last
column of N is ≡D 0, thus Dbm

|D| is a generator for all |D| congruence classes.

We will define the vector function f(x) = (|D| − 1) Dbm

|D| + D · x, which

has inverse f−1(x) = D−1
(
x− (|D| − 1) Dbm

|D|

)
. By Lemma 5.7 this function

preserves inequality and � in both directions.
First we will see that if g is complete in MN, then f(g) is complete in

NN. Let v
′

be an integer vector such that v
′ �N f(g). For some k =

0, . . . , |D|−1 we have v
′ ≡D kDbm

|D| . We know that v
′−kDbm

|D| �N f(g)−kDbm

|D| ≥
f(g) − (|D| − 1) Dbm

|D| = D · g, and that v
′ − kDbm

|D| ≡D 0. Thus we can write

v
′ − kDbm

|D| = D · v where v is an integer vector with v �M g. Because g is
complete in MN, v ∈MN and thus D · v ∈ D ·MN ⊂ NN. Finally, by writing
v
′
= D · v + kDbm

|D| we see that v
′ ∈ NN and f(g) is complete.

Conversely, we will see that if f(g) is complete in NN, then g is complete in
MN. Let v be an integer vector such that v � g. Now f(v) � f(g). Because
f(g) is complete, there exist non-negative integers c1, . . . , cn+m such that

f(v) =
n∑

i=1

ciDai +
m−1∑
i=1

ci+nDbi + cn+m
Dbm

|D| . Because f(v) ≡D (|D| − 1) Dbm

|D| ,

we have cn+m ≡ (|D| − 1) (mod |D|). Letting c
′
n+m = cn+m−|D|+1

|D| ∈ N we

have D · v = f(v)− (|D| − 1) Dbm

|D| =
n∑

i=1

ciDai +
m−1∑
i=1

ci+nDbi + c
′
n+mDbm and

thus v ∈MN and g is complete.
We will show that f(G(M)) = G(N) by showing that the sets are con-

tained in one another.
Let g ∈ G(M). Because f(g) is complete in NN, there exists some g

′
such

that f(g
′
) ≤N f(g) and f(g

′
) ∈ G(N). Now g

′
is complete in MN, so there

exists some g
′′ ∈ G(M) such that g

′′ ≤M g
′ ≤M g. Now g

′′
, g ∈ G(M), so

g
′′

= g
′
= g, and f(g) = f(g

′
) ∈ G(N).

Now let f(g) ∈ G(N). Because g is complete in MN there exists some

19



g
′ ∈ G(M) such that g

′ ≤ g. We’ve shown that f(g
′
) ∈ G(N) so f(g

′
) ≤ f(g)

implies that f(g
′
) = f(g) and g = g

′ ∈ G(M). Thus f(G(M)) = G(N).
Writing out function f we have (|D| − 1) Dbm

|D| + D ·G(M) = G(N). Sub-

stituting in the formula for the F-set we get (|D| − 1) Dbm

|D| + D · (F (M) −
M

′
1 − bm) = F (N)−DM

′
1 − Dbm

|D| or D · F (M) = F (N).

Theorems 5.1 and 5.6 are equivalent to the following unification:

Theorem 5.8. Let M1, M2 be matrices with n rows and let c be a n × 1

vector. Let M =
[
M1

∣∣c∣∣M2

]
and N =

[
DM1

∣∣Dc
|D|

∣∣DM2

]
be n × (n + m)

integer matrices where D ∈ Mn[Z] with |D| 6= 0 and gcd(N) = 1 with M or
N simplicial. Then D · F (M) = F (N).

Proof. When c is one of the first n columns of M the result follows from
Theorem 5.1. When c is one of the last m columns of M the result follows
from 5.6.

Next, we will find what the transformation from N to M does to the gcd’s
of submatrices of M .

Theorem 5.9. Define M , N , c, and D as in Theorem 5.8. Let M
′
and N

′

be sub-matrices of M and N respectively which are taken from corresponding
columns of M and N . If column c is not contained in M

′
, we have gcd(M

′
) =

gcd(N
′
)

|D| . Otherwise, gcd(M
′
) ≤ gcd(N

′
).

Proof. First, we will show that the determinants of all n × n submatrices
which do not include c have been reduced by a factor of |D|, while the
determinants of all other n × n submatrices have not been changed. Con-
sider an n × n submatrix of M which does not contain c. It is D times its
corresponding matrix in M , and thus the first determinate is |D| times as

large. Next, consider a n × n submatrix of N containing Dc
|D| , say

[
Dc
|D|

∣∣DS
]
.

Its determinate is the same as that of its corresponding submatrix in M :∣∣∣ [Dc
|D|

∣∣DS
] ∣∣∣ = |D|

∣∣∣ [ c
|D|

∣∣S] ∣∣∣ =
∣∣∣ [c|S]

∣∣∣.
Now suppose that M

′
does not contain c. Here, DM

′
= N

′
, so by Lemma

23 of last summer’s paper, |D| gcd(M
′
) = gcd(DM

′
) = gcd(N

′
). Finally,

suppose M
′
contains c. Consider all pairs of corresponding n×n submatrices
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of M
′
and N

′
. Either the determinants are equal or the determinant of the

submatrix of N
′

is |D| times as large. In all cases, the first determinant
divides the second, thus gcd(M

′
) ≤ gcd(N

′
).

What remains is the show how Theorem 5.8 can be used to reduce the
Frobenius vector problem into the case where any n + m − 1 of the n + m
generating vectors have a gcd of 1.

Theorem 5.10. Let N ∈ Mn×(n+m)[Z] with gcd(M) = 1. Then there exists
D ∈Mn[Z] and M ∈Mn×(n+m)[Z] where every n× (n + m− 1) submatrix of
M has a gcd of 1 and F (N) = D · F (M).

Proof. Suppose that N =
[
a
′
1

∣∣N ′]
with gcd(N

′
) = d. Consider the matrix[

da
′
1,
∣∣N ′]

. Every minor of this matrix which is also a minor of N
′
is divisible

by d by assumption, as are all other minors of N because they contain the
column da

′
1. Because gcd(N

′
) = d, we must have gcd

(
da

′
1

∣∣N ′)
= d. By

Theorem 4 from last summer’s paper, there exist some D ∈ Mn(Z) with
|D| = d and some M =

[
a1

∣∣M ′] ∈ Mn,n+m(Z) with a gcd of d
|D| = 1, such

that
[
da

′
1

∣∣N ′]
= D ·

[
a1

∣∣M ′]
=
[
Da1

∣∣DM
′]

. The Frobenius vector problem

is now reduced in the following manner: F
(
a
′
1

∣∣N ′)
= F

(
Da1

|D|

∣∣DM
′
)

= D ·
F
(
a1

∣∣M ′)
, where the first equality is because the matrices have been chosen

to be equal and the second equality is by Theorem 5.8.

By Theorem 5.9, 1 = gcd(N
′
)

|D| = gcd(M
′
). Also by Theorem 5.9, we

have not increased any of the other gcd’s. We perform the same process
with every other set of n + m − 1 vectors. We will be left with F (N) =
D1D2 · · ·Dn+m ·F (M) where M is a matrix such that every n× (n + m− 1)
submatrix has a gcd of 1.

Notice that Theorem 5.8 performs a linear transformation on the vectors
followed by multiplying one vector by a constant. When used repeatedly this
process performs a linear transformation on the directions of the vectors, but
not on the magnitudes of the vectors.

6 Small General Results

Theorem 6.1. Let g0 be the unique frobenius vector of M0
N such that g0 +

A1 = lub{wi}. Let M = [M0b2]. If for any k, (b2)k > (wi)k, then g0 ∈ G(M)
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Proof: Let g0 be such that g0 + A1 = lub(wi). If b2 ∈ M0
N, be an earlier

theorem, M0
N = MN, so G(M0) = G(M). Let b2 6= M0

N. For any coordinate
k, without loss of generality, (b2)k > (wi)k.
Then for any m ∈ MIN , m = (c1b1 + c2b2)k > (wi)k for c2 > 0 because
(c1b1 + c2b2)k > (b2)k > (wi)k. So lub(wi) is still minimal ⇒ g0 ∈ G. �.

Lemma 6.2. Set M ′ = [M |b1]. If b1 ∈ MN then MN = M ′
N and G (M) =

G (M ′).

Proof: Let the ai’s denote the n + m columns of M . Suppose b1 ∈ MN.

Then we have that b1 =
n∑

j=1

cjaj for some non negative integers cj. Consider

the monoid generated by M ′ = Mb1. Every element bk in the monoid of M ′,

S ′, can be expressed as bk =
n∑

i=1

diaj + dkb1 where dk and the di’s are also

non negative integers. But then, for bk ∈ S ′,

bk =
n∑

i=1

diaj + dkb1

=
n∑

i=1

diai + dk

n∑
j=1

cjaj

=
n∑

j′=1

c′j′aj′ .

But then for any bk ∈ S ′, bk ∈ S. Every bk in S is in S ′ because the columns
of M are contained in the columns of M ′. So, S = S ′. Therefore, these two
identical monoids have identical Frobenius numbers, so G (M) = G (M ′). �.

Lemma 6.3. Suppose that M = [AB] and M ′ = [ABbi] with bi /∈ MIN ′.
Then MN = M ′

N.

Proof: Suppose bi /∈ MIN ′. Then there exists some v with v ≡ bi and
v < bi. v < bi and v ∈MIN ′ ⇒ v =

∑
cjbj with j 6= i. bi = v+d1a1+d2b2 =∑

cjbj + d1a1 + d2a2 ∈MN. Therefor bi ∈MN. By lemma 6.2, MN = M ′
N. �

Lemma 6.4. If x ∈ MIN , with ω ∈ MN, then for some u = (x− ω) ∩MN,
u ∈MIN .
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Proof: It is equivalent to show that if u 6∈ MIN , then x 6∈ MIN .
Suppose u 6∈ MIN , then there is some w ∈ MN with w ≡ u mod A and
w < u. But then w +ω ≡ u+ω mod A and w +ω < u+ω. So x = u+ω 6∈
MIN . �

Lemma 6.5. Let M = [Ab1b2] and M ′ = [Ab1(b1 + b2)]. If w ∈ MIN and
w ∈M ′

N, then w ∈MIN ′.

Proof: Suppose towards contradiction that w ∈ MIN and w ∈ M ′
N,

but w /∈ MIN ′. So there is some u ∈ M ′
N, with u ≡ w and u < w. u =

c1a1 + c2a2 + d1b1 + d2(b1 + b2) = c1a1 + c2a2 + (d1 + d2)b1 + d2b2 ∈ MN.
But then u ∈ MN with u ≡ w and u < w ⇒ w /∈ MIN . But this is a
contradiction of w ∈MIN . �

Lemma 6.6. Let M = [Ab1b2]. Let g0 be the unique frobenius vector gen-
erated by the submonoid M0 = [Ab1]. Suppose b2 /∈ M0

N, with (b2)x > (b1)x

and b2 ≤ lub({jbi|1 ≤ j ≤ |A|}). Then there exists some g1 ∈ G(M) with
(g1)y < (g0)y.

Proof: If b2 /∈ M0
N ⇒ b2 ≡ kb1 with 1 ≤ k ≤ |A|. If b2 /∈ MIN , then

b2 = c1a1 + c2a2 + d1b1 ⇒ b2 ∈ M0
N, which contradicts our hypothesis. So

b2 ∈MIN .

So b2 ≡ kb1 and b2 incomparable to kb1. Likewise, b2 ≡ kb1 ⇒ b2 + b1 ≡
(k + 1)b1. Likewise, b2 is incomparable to kb1 ⇒ b2 + b1 is incomparable to
(k + 1)b1. Therefor, b2 + b1 ∈MIN for k < a1,1a2,2.

Likewise, for all b2 + d1b1 such that 0 ≤ d1 ≤ (a1,1a2,2 − k), b2 + d1b1 ≡
(k + d1)b1 and b2 + d1b1 incomparable to (k + d1)b1, so b2 + d1b1 ∈MIN .

So there is subset of MIN , say W such that W = {b1, 2b1, . . . , (k −
1)b1, b2, b2+b1, b+2+2b1, . . . , b2+(|A|−k)b1}. By Theorem 4.1, lub(W )−A1 =
h is g-complete.

However (lub(W ))y < (lub({jb1}))y because (lub(W ))y = ((k − 1)b1)y or
(lub(W ))y = ((b2 +(|A|−k)b1)y. In either case, (lub(W ))y < (lub({jb1}))y =
(|A|b1)y.
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So there is some h = lub(W ) − A1, with h g complete by Theorem 4.1.
Either h is a g vector or there is some gk < h with gk < h. Either way there
exists some g1 ∈ G(M) with (g1)y < (g0)y. �

Lemma 6.7. Let M = [Ab1b2] with diagonal A. Let g0 be the unique frobenius
vector generated by the submonoid M0 = [Ab1]. Suppose b2 /∈ M0

N, with
(b2)y > (b1)y and b2 ≤ lub({jbi|1 ≤ j ≤ |A|}). Then there exists some
g1 ∈ G(M) with (g1)x < (g0)x.

Proof: This follows from the argument above, exchanging x and y. �

Lemma 6.8. Let M = [Ab1b2] with diagonal A. Let g0 be the unique frobenius
vector generated by the submonoid M0 = [Ab1]. If b2 /∈M0

N and |G(M)| = 1,
then g0 /∈ G(M).

Proof: By lemmas 6.6 and 6.7, there is some g1 ∈ G(M), and wlog,
with (g1)x < (g0)x. If (g1)y > (g0)y, then g0 and g1 are incomparable, so
|G(M)| 6= 1. So (g1)y ≤ (g0)y. But then g1 < g0, so g0 /∈ G(M). �

Theorem 6.9. Let g0 ∈ G(M) with M = [AB] and let M ′ = [ABb1]. If
b1 � g0 + A1, then g0 ∈ G(M ′).

Proof: If b1 > g0 + A1, then b1 ∈ MN. By lemma 6.2, MN = M ′
N, so

G(M) = G(M ′); hence, g0 ∈ G(M ′).

If b1 > g0 + A1 and b1 � g0 + A1, then b1 is incomparable to g0. Without
loss of generality, assume (g0)x < (b1)x and (g0)y > (b1)y. By theorem 6.1,
g0 ∈ G(M ′). �

7 A further reduction in the case where b2

lies along an a vector

Theorem 7.1. Suppose m = n = 2 and b1 = ka2 for some k ∈ R+. Then

there exist D ∈M2[Z] and a, b, d ∈ N0 such that F (M) = D ·
[

1 0 0 1
0 a b d

]
By Theorem 5.10, there exist D1 ∈ Mn[Z] and M

′ ∈ Mn×(n+m)[Z] where
every 2×3 submatrix of M has a gcd of 1 and F (M) = D1 ·F (M

′
). Let M

′
=[

a
′
1, a

′
2, b

′
1, b

′
2

]
. We still have b

′
1 = k

′
a
′
1 for some k

′ ∈ R because Theorem 5.10
performs a linear transformation on the directions of the generators.
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Because a
′
1 and b

′
1 are integer vectors, k

′
= b

a
for some relatively prime

a, b ∈ N. Using the Euclidean Algorithm, we can write x = 1
a
a
′
2 as a linear

combination of a
′
2 and b

′
1, thus 1

a
a
′
2 is an integer vector. Next, we see that

a
′
2 = a · x and b

′
1 = b · x. Let D2 =

[
a
′
1, x
]
. We have gcd

[
a
′
1, a

′
2, b

′
1

]
= 1

and
[
a
′
1, a

′
2, b

′
1

]
N0
⊂ D2,N0 , thus D2,N0 is dense, |D2| = 1, and D2 is in-

vertible over Z. Let D−1
2 b

′
2 =

[
c
d

]
. By Theorem 5.8, we have F (M

′
) =

F

[
D2 ·

[
1 0 0
0 a b

] ∣∣∣ b
′
2

|D2|

]
= D2 · F

[
1 0 0 c
0 a b d

]
.

However, gcd(a
′
2, b

′
1, b

′
2) = 1, and the previous application of Theorem 5.8

does not increase this gcd by Theorem 5.9. Thus gcd

[
0 0 c
a b d

]
= 1, we

must have c = 1. From our simplicial assumption, a, b, and d do not have
different signs, so we can choose them to be non-negative.

8 A Needlessly Long Proof Reducing the 1−
0− 0− 0 Case to the 1-0-0-0 and c = 1 Case

Let M c =

(
1 0 0 c
0 a b d

)
.

Definition 8.1. Let MIN c denote the set of minimal elements in each
residue class for M c

N.

Lemma 8.2. Let M c =

(
1 0 0 c
0 a b d

)
and M c+i =

(
1 0 0 c + i
0 a b d

)
with b2 =

(
c
d

)
and b′2 =

(
c+i
d

)
. If m = c1b1 + c2b2 and m′ = c1b1 + c2b2, then

m ∈MIN c ⇐⇒ m′ ∈MIN c+1.

Proof:
[⇐] It is equivalent to show that if m 6∈MIN c, then m′ 6∈MIN c+i.

m 6∈ MIN c ⇒ ∃ w ∈ MIN c, with w < m and w ≡ m mod A.
Let w = e1b1 + e2b2. Consider w′ = e1b1 + e2b2 + e2

(
i
0

)
= e1b1 + e2b

′
2.

w′ ≡ w ≡ m ≡ m′ because the addition of a1 does not change the residue
class and w ≡ m.
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e2 ≤ c2 because (w)x ≤ (m)x because w < m and b1 has no x component.
e2 ≤ c2 ⇒ e2

(
i
0

)
≤ c2

(
i
0

)
. Hence,

w′ = e1b1 + e2b2 + e2

(
i
0

)
<

< c1b1 + c2b2 + e2

(
i
0

)
≤

≤ c1b1 + c2b2 + c2

(
i
0

)
=

= c1b1 + c2b
′
2 = m′.

w′ ∈M ′
N because w′ = e1b1 + e2b

′
2, so w′ < m′ ⇒ m′ 6∈MIN c+i.

[⇒] It is equivalent to show that if m′ 6∈MIN c+i, then m 6∈MIN c.

m′ 6∈ MIN c+i ⇒ ∃ w′ ∈ MIN c+i, with w′ < m′ and w′ ≡ m′ mod A.
Let w′ = e1b1 + e2b

′
2 = e1b1 + e2b2 + e2

(
i
0

)
. Consider w = e1b1 + e2b2.

w′ ≡ w ≡ m ≡ m′ because the addition of a1 does not change the residue
class and w′ ≡ m′.

Claim: e2 ≤ c2. (w′)x ≤ (m′)x, and because the x coordinate is inde-
pendent of b1 and only dependent on b′2, if (w′)x ≤ (m′)x, then e2 ≤ c2. So
e2b2 ≤ c2b2, so (w)x ≤ (m)x.

Now (m)y = (m′)y ≥ (w′)y = (w)y, so (m)y ≥ (w)y.

Now for m′ and w′ if (m′)y = (w′)y, then (m′)x > (w′)x, and if (m′)x =
(w′)x, then (m′)y > (w′)y. If not, m′ = w′, so m′ ∈MIN c+i.

So we have that
(m)y > (w)y and (m)x = (w)x,
(m)y = (w)y and (m)x > (w)x or
(m)y > (w)y and (m)x > (w)x.

In any case, w < m, w ≡ m mod A and w ∈MN. So m 6∈MIN c. �

Lemma 8.3. Consider M c and M c+i as above. Then for any gi ∈ G(M c),
there is some g′i ∈ G(M c+i) such that if gi + A1 = lub{wk}, then ∃ g′i with
gi + A1 = lub{w′

k} and vice versa. Hence, |G(M c)| = |G(M c+i)|.

Proof: Consider gi ∈ G(M c). gi + A1 = lub{wk}, with {wk} ⊂ MIN c.
For each wk, ∃w′

k ∈ MIN c+i with wk ≡ w′
k by lemma 8.2. Consider {w′

k};
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{w′
k} is a complete set of coset representatives and {w′

k} ⊂ MIN c+i, so
h = lub{w′

k} is g complete.

Suppose towards contradiction that h is not a g vector. Then ∃ g?, with
g? < h, and g? complete. Then g? + A1 = lub{u′k} for some {u′k} ⊂MIN c+i.

Consider ∃ {uk} ⊂MIN c. {uk} is a complete set of coset representatives,
and lub{uk} < lub{wk} because lub{u′k} < lub{w′

k} ⇒ gi 6∈ G(M), which is
a contradiction. So h = lub{w′

k} − A1 ∈ G(M c+i).
We can follow a similar argument to show that if there is some g′j ∈ G(M ′)

there must be a corresponding gj ∈ G(M c). Hence, |G(M c)| = |G(M c+i)|.
�

Theorem 8.4. Let the submonoid M0 = [Ab1] generate some frobenius vec-
tor, g0. Let c=1. Then (gi)x = i− 1 for any gi ∈ G(M c).

Proof: Because b1 is along the y axis, we know that G(M0) = |A|b1 −
A1 = |A|

(
0
b

)
−
(
1
a

)
=
( −1
|A|b−a

)
=
( −1

a(b−1)

)
. So g0 =

( −1
a(b−1)

)
.

Consider b2 =
(
1
d

)
. If b2 6∈MIN then by lemma 6.3 g0 = G(M c).

So b2 ∈ MIN ⇒ b2 ≡ jb1 with b2 incomparable to jb1. Likewise,
hb1 + b2 ∈MIN for 0 ≤ h ≤ |A| − j = a− j.

There are |A| = a equivalence classes, with the jth through ath repre-
sented by hb1 + b2 and the first through j − 1th represented by kb1. Let the
union of the two sets, {hb1 + b2|0 ≤ h ≤ a − j} ∪ {kb1|1 ≤ k ≤ j − 1} be
denoted {wk}. Then lub{wk} − A1 = γ is g-complete.

Likewise, there is no g? ∈ G(M c) with g? < γ because then (g?)x = 0
or −1. But the only g vector with (g)x = −1 is not less than γ and γ is
minimal for an x coordinate of 0 by construction. So γ is a g vector, g1 with
(g1)x = 1− 1 = 0.

Suppose that you have two consecutive g vectors, gi and gi+1 with (gi)x =
i − 1. Suppose towards contradiction that (gi)x < (gi+1)x and (gi)x + 1 6=
(gi+1)x.
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gi + A1 = lub{uk} with some uk with uk = αb1 + (i − 1)b2 because
(gi)x = (i − 1). However, by lemma 6.4, uk ∈ MIN ⇒ (i − 1)b2 ∈ MIN .
gi+1 ∈ G(M c)⇒ sb2 ∈MIN for some s > i− 1.

However, for any value of s, by lemma 6.4, ib2 ∈ MIN . Then if ib2 ∈
MIN , ib2 ≡ j′. By a similar argument to the one above, h′b1+ib2 ∈MIN for
0 ≤ h′ ≤ |A|−j′. Then we have some {w′

k} say with {w′
k} = {c1b1+c2b2|w′

k ∈
MIN, c2 ≤ i}. By a similar argument to γ ∈ G(M c), lub{w′

k} − A1 = g? ∈
G(M c). But (gstar)x < (gi+1)x ⇒ gi and gi+1 are not consecutive. This is a
contradiction. Therefor, (gi)x + 1 = (gi+1)x.

So by the principle of mathematical induction, our claim holds. �

Lemma 8.5. If there is some gi ∈ G(M1), then there is g′i ∈ G(M c) such
that g′i = gi + i

(
c−1
0

)
.

Proof: Let gi + A1 = lub{w} for some {w} ⊂ MIN1. Let {we} be the
set of elements of {w} with the greatest x coordinate. We then have that
(lub{w})x = (we)x = i by lemma 8.4.

We have from lemma 8.2 that for each w ∈ MIN1, there is some w′ ∈
MIN c such that if w = c1b1 +c2b2, then w′ = c1b1 +c2b2 +c2

(
c−1
0

)
. By lemma

8.3 there is some g′i ∈ G(M c) with g′i + A1 = lub{w′}.

(lub{w})y = (lub{w′})y because c2

(
c−1
0

)
does not change the y coordinate.

If we has a maximum x coordinate for {w}, then w′
e will for {w′}. w′

e =
we + c2

(
c−1
0

)
= we + i

(
c−1
0

)
because c2 = i by lemma 8.4. So (lub{w′})y =

(lub{w})y and (lub{w′})x = (lub{w})x + i(c− 1). Therefor g′i = gi + i
(

c−1
0

)
.

�.

Theorem 8.6. Suppose M1 =

(
1 0 0 1
0 a b d

)
and M c =

(
1 0 0 c
0 a b d

)
and G(M1) = {g0, g1, . . . , gk}. Then G(M c) = {gj + j

(
c−1
0

)
} for 0 ≤ j ≤ k.

Proof: By lemma 8.3, for any gj ∈ G(M1) there is some g′j ∈ G(M c)

and vice versa. By lemma 8.5 g′j = gj + j
(

c−1
0

)
. �
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9 All bi Lying on Boundary

Define a “prime” vector as an integer vector whose coordinates have gcd 1. It
is evident that we may express any integral vector as a product of an integer
scalar and a prime vector

Theorem 9.1. Let all the prime vectors that define the A-cone as α1, α2, . . . , αn

(ie, all A-vectors can be expressed as zi,jαi, where zi,j is an integer scalar
and i, j are integers). If all the generating vectors can be expressed as integer
scalar multiples of the αi, then if there is a frobenius vector, it is unique and
equal to F =

∑n
i=1 fjαj, where fi is the frobenius number of all the zi,j, where

j varies. If, for any αi fi does not exist, then no frobenius vector exists.

Proof. If one of the fi does not exist, wlog f1, this means that all the gener-
ating vectors with prime vector α1 may be expressed as mjkα1, for positive
integers mj, and some positive integer k 6= 1. It is evident that any integral
vector whose α1-component is an integer not congruent to 0 mod k is not
in the monoid- hence no frobenius vector can exist.

Assume there exists a complete vector, F ′ which is incomparable or
smaller than F . Express F ′ as [c1c2...cn] · [αiα2 . . . αn] (the ci are positive,
but not necessarily integers). For at least one i, ci < fi. Wlog, let c1 < f1.
Consider the vector [(f1)(c2 + 1)(c3 + 1)...(cn + 1)] · [αiα2 . . . αn]. This vector
is not in the monoid- the term f1α1 cannot be expressed as a sum of the
generating vectors who have α1 as their prime vector, by the definition of f1.
Thus we have a vector larger than F ′ that is not in the monoid. We claim
that the gcd of the generating vectors is equivalent to det[α1α2 . . . αn]. Say
that pd is the highest power of some prime p to divide the gcd. Say that
pe is the highest power of p to divide det[α1α2 . . . αn]. Select vectors where
none is a scalar multiple of the other; that is, one multiple each of each αi.
The determinant of any other collection of vectors will have one vector a
rational scalar multiple of the other, and that determinant is 0 and may be
disregarded in the gcd. It is possible to make a selection such that none of
the scalar multiples is a multiple of p. Otherwise, if this is impossible for a
certain αi, wlog say α1, then all generating vectors that are a multiple of α1

also have a scalar factor of p, so f1 does not exist. Hence d = e.
If the gcd of the generating vectors is 1 then the determinant of the αi is 1-

meaning that every integral lattice point can also be expressed as an integral
lattice point of the αi-basis. But by the definition of the frobenius number,
every vector whose αi component exceeds fi for every i is representable in the
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monoid. Thus every vector in the αi lattice larger than F is in the monoid.
Since every integral lattice point larger than F corresponds to vector in the
αi lattice larger than F , it follows that F is a complete vector. Since we also
know that every vector smaller than or incomparable to F is not complete,
it follows that F is the unique Frobenius vector.

10 Selmer Lattice: Properties and Applica-

tions

The Selmer Lattice is a construct invented by Ernst Selmer to solve the 1-
dimensional Frobenius problem in 3 generators. In this paper we generalize
the tools he uses to the vector case, in an attempt to learn more about the
higher-dimensional analogues of the 1-dimensional problem.

10.1 Properties

10.1.1 Definitions

1. We are considering the set of points xb1 + yb2 where x and y are non-
negative integers. We arrange the elements in a cartesian lattice in the
first quadrant, where the x-axis represents b2 and the y-axis represents
b1.

2. We have the relation x1b1 + x2b2≥By1b1 + y2b2 if xi ≥ yi for i = 1, 2.
We refer to this relation as being “B-greater”.

3. The zero vector is the trivial zero.

4. A zero is a vector that is congruent to the zero vector.

5. An element is insignificant if it is≥B than a nontrivial zero. An element
that is not insignificant is significant.

6. We define the Selmer Lattice to be the set of significant vectors.

7. The element 1b1 + 0b2 belongs to the residue class 1. The residue class
s is the residue class where 0b1 + 1b2 belongs.
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8. Given ib1 + jb2, we define it’s contained set to be the set of elements
in the Selmer diagram that are ≤Bib1 + jb2.

9. We call an element of the Selmer diagram good when it’s contained set
contains a complete residue set mod |A|.

10. Define the Minimal Selmer Diagram to be the diagram including only
the elements in MIN .

11. v ≡> w means that the vectors v and w are congruent and that v is
greater or equal than w.

12. v≡<w means that the vectors v and w are congruent and that v is lesser
or equal than w.

13. v‖≡w means that the vectors v and w are congruent and that v is in-
comparable to w.

14. Let g ∈ G. We know that there exist a complete set of residues N ∈
MIN such that lub(N) − A1 = g. Now add the constraint that N is
contained in the first k rows of the Selmer lattice. Let m be the minimal
value of k for which such an N exist. We now define Low(g) = m and
say N is a minimal representation for g if it is contained in the first
Low(g) rows of the Selmer lattice.

10.1.2 Purple Chomps

Theorem 10.1. x1b1 + y1b2≥Bx2b1 + y2b2 implies x1b1 + y1b2 ≥ x2b1 + y2b2

Proof. Since x1b1+y1b2≥Bx2b1+y2b2, we have x1b1+y1b2-x1b1+y1b2=(n1, n2)
for some nonnegative integers n1, n2. Thus x1b1+y1b2-x1b1+y1b2=n1b1+n2b2.
Given that b1 and b2 can both be expressed as positive sums of the a-vectors,
we know that x1b1 + y1b2-x1b1 + y1b2 can be expressed as positive sums of
the a-vectors. Thus x1b1 + y1b2 ≥ x2b1, y2b2
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Theorem 10.2. If (x1, y1)≥B(x2, y2) for some (x2, y2) in the first quadrant
of the Selmer Lattice, then (x1, y1) is not significant

Proof. (x1, y1)≥B(x1, y1)− (x2, y2), which is a zero.

Theorem 10.3. All points in the MIN set are significant.

Proof. Given xb1 + yb2 an insignificant point. There exists a nontrivial zero
z1b1 + z2b2≤Bxb1 + yb2. Thus, (x− z1)b1 + (y − z2)b2 is a point on the first
quadrant of the Selmer Lattice. Since z1b1 +z2b2 ≡ 0, (x−z1)b1, (y−z2)b2 ≡
xb1 + yb2. Also, since (x− z1)b1 + (y − z2)b2 + z1b1 + z2b2=xb1 + yb2, xb1 +
yb2≥B(x−z1, y−z2) and by Theorem 10.1 (x−z1)b1 +(y−z2)b2 ≤ xb1 +yb2.
In fact (x − z1)b1 + (y − z2)b2 < xb1 + yb2 since z1b1 + z2b2 is a nontrivial
zero. Thus (x− z1)b1 + (y − z2)b2 ≡< xb1 + yb2 and so xb1 + yb2 is not in the
MIN set.

Theorem 10.4. Order the nontrivial significant zeroes according to increas-
ing b2-coordinate. The zeroes will then also be ordered according to decreasing
b1-coordinate.

Proof. We prove this by induction. (|A|, 0) is the first element in this or-
dering. Consider the Zk, the kth zero of the ordering. It has a larger b2

coordinate than the Zk−1 zero. If Zk’s b1-coordinate were greater than or
equal to Zk−1’s b1 coordinate, Zk would be B-greater than Zk−1, contradict-
ing its significance.

Note that this proves that each row of the Selmer Lattice of significant
elements contains no more elements than the row above it.

10.1.3 Wavy Cuts

Theorem 10.5. Given two significant zeroes, z1b1 + o1b2 and z1b1 + o1b2 iff
(z1, o1) ≤ (z2, o2) and o1 < o2, all elements of the MIN set have b2-coordinate
less than o2 − o1. Iff (z1, o1) ≤ (z2, o2) and o1 > o2 then all elements of MIN
have b1-coordinate less than z2 − z1.
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Proof. Say o1 < o2. Given any xb1 + yb2 with y ≥ o2 − o1, we know that
xb1 + yb2 ≡ (z1b1 + o1b2)− (z2b1 + o2b2) + (xb1 + yb2). This is true because
z1b1 + o1b2 and z1b1 + o1b2 both belong to residue class 0. (z1b1 + o1b2) −
(z2b1+o2b2)+(xb1+yb2) is a point on the first quadrant of the Selmer Lattice
because y ≥ o2 − o1, and since o2 > o1, z2 < z1 (Theorem 10.4). But since
(z2b1 + o2b2)− (z1b1 + o1b2) > 0, we have (z1b1 + o1b2)− (z2b1 + o2b2)+ (xb1 +
yb2) < (xb1 + yb2) and so (z1b1 + o1b2)− (z2b1 + o2b2)+ (xb1, yb2) ≡< xb1 + yb2.
Thus xb1 + yb2 is not in MIN.

If instead o1 > o2, then z1 < z2 (Theorem 10.4). Given any xb1 + yb2

with x ≥ z2− z1, we know that (x, y) ≡ z1b1 + o1b2− z2b1 + o2b2 + xb1 + yb2.
This is true because z1b1 + o1b2 and z1b1 + o1b2 both belong to residue class
0. (z1b1 + o1b2) − (z2b1 + o2b2 + xb1 + yb2 is a point on the Selmer Lattice
because x ≥ z2 − z1 and o1 > o2. But since z2b1 + o2b2 − (z1b1 + o1b2 > 0,
we have (z1b1 + o1b2) − (z2b1 + o2b2) + (xb1 + yb2) < (xb1 + yb2) and so
(z1b1 + o1b2)− (z2b1 + o2b2) + (xb1 + yb2) ≡< xb1 + yb2. Thus xb1 + yb2 is not
in MIN.

Theorem 10.6. Given two congruent significant elements (x1, y1) and (x2, y2)
where x2 > x1 there exists a zero (z, o) where z, o ∈ [0, |A|] and where
(x2, y2)− (x1, y1) = (|A|, 0)− (z, o)

Proof. Since x2 > x1 we have also y2 < y1, otherwise (x2, y2) cannot be
significant, by Theorem 10.2. (x1, y1) − (x2, y2) ≡ 0 we have also (|A|, 0) +
(x1, y1) − (x2, y2) ≡ 0. Also, since x2 > x1 and y2 < y1 (|A|, 0) + (x1, y1) −
(x2, y2) ≡ 0 lies in the first quadrant and has b1-value less than |A|. Thus,
we need only set (z, o) = (|A|, 0) + (x1, y1)− (x2, y2)

Theorem 10.7. Let (z1, o1) be a zero other than (|A|, 0) such that (z1, o1) ≡<
(|A|, 0) and o1 is minimal. Let (z2, o2) be a zero other than (|A|, 0) such that
(z2, o2) ≡> (|A|, 0) and |A| − z2 is minimal. The MIN set is comprised of all
significant elements with b1-value less than |A|−z2 and b2-value less than o1.

Proof. By Theorem 10.5 we know that all elements with b1-value greater than
or equal to |A| − z2 and b2-value greater than or equal to o1 cannot be in
the MIN set. It remains to show that the significant elements that are left
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comprise the MIN set. It suffices to show that any two congruent significant
elements in this reduced set are incomparable. Suppose instead there exist a
pair of significant elements, (x1, y1), (x2, y2) in this set that are comparable.
Wlog let x2 > x1. Then also y2 < y1, otherwise (x2, y2) is insignificant by
Theorem 10.2. We have both x2−x1 < |A|−z2 and y1−y2 < o1. By Theorem
10.7 there exists (z, o) such that (|A|, 0) − (z, o) = (x2, y2) − (x1, y1).Since
(x2, y2), (x1, y1) are comparable, it must follow that (x2, y2)−(x1, y1) equals a
sum of A-vectors with either all positive or all negative coefficients. (|A|, 0)−
(z, o) must equal that same sum, and so (|A|, 0), (z, o) are comparable. But
|A|−z = x2−x1 < |A|−z2 and o = y2−y1 < o1, contradicting the minimality
of either |A| − z2 or o1.
Hence, given any congruence class, we know all its minimal elements must
lie in this minimal Selmer Lattice, and we know that all elements of this
congruence class in this reduced set are mutually incomparable. Thus they
are all minimal.

We want to find the (z1, z2) ≡> (|A|, 0) where z2 is minimum.

Theorem 10.8. In the Selmer Lattice bounded by b1 and b2-values ∈ [0, |A|],
there exists one zero a row because b1 is a generator. The zeroes are {(|A|−(is
mod |A|), i)} where i ranges from 0 to |A|.

Proof. Since sb1 ≡ b2, we know that for any zero Z, Z+(−s, 1) is also a zero.
Also, for any zero Z, Z + (|A|, 0) is a zero. Since |A|, 0) is a zero, for the
b2 = i row the element (|A| − is, i) is a zero. If |A| − is is negative we can
add (|A|, 0) to (|A| − is, i) enough times so the b1-coordinate lies in [0, |A|).
This will imply (|A| − (is mod |A|), i) is a zero, as we required.

Theorem 10.9. There exists two real numbers, µ and ν such that for any
two positive integers c and d so

1. c
d
≤ ν ↔ (x, y) < (x, y) + (−c, d),

2. µ > c
d

> ν ↔ (x, y) is incomparable to (x, y) + (−c, d)

3. c
d
≥ µ↔ (x, y) > (x, y) + (−c, d)

for all elements (x, y).
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Proof. It suffices to prove this assertion true for (0, 0). This is because (0, 0)−
(−c, d) = (x, y)− ((x, y)− (−c, d)) for all x, y and thus the relation between
(0, 0) and (−c, d) would be the same as the relation between (x, y) and (x, y)−
(−c, d).
Define µ as the smallest real number so b2 < µ · b1. Define ν as the largest
real number so b2 > ν · b1. If c

d
≤ ν then

−cb1 + db2 = d(− c

d
b1 + b2) ≥ d(−νb1 + b2) > c(−b2 + b2) = 0

If (−c, d) > (0, 0) then −cb1 + db2 > 0 and b2 > c
d
b1. Since ν is the largest

number that b2 > νb1, we must have c
d
≤ ν. Thus c

d
≤ ν ↔ (−c, d) > 0.

If c
d
≥ µ then

−cb1 + db2 = d(− c

d
b1 + b2) ≤ d(−µb1 + b2) < c(−b2 + b2) = 0

If (−c, d) < (0, 0) then −cb1 + db2 < 0 and b2 < c
d
b1. Since µ is the smallest

number that b2 < µb1, we must have c
d
≥ µ. Thus c

d
≥ µ↔ (−c, d) < 0.

(−c, d) = 0 is impossible, otherwise db2 = cb1 and so b2 is a scalar multiple
of b1, a case we are not considering. Hence if (−c, d) ≮ 0 and (−c, d) ≯ 0
then (−c, d) must be incomparable to 0. By elimination we have µ > c

d
>

ν ↔ (x, y) is incomparable to (x, y) + (−c, d)

If we want to find the “height” of the MIN set then we must identify the
zero in {(|A| − (is mod |A|), i)} so that (is mod |A|)

i
≤ ν and i is minimal.

The zero that i refers to will be the zero larger than (|A|, 0) with the minimal
b2-coordinate.

We use a continued fraction algorithm to determine the proper i. Set s−1

as |A| and s0 as s and we have

s−1 = q1s0 − s1 0 ≤ s1 < s0

s0 = q2s1 − s2 0 ≤ s2 < s1

s1 = q3s2 − s3 0 ≤ s3 < s2

· · ·
sk−2 = qksk−1 0 ≤ sk < sk−1 (1)

sk−1 = qk+1sk 0 = sk+1 < sk
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If s0 = 0 we set m = −1. We also define integers Pi by P−1 = 0, P0 = 1
and Pi+1 = qi+1Pi − Pi−1, i = 0, 1, 2, . . . k.

Since qi ≥ 2 it follows by induction that Pi + 1 > Pi. Also si > si + 1.
Hence

0 =
sk+1

Pk+1

<
sk

Pk

< . . . <
s0

P0

<
s−1

P−1

=∞ (2)

There are unique integers λ and ξ such that sλ+1

Pλ+1
< µ ≤ sλ

Pλ
and

sξ

Pξ
≤ ν <

sξ−1

Pξ−1
.

Theorem 10.10. Pi+1s0 ≡ si+1 mod |A| for all i ∈ [0...|A| − 1]

Proof. We induct on i. We have P1 = q1P0 − P−1 = q1. Thus P1s0 = q1s0 =
|A|+ s1 ≡ s1 mod |A|. Also, similarly

P2s0 = (q2P1 − P0)s0 = (q2q1 − 1)s0 = q2(|A|+ s1)− s0 ≡ q2s1 − s0 = s2

Assume this proposition holds up to i. Pi+1s0 = (qi+1Pi−Pi−1)s0 ≡ qi+1si−
si−1 = si+1 by the induction hypotheses and (1).

Theorem 10.11. Among the integers s0, 2s0, . . . , (Pi − 1)s0 taken modulo
|A|, the smallest among these is Pi−1s0 mod |A|.

Proof. Using the fact that Pi−1s0 = si < sj = Pjs0 for i < j, by Theorem
10.10,we prove this proposition by induction. This assertion is trivially true
for i = 1. P0 = 1, and so s0, 2s0, . . . (P1 − 1)s0 are all less than |A| =
q1s0 − s1 = P1s0 − s1. Thus s0 is the smallest among these mod |A|. Let
us assume the assertion is true for some i = k − 1. For the equation js0

mod |A|, if j < Pk − 1 then using the induction hypothesis

Pk−1s0 mod |A| < Pk−2s0 mod |A| ≤ js0 mod |A| (3)

If j > Pk−1 then we may express j as qPk−1 − r for positive integers 2 ≤ q
and 0 ≤ r < Pk−1. We claim that j = Pk, so js0 = Pks0 = (qkPk−1−Pk−2)s0

is the smallest value of js0 so js0 < Pk−1s0, taken mod |A|. Assume that
there is a smaller j = j′ that fulfills js0 < Pk−1s0 taken mod |A|. Say
first that j′ = qkPk−1 − r, where r > Pk−2. If qkPk−1s0 − rs0 < Pk−1s0

mod |A|, because we have qkPk−1s0−Pk−2s0 < Pk−1s0 mod |A| as well then
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we must have rs0 − Pk−2s0 < Pk−1s0 in mod |A|; recall that rs0 > Pk−2s0

in mod |A| by the induction hypothesis. But rs0 − Pk−2s0 = (r − Pk−2)s0,
and (r − Pk−2) is less than Pk−1. But we know that if n is any integer less
than Pk−1, Pk−1s0 < ns0 mod |A| using (3).
Consider instead j′ = qPk−1−r where q = qk−t, where t is a positive integer.
If r = Pk−2, we can see that j′s0 ≡ Pks0 − tPk−2s0. Note that tPk−1s0 must
lie between Pk−1s0 and |A|. This is because

tPk−1s0 ≡ tsk−1 ≤ (qk − 1)sk−1 = sk + sk−2 − sk−1 < sk−2 ≤ |A|.

Thus, j′s0 ≡ Pks0− tPk−1s0 mod |A| > Pks0 mod |A| (recall that Pk−1s0 >
Pks0 mod |A|). If r 6= Pk−2 then necessarily Pk−2s0 < rs0 < |A|. Thus
j′s0 = qPk−1s0 − rs0 lies between qPk−1s0 − Pk−2s0 mod |A|, and qPk−1s0

mod |A| (both greater than Pks0 mod |A|). Thus j′s0 mod |A| cannot be
less than Pks0 mod |A|. Hence the smallest possible j where js0 is less than
Pk−1 is Pk

Theorem 10.12. The MIN set is the set of significant elements with b1-value
less than sλ and b2-value less than Pξ.

Proof. We use Theorem 10.7 and look for the zero (z, w) where (|A|, 0) ≡<
(z, w) and w is minimum. By Theorem 10.9 we must have |A|−z

w
≤ ν so we

are looking for the zero with the smallest w that fulfills this condition. We
claim that this zero has w = Pξ.

By Theorem 10.8 |A|−z
w
≤ ν is equivalent to (ws mod |A|)

w
≤ ν. We know that

Pws0 ≡ sw by Theorem 10.12. Thus (ws mod |A|)
w

≤ ν is equivalent to sw

Pw
≤ ν

(remembering that s0 = s) , which is true for w = Pξ.
Furthermore, no w less than Pξ will fulfill this condition. It is evident that no
Pi with i < ξ fulfills this condition, otherwise we have si

Pi
≤ ν, contradicting

ν <
sξ−1

Pξ−1
. Also, no w between some Pi+1 and Pi can fulfill this condition.

For this, it suffices to show that Pis0 mod |A| is the minimum value of js0

mod |A| for j = 1, 2 . . . Pi+1 − 1. This is proven in Theorem 10.11. Hence
if a value w lies between some Pi − 1 and Pi with i < ξ we have ws > Pis
mod |A| and so (ws mod |A|)

w
> (Pis mod |A|)

Pi
> ν. Thus Pξ is the smallest value

of w where the zero on the row b2 = w is larger than (|A|, 0). An analogous
argument will show that sλ will be the smallest element z where zero in
column |A| − z is smaller than (|A|, 0).
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Theorem 10.13. The important zeroes are (si−1 − ksi, kPi − Pi−1) for i
ranging from -1 to and k ranging from 1 to qi.

Proof. We know that the first q1 rows have significant zeroes.(|A|, 0) is obvi-
ously an important zero, and since this list of the first q1 zeroes has decreasing
b1-value and increasing b2-value, all of them are important. Say, for some i
that the list of all important zeroes before the row Pi−Pi−1 is given as in the
proposition. We wish to show that the sequence of important zeroes between
row Pi − Pi−1 and row Pi+1 − Pi is (si−1 − ksi, kPi − Pi−1), where k ranges
from 1 to

10.1.4 Other Important Properties

Theorem 10.14. If row i has fewer elements than row i−1 for 1 ≤ i ≤ |A|,
then the last element of row i is |A| − 1.

Proof. Given a row i that has fewer elements than row i−1, let row i contain
p elements and let row i−1 contain p+q, where p, q ∈ N. Since ib1+(p+1)b2

is not in the Selmer diagram, there must be an element within the first p+1
rows and i columns of the Selmer diagram that has the same congruence
class as it. Also, since ib1 + pb2 is in the Selmer diagram, there is no other
element within the first p rows and i columns that is congruent to it.

This means that the element congruent to the ib1 + (p + 1)b2 within
the first p + 1 rows and i columns of the Selmer diagram must be in the
first column - otherwise, the element in the same row and one column be-
fore it is congruent to ib1 + pb2. Furthermore, the element congruent to
ib1 + (p + 1)b2 must be in the first row, otherwise (i − 1)b1 + (p + 1)b2 is
congruent to something else within the first i − 1 rows and p + 1 columns,
which contradicts our assumption. Thus, ib1 + (p + 1)b2 ≡ 0 mod |A|, and
so ib1 + pb2 ≡ p− 1 mod |A|.

Analogously, if column i contains fewer elements than column i− 1, then
the last element of column i ≡ p− s mod |A|.

Theorem 10.15. If there is a Frobenius vector g such that g + A1 ≥ some
good element v, then g + A1 = v.
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Proof. Recall that ∃ω1, ..., ω|A| ∈ MIN , a complete set of residue classes,
such that g + A1 = lub(ω1, ..., ω|A|). But since v is ≥ a complete set of
residue classes, we can choose these elements to take the lub of, which will
yield v. Thus v−A1 is a complete vector, so g+A1 cannot be greater than
v.

As a consequence of this theorem, for any good vector v, if v − A1

is not a Frobenius vector, then 6 ∃ vectors ω1, ..., ω|A|−1 ∈ MIN such that
lub(ω1, ..., ω|A|−1,v)−A1 is a Frobenius vector. It is also easy to see that if
some good element is in

Theorem 10.16. if row i contains more elements than row i + 1 (for 1 ≤
i ≤ |A| − 1), then the last element of row i is good.

Proof. Assume that row i + 1 contains p elements, and that row i contains
p + q elements, where p, q ∈ N. To show that (i, p + q) is good, it is easy to
see that it suffices to show that every number of the form (i+1)b1 + kb2 for
1 ≤ k ≤ p + q is congruent to some element in the contained set of (i, p + q).

By property 1, we know that (i + 1)b1 + (p + 1)b2 ≡ 0 mod |A|, and so
all elements of the form (i + 1)b1 + (p + j)b2 ≡ j − 1 for 1 ≤ j ≤ q. It is
clear that each of these elements is congruent to something in the contained
set of (i, p + q) (in fact, they correspond to the first q elements of the first
row).

Also by property 1, we have that the element (i + 1, p) ≡ |A| − 1, from
which it follows that the elements (i + 1, 1), (i + 1, 2), ...(i + 1, p) ≡ |A| − p +
1, |A| − p + 2, ...|A| − 1. But by property 1, we know that the first row that
contains exactly p + q elements ends with |A|, and so this row must contain
elements of the congruence classes (i + 1, 1), (i + 1, 2), ...(i + 1, p). Since this
row is clearly in the contained set of (i, p + q), we obtain the desired result.

Analogously, if column i contains more elements than row i + 1 (for 1 ≤
i ≤ |A| − 1), then the last element of column i is good.

Theorem 10.17. For the case where there are two B-vectors b1, b2, we label
them so b1 is not greater than b2. If gcd(A|b1) is 1 (as we are assuming),
there exists an integer 0 ≤ s < |A| so s · b1 ≡ b2 mod A
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Proof. The gcd of the matrix (A|b1) is 1. Thus for every congruence class
of A, there will be an integer n which is at most |A| where n · b1 is in that
congruence class. Thus there must exist s < |A| so s · b1 ≡ b2 mod A

10.2 Applications

10.2.1 Solving the m = 2 Case

In this section we attempt to generalize the partial solutions to the 3 gen-
erator Frobenius problem found in the papers “On the Linear Diophantine
Problem of Frobenius” (1977) and “‘On the Linear Diophantine Problem of
Frobenius in Three Variables”(1978). we are looking at the cases governed
by the conditions (q +1)a2 ≥ (s− r)a1 and (qm+1)a2 ≥ pa1 in the notation
of those two papers. Generalizing the first case to more than one dimension
is fairly straightforward; generalizing the second is a bit more complicated.
In all the following we will be assuming sb1 ≡> b2; the case where sb1‖≡ b2 has
been completely solved, and we can choose to number b1, b2 so sb1 ≡< b2 is
impossible. By an earlier result, we can, and do assume that both b1 and b2

are generators.

Theorem 10.18. For the case where there are two B-vectors b1, b2, we label
them so b1 is not greater than b2. If gcd(A|b1) is 1 (as we are assuming),
there exists an integer 0 ≤ s < |A| so s · b1 ≡ b2 mod A

The gcd of the matrix (A|b1) is 1. Thus for every congruence class of
A, there will be an integer n which is at most |A| where n · b1 is in that
congruence class. Thus there must exist s < |A| so s · b1 ≡ b2 mod A
sb1 ≥ b2

Theorem 10.19. Given four vectors where the gcd of (A|b1) is 1 and the
integer s is defined as in Theorem 10.17. We define q,r such that |A| = qs+r,
where 0 < r ≤ s. If s·b1 ≥ b2 and (q+1)b2 ≥ (s−r)b1 then |MIN | = |A| and
there exists only one Frobenius vector, lub((r−1)b1+qb2, (s−1)b1+(q−1)b2)-
A.
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We use the Selmer Lattice. As shorthand for x·b1+y·b2, we write (x,y).
We mark the MIN set on the Selmer Lattice. Given the conditions set out
in the statement of the theorem, we claim that all the elements of the MIN
set are in the following table:
0 b1 2b1 . . . (s− 1)b1

b2 b1 + b2 2b1 + b2 . . . (s− 1)b1 + b2

2b2 b1 + 2b2 2b1 + 2b2 . . . (s− 1)b1 + 2b2
...

...
...

...
(q − 1)b2 b1 + (q − 1)b2 . . . . . . (s− 1)b1 + (q − 1)b2

qb2 b1 + qb2 . . . (r − 1)b1 + qb2

Consider any point (x, y). This point represents xb1 + yb2. If x ≥ s then
xb1 +yb2 ≡> (x−s)b1 +(y+1)b2. Thus any point with an x-value greater than
s-1 cannot be minimal in its residue class. Also, there are no elements of MIN
obtained by extending the last line to the right. Since the diagram contains
representatives of qs + r = |A| obtained from each other by addition of b1,
rb1 + qb2 ≡ (qs+ r)b1 ≡ 0 mod A, so we have rb1 + qb2 ≡> 0. Thus extending
the last line to the right will get us s-r elements congruent to and larger than
the first s-r elements in the first row. Thus, (q+1)b2 ≡ sb1 +(qb2 ≡ (s−r)b1.
This means there will also be no elements of MIN with y-coordinate larger
than q. By (q + 1)b2 ≡> (s − r)b1, we know that any point (x, y) with y > q
will not be minimal since xb1 + yb2 ≡> (x + s − r)b1 + (y − q − 1)b2 . We
know that every residue class is represented in this diagram since the points,
read from left to right and then from top to bottom ,are congruent to 0,
b1, 2b1, . . . (|A|− 1)b1, due to the fact that s · b1 ≡ b2 mod A. Thus these the
entire MIN set is expressed by this diagram. All the points in the diagram are
smaller than (r-1,q) or (s-1,q-1). This is because we may obtain one of these
two points from any point in the diagram by adding some b1 and b2 vectors.
The Frobenius vector is thus lub((r − 1)b1 + qb2, (s− 1)b1 + (q − 1)b2)-A.

Corollary : When s·b1 ≥ b2 and s divides |A|, the unique Frobenius vector
is (s− 1)b1 + (q − 1)b2 − A.

If s s divides |A| then we just set r = s in Theorem 10.19. This yields us
the answer lub((s−1)b1 +qb2, (s−1)b1 +qb2)-A. Since (s−1)b1 +(q−1)b2)-A
≥ (s− 1)b1 + (q − 1)b2)-A the frobenius vector is (s− 1)b1 + (q − 1)b2-A.

Theorem 10.20. Given four pairwise relatively prime vectors and the integer
s defined in Theorem 10.17. We define q,r,m,p such that |A| = qs + r and
s = mr + p. If s · b1 ≥ b2 and (qm + 1)b2 ≤ pb1, the set {lub((s − 1 −
(i− 1)r)b1 + (q − 1)b2, (r − 1)b1 + iqb2)− A} where i varies from 1 to m+1
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only contains complete vectors. Furthermore, all of the Frobenius vectors are
contained within this set.

Define S to be the set of points where x ∈ [0, r − 1]and y ∈ [0, q − 1].
We define for natural number i the sets Ai as S + (p + mr− ir, 0) and Bi as
S + (0, 1 + qi). Furthermore, define

αi = (s− 1− (i− 1)r)b1 + (q − 1)b2

βi = (r − 1)b1 + (i + 1)qb2

Note that αi ∈ Ai and βi ∈ Bi. The congruence αi ≡ βi is a conse-
quence of s · b1 ≡ b2 mod A and |A| = qs + r. This is because αi − βi =
b1(s− ir)−b2(iq+1) ≡ −b1ir−b2iq ≡ −i(qs+r)b1 ≡ 0 Also, we note that αi

and βi are the members of Ai and Bi respectively where the x and y values
are maximum. Thus, any point in Ai may be expressed as αi − (X, Y ) for
some X, Y where X is in [0, r − 1] and Y is in [0, q − 1]. βi − (X, Y ) is a
point in Bi that is congruent to it. We can see that corresponding elements
of Ai and Bi are congruent.

(r, q) is congruent to 0 since rb1 + qb2 ≡ (qs + r)b1. We have s = rm + p,
p = s − rm and so pb1 ≡ (s − rm)b1 ≡ b2 − rmb1 ≡ (qm + 1)b2 (since
−rb1 ≡ qb2). Thus (qm + 1)b2 ≡> pb1

Any point (x, y) in the lattice with x ≥ q and y ≥ r cannot be min-
imal by Theorem 10.3. Since we have the condition (qm + 1)b2 ≡> pb1,
(r, q) ≡< (r + qm + 1, q − p) and by Theorem 10.5 any point (x, y) with
y ≥ qm+1 cannot be in MIN. Thus we need only consider Bi up to i = m−1.

Furthermore, given Ai, Aj where 1 ≤ i < j ≤ m no element in Ai is congruent
to an element in Aj. This is because all the elements of Ai and Aj lie within
the bounds y < q, x < s which is a subset of the set of points referenced in
Theorem 10.19. The set of points in Theorem 10.19 all belonged to different
congruence classes, thus the set of points in Ai and Aj all belong in different
congruence classes as well. Also, within any Ai or Aj distinct points belong
to distinct congruence classes. Hence the points in the sets A1, A2 . . . Am all
belong to distinct congruence classes. Since the points in Ai are congruent
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to the points in Bi, it is also true that the points in B1, B2 . . . Bm all belong
to distinct congruence classes

We know all qs+r congruence classes are represented in the set of points
that we have not ruled out. If we include the condition y < q + 1, the set of
points remaining is equivalent to the set represented in Theorem 10.19 which
contains members of all qs+r congruence classes. Since we have ruled out the
points that satisfy both x ≥ q and y ≥ r, and the points where y ≥ qm + 1,
the only points excluded by the condition y < q + 1 will be elements of the
Bi where i > 0. Thus every residue class represented by an element in the Bi

where i ∈ [1, m− 1] has exactly two representatives in the set of points that
we have not ruled out. This leaves us with the residues that are not in the Ai

or Bi. If we exclude the Bi where 0 < i < m we get the set of points defined
in Theorem 10.19. In the Theorem 10.19 setup each residue is represented
once. Thus residues not represented in the Ai and Bi are represented once
each in the set of points that we have not excluded.

Also, we should note that all these points are less than αi for i ∈ [1, m]
and βi for i ∈ [0, m− 1]. This is because all these points are not in the Ai or
Bi and are not in the set {(x, y)|x ≥ q, y ≥ r}, and so these points all have
x-values less than q and y-values less than p.
We consider all minimal residue systems, that is sets of |A| elements, each
representing a different residue class and each minimal in its residue class.
We put the minimal residue systems into m subcollections, which we label
the 1st, 2nd 3rd... mth subcollection. A minimal residue system is in the ith

subcollection when the βi−1 is an element of that minimal residue system and
for any integer n larger than i-1, βn is not an element of that minimal residue
system. Note that a minimal residue system cannot contain both αj and βj

for any j, since those two elements are congruent. Consider all the least upper
bounds of the minimal residue system in the ith subcollection. We claim that
there is a minimum least upper bound, and that is lub(αi, βi−1). This value
is achieved in the residue system that contains no element of A1, A2, . . . , Ai−1

but contains every element of Ai, Ai+1, Ai+2, . . . , Am. Every minimal residue
system in this class contains the points βi−1, and αi since they do not contain
βi. Thus the minimum possible lub is at least lub(αi, βi−1). This is sufficient
to show that the minimum possible lub is lub(αi, βi−1) for this subcollection.
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If we work in two dimensions, we can do a little better. By a theorem
proved last summer, the lub of any minimal system is equal to v + A, where
v is a complete vector. Thus lub(αi, βi−1)-A is a complete vector for all
i ∈ {0, 1, ...,m − 1}. Thus the Frobenius vectors are the minimal vectors in
this collection.

Theorem 10.21. Given the conditions in Theorem 10.20, and if there are
two A-vectors, a1 and a2, the Frobenius Vectors are {lub((s−1−(i−1)r)b1 +
(q−1)b2, (r−1)b1 + iqb2)−A}, where i ranges from δχ to δγ inclusive, where
the δj are the value of i where lub((s−1−(i−1)r)b1+(q−1)b2, (r−1)b1+iqb2)
when expressed as x′1a1 + x′2a2 . . . + x′n, has the minimum x′j-value. δχ and
δγ are the largest and smallest δjs respectively.

Express b1 as
∑n

i=1 κiai and φ2 as
∑n

i=1 qiai, where the pi and qi are posi-
tive reals. Translate all the points αi and βi by α′

i = αi− (r−1)b1− (q−1)b2

and β′
i = βi−(r−1)b1−(q−1)b2. Since we’re translating the points the same

way, the ordering of the lubs remains the same, and in particular the minimal
lubs remain the same. Express all the lubs in the form

∑n
i=1 x′iai. The aj-

value of lub(α′
i+1, β

′
i), that is, δj is equal to max((s−r)κj−irκj, φj+iqφj). As

i increases from 0 to m, this value is either monotonically increasing, mono-
tonically decreasing, or monotonically decreasing and then monotonically
increasing. Label the ai such that the deltai are monotonically increasing.
Thus, every lub(α′

i+1, β
′
i) for i < δ1 has all the a1, a2, . . . an coordinate-values

greater than lub(α′
δ1+1, β

′
δ1

) and every lub (α′
i + 1, β′

i) for i > δn has all
the coordinate values greater than lub(α′

δn+1, β
′
δn

). Given any k, j where
δ1 ≤ k < j ≤ δγ, lub(α′

k+1, β
′
k) has a smaller x′- value and a greater y′-

value compared to lub(α′
j+1, β

′
j). Thus any two elements from the set { lub

(α′
i+1, β

′
i)} as i ranges from δχ to δγ, are incomparable. Hence any two ele-

ments from the set {lub(αi+1, βi)} as i ranges from δχ to δγ are incomparable.
Thus the set {lub(αi+1, βi)−A})as i ranges from δχ to δγ is the set of Frobe-
nius vectors.

The values δχ and δγ can be determined easily. We have to first solve the
equation (s−r)m1−irm1 = n1+iqn1. δχ equals either bic or die. Solving the
equation (s− r)m2 − jrm2 = n2 + jqn2 will similarly get us two candidates
for δγ, bjc or dje.

Soli Deo Gloria
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sb1‖≡ b2

This subsection contains some facts and insights about the Frobenius
problem in the case where m = n = 2 and sb1 is incomparable to b2.
Throughout the article, we will assume WLOG that P1(sb1) < P1(b2), and
P2(sb1) > P2(b2).

Preliminary Facts: Recall that for 1 ≤ i ≤ b|A|/sc+ 1, we know that the
ith row of the Selmer lattice is: (i∗s, i∗s+1, i∗s+2, ..., |A|−1). In addition,
since sb1 is incomparable to b2, we know that these first b|A|/sc + 1 rows
are in MIN . This is because the zeroes {|A| − i, i| where i ranges from 0 to
b|A|/sc are all mutually incomparable, and also using Theorem 10.5

Some notation: Let li denote the last element in the ith row of the Selmer
diagram. Let Si denote the set of all elements in row i or above.

Theorem 10.22. For any i such that the ith row of the Minimal Selmer
Diagram is non-empty, ∀v ∈ Si, P1(li) ≥ P1(v).

Proof. We induct on i. The base case when i = 1 is clearly true. Assume
the claim is true for i = k, and we will prove it for i = k + 1. It suffices to
show that P1(lk+1) ≥ P1(lk). Here we split the proof into two cases.

Case 1: For 1 ≤ k ≤ b|A|/sc, we have that lk+1 − lk = b1 − sb2, and so
P1(lk+1 − lk) = P1(b1 − sb2) ≥ 0 by our assumption that P1(sb1) > P1(b2).

Case 2: For k > b|A|/sc: Recall that row b|A|/sc + 1 of the Selmer
diagram has |A| − b|A|/sc ∗ s < s rows, so row b|A|/sc + 1 contains fewer
than s elements. By (reference Darren’s paper), we know that row k has
≤ s elements. This means that lk+1 − lk = b1 − mb2, where m < s. So,
P1(lk+1 − lk) = P1(b1 − mb2) ≥ P1(b1 − mb2) ≥ 0. This completes the
induction.

Theorem 10.23. For any i such that the ith row of the Minimal Selmer
Diagram is non-empty, there is a unique smallest vector = lub(ω1, ..., ω|A|),
where ω1 = li and the set of ω’s are all in the first i rows of the Minimal
Selmer Diagram.

Proof. By Property 1, we have that P1(lub(ω1, ..., ω|A|) = P1(li). In addition,
there must be a unique minimal value for lub(ω1, ..., ω|A|). This implies the
desired result.
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Theorem 10.24. For any Frobenius vector g, let lub(ω1, ..., ω|A|)−A1 be a
minimal representation of g, where ωi is defined as usual, and let Low(g) =
k. Then lk = ωi for some i.

Assume the contrary. Let S = {ωi}. Let mk be the last element of row
k. WLOG, let ω1 be the element in S that is congruent to lk. We know that
ω1 is in a smaller row than lk, and so it must be in a bigger column since ω1

and lk are incomparable. Thus, every element in row k is congruent to some
element in the same row as ω1 and in a smaller column than ω1.

But this allows us to represent g using only the first k−1 rows: For every
ωi in the kth row, ∃ an element ω

′
i in the same row as ω1, where ω

′
i < ω1.

We form S
′

in the following way: for each element ωi ∈ S, if ωi is not in
the kth row, then ωi ∈ Si; if ωi is in the kth row, then ω

′
i ∈ Si. Notice that

lubS
′ ≤ lubS. This cannot be a strict inequality, since g is assumed to be

a Frobenius vector. So, we have that lubS
′
= lubS, but this contradicts the

fact that S is a minimal representation of v.
Consequences of the above three properties: For a given k, let mk,j denote

the minimal P2(ωj), where ωj ≡ j, and lies within the first k rows of the
Minimal Selmer Diagram.

Each Frobenius vector can be represented in the following manner: P1(li)a1+
min{mi,j}a2, where j through all congruence classes mod |A| except for the
congruence class of li.

Comment: Note that this also proves that the number of Frobenius vec-
tors ≤ the number of rows in the Minimal Selmer diagram, which is ≤ |A|.
Theorem 10.25. Let |A| = qs + r. Suppose that sb1‖≡ b2 and that (q +
1)b2 ≥ (s−r)b1. Then the Frobenius set is exactly: {(|A|−1, 0)b−A1, (|A|−
s − 1, 1)b − A1, ..., (|A| − s(b|A|/sc − 1) − 1, b|A|/sc − 1)b − A1, lub((|A| −
s(b|A|/sc)− 1, b|A|/sc)b, (|A| − s(b|A|/sc − 1)− r − 1, b|A|/sc − 1)b −A1)}.

By the wavy cut theorem, we know that in this case the Minimal Selmer
Lattice is exactly:

0 1 ... |A| − 1
s s + 1 ... |A| − 1
2s 2s + 1 ... |A| − 1
.
.
.
|A| − r − s ... |A| − 1
|A| − r ... |A| − 1
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We know that the elements congruent to |A| − 1 in all but the last row
are good, which implies (|A| − 1, 0)b, (|A| − s − 1, 1)b, ..., (|A| − s(b|A|/sc −
1) − 1, b|A|/sc − 1)b are all Frobenius vectors. The only remaining element
congruent to |A|−1 is (|A|−s(b|A|/sc)−1, b|A|/sc)b. Now, we assume WLOG
that P1(sb1 ¡ P1(b2). This means that P1((|A| − s(b|A|/sc)− 1, b|A|/sc)b) ¿
P1(v) for any v ∈MIN ≡ |A|−1. Furthermore, it also means that P2((|A|−
s(b|A|/sc − 1)− r− 1, b|A|/sc − 1)b) < P2(u) for any u ∈MIN ≡ |A| − r−
1. Finally, by 10.32 we know that {(|A| − s(b|A|/sc) − 1, b|A|/sc)b, (|A| −
s(b|A|/sc − 1)− r − 1, b|A|/sc − 1)b} is lub-complete. From this the desired
result follows.

10.2.2 Convexity of MIN(z)

Note: The following definition and Lemma about the convexity of MIN(z)
was originally used in proving Vadim’s conjecture, but they are no longer
needed for that. However, I included it here because it is somewhat interest-
ing by itself.

Definition 10.26. For any set of incomparable points in the Selmer Lattice
(not necessarily the Minimal Selmer Lattice), we can write the points as
{(ci, di)b|i ∈ [1, k]}, where ci > cj iff i < j (from which it follows that di < dj

iff i < j) (note: we let Pi denote (ci, di)b). We define such a set to be convex

when d1−d2

c1−c2
> d2−d3

c2−c3
> ... > dk−1−dk

ck−1−ck
.

Lemma 10.27. For each z ∈ [0, |A| − 1], MIN(z) is a convex set.

Proof. Assume the contrary. Then there exists i such that di−di+1

ci−ci+1
< di+1−di+2

ci+1−ci+2
.

We assume WLOG that i = 1.
We will show that there exists a vector (p, q)b ≡ z mod |A|, with p, q ∈ N0,

c3 < p < c2, and d1 < q < d2. But this will contradict our initial assumptions,
because that (p, q)b must be in the Selmer lattice because (p, q)b <B (c2, d2)b,
which we assume is in the Selmer lattice, and (p, q)b >B (0, 0)b, so therefore
(p, q)b must lie in the Selmer lattice. Furthermore, since (p, q)b <B (c2, d2)b,
we have that (c2, d2)b cannot be in MIN , which contradicts our original
assumption.

To simplify the calculations we are about to do, we define a new coor-
dinate system (x, y)b′ , where the point (x, y)b = (x − c3, y − d1)b′ . Then
P1 = (c1 − c3, 0)b′ , P2 = (c2 − c3, d2 − d1)b′ , and P3 = (0, d3 − d1)b′ . Finally,
let a = c2 − c3, b = d2 − d1, x = (c1 − c2), and y = d3 − d2. So now we
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have that P1 = (a + x, 0)b′ , P2 = (a, b)b′ , and P3 = (0, b + y)b′ . Finally, let
u = P1 − P2 = (a,−y) and v = P2 − P3 = (x,−b). Notice that u ≡ v ≡ 0
mod |A|.

The condition that d1−d2

c1−c2
< d2−d3

c2−c3
translates to −b

x
< −y

a
, or equivalently

xy < ab. Showing the existence of the vector (p, q)b as defined above trans-
lates to finding a vector (r, s)b′ ≡ z mod |A|, with r, s ∈ N0, r < a and s < b.
Consider vectors of the form cu + dv + (a, b)b′ , where c, d ∈ Z. All of these
vectors are congruent to z. Since every vector congruent to z mod |A| can
be expressed in this form, finding the vector (r, s)b′ described above is equiv-
alent to finding c, d such that cu + dv + (a, b)b′ satisfies the same conditions
as (r, s)b′ . So, it suffices to find integers c, d such that 0 ≤ ca + dx + a < a
and 0 ≤ −cy − db + b ≤ b, or equivalently:

−a ≤ ca + dx < 0 (4)

and

0 ≤ cy + db ≤ b (5)

Solving equation (1) gives

c = −bdx

a
c − 1 (6)

and equation (2) is satisfied when

d = −bcy
b
c (7)

(note this is not always the unique solution, but this turns out not to matter).
So in order to find (r, s)b′ , it suffices to find c, d that satisfy equations (3) and

(4) simultaneously. Substituting d in equation (3), we get c = −b−b
cy
b
cx

a
c−1,

or equivalently

c = b
b cy

b
cx

a
c − 1 (8)

.
When c = 0, the LHS of equation (5) = 0, and the RHS = −1, so in

particular, the LHS > the RHS. When c = −ab, the RHS = xy − 1, so in
particular the LHS ≤ RHS. Notice that as c decreases by 1, the RHS is non-
increasing and the LHS obviously decreases by 1. This means that for some
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0 > c ≥ −ab, we must have that the LHS and the RHS are exactly equal for
that value of c.

10.2.3 Vadim’s Theorem

In this article, we focus on the special case on the vector Frobenius problem
when n ≥ 2 and m = 2. We also assume that no b vector is parallel
to any a vector. The main result is that for every element v ∈ MIN ,
∃ a Frobenius vector g and |A| − 1 elements {ω1, ω2, ...ω|A|−1} such that
lub(v, ω1, ω2, ...ω|A|−1) − A1 = g. However, in my opinion, the lemmas and
definitions used in proving this are just as interesting as the result itself.

Definition 10.28. We call an element of the Selmer lattice v a corner point
if v + b1 and v + b2 are both not in the Selmer lattice. We call an element
u ∈MIN a minimal corner point if u+ b1 and u+ b2 are both not in MIN .

Note: recall that we proved in the midterm report that for every vector v
that is both a corner point and a minimal corner point, v−A1 is a Frobenius
vector.

Definition 10.29. We call a set of points {ai|i ∈ [1, k] and ai ∈MIN} lub
complete if for every 0 ≤ j ≤ |A|−1 (j ∈ N0), there exists an element vj ≡ j
mod |A| − 1 such that vj ∈MIN and vj ≤ ai for some i, not necessarily the
same i for each j.

Definition 10.30. For c1, c2, ...cn ∈ N0, let (c1, c2, ...cn)a denote c1a1+c2a2+
... + cnan.

Definition 10.31. For d1, d2 ∈ N0, let (d1, d2)b denote d1b1 + d2b2.

Lemma 10.32. Let r be the largest natural number such that there exists an
element of MIN with b1-value = r, and no element of MIN has a greater
b1-value. Let (r, s) be the element in MIN with b1-value = r, and with
the largest b2-value. Let the significant zero with the greatest b1-value < r
be (x1, y1)b, and let the significant zero with the greatest b1-value < x1 be
(x2, y2). Let (p, q) be element of MIN ≡ (r, s) with the largest b1-value not
exceeding r. Then the set {(p, q − 1), (r, s)} is lub-complete.
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(Note: we make the assumption here that both (x1, y1)b and (x2, y2)b, but
this is a harmless assumption because the case where one or both of them do
not exist has been completely solved in Darren’s article ”Generalization of
the first two steps of the Selmer algorithm,” and the main theorem we wish
to prove is clearly true in those two cases).

Proof. We first show that p = x1 − 1. By the theorem that every corner
point is complete, it follows that there exists an element congruent to (r, s)b

with b1-value ≤ x1−1 and y1 ≤ b2-value ≤ y2−1. Now, we cannot have that
p < x1− 1, because then (p + 1, q)b is in MIN , which implies that (r + 1, s)b

is in MIN (since (r + 1, s)b − (p + 1, q)b = (r, s)b − (p, q)b.
Since (x1, y1)b ≡ 0, we know (−x1, 0)b ≡ (0, y1)b. So, it follows that

(r − k ∗ x1, s) ≡ (x1 − 1, q + k ∗ y1), where k ∈ N. This means that every
element satisfying 0 ≤ b1-value ≤ x1 − 1 and q ≤ b2-value ≤ y2 − 1 is
congruent to some element satisfying 0 ≤ b1-value ≤ r and 0 ≤ b2-value ≤ s,
that is, some element in the contained set of (r, s). Recall that the element
(x1 − 1, y2 − 1) is a corner point, and therefore it is good. From this the
desired result follows.

Lemma 10.33. Let b1 = (x1, x2, ..., xn)a, and let b2 = (y1, y2, ..., yn)a, and
assume WLOG that x1

y1
= max{xi

yi
} and xn

yn
= min{xi

yi
}. Then for any two

distinct congruent elements u = (c1, c2)b,v = (d1, d2)b ∈ MIN , d1 > c1 ⇒
P1(v) < P1(u) and Pn(v) > Pn(u).

Proof. This follows easily from Darren’s vector division theorem.

Theorem 10.34. For every element v ∈MIN , ∃ a Frobenius vector g and
|A| − 1 elements {ω1, ω2, ...ω|A|−1} such that lub(v, ω1, ω2, ...ω|A|−1)− A1 =
g.

Proof. If an element v ∈ MIN has the desired property (that is, it is used
in some lub), we call v usable. It is easy to see that if v is usable, then any
vector ≤B to v is also usable.

By Darren’s theorem of wavy cuts, we know that all but at most two min-
imal corner points are also corner points. If we can show that the remaining
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minimal corner points (i.e. those that are not also corner points) are usable,
then the proof is complete, since every element of MIN is ≤B some minimal
corner point.

Notice that for an element to be a minimal corner point but not a corner
point, it must lie on one of the two wavy cuts. We will only deal with the
case where it lies on the vertical wavy cut, as the other case is analogous.
Call this element v, and let it be congruent to k mod |A|.

Since v lies in the rightmost column, as a result of Lemma 10.33, we may
WLOG assume P1(v) < P1(u) for any u ∈ MIN(k), u 6= v. Let w be the
element in MIN(k) in the second largest column. By Lemma 10.32 , we
know ∃y such that {v,y} is lub complete and P1(lub(v, z)) < P1(w) (Notice
that we need the assumption bi is not parallel to aj here to get the strict
inequality. Since every P1 of any lub complete set must be ≥ P(z), we have
shown that v is usable.

10.2.4 A bound for the cardinality of the MIN set in higher di-
mensions

For n ≥ 2, the following theorem establishes a bound on the cardinality of
MIN(a) (the elements in MIN belonging to the same congruence class) as
a function of |A| and m:

Theorem 10.35. For any a ≤ |A|, |MIN(a)| ≤
(
|A|+ m− 2

m− 1

)
.

Proof. Recall that all elements of MIN can be represented as
∑m

i=1 cibi

where ci ∈ N0 and
∑m

i=1 ci ≤ |A| − 1. Given such an element
∑m

i=1 aibi

of MIN , define the k-column, where k ∈ [0, m], to be the set {c1b1 + ... +
ck−1bk−1 + akbk + ck+1bk+1 + ... + cmbm|ak ∈ [0, |A|] }

Notice that all the elements of any k-column are comparable to each other.
This means that in any k-column, there cannot be two congruent elements
belonging to MIN . It is also easy to see that every element in MIN belongs
to some k-column.

We will count the total number of possible m-columns. Notice that each
m column can be uniquely represented by the numbers ci, where ci ∈ N0.
Furthermore, we must have that

∑m−1
i=1 ci ≤ |A| − 1. It is well known that
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the number of ways to choose {ci} under these conditions is

(
|A|+ m− 2

m− 1

)
.

The desired result follows.

Notice that when m = 1, this bound equals 1. This is reassuring, since
we know that when m = 1, there is a unique Frobenius vector. Also, when
m = 2, this bound equals |A|, which has been previously proven.

Theorem 10.36. When n = m, this bound is always achievable.

Proof. When all bi are congruent mod |A| (say WLOG they are all congru-
ent to 1), then all elements of the set S = {

∑m
i=1 cibi|

∑m
i=1 ci = |A| − 1}

are congruent to |A| − 1, and furthermore there are exactly

(
|A|+ m− 2

m− 1

)
elements in this set. If we can choose { bi } so that all the elements in S are
incomparable, then every element in S must be in MIN , and we would have

|MIN(|A| − 1) =

(
|A|+ m− 2

m− 1

)
.

Define the map Pi(v) ∀i ∈ [1, m] which projects v onto the ai axis. Pick
bi such that Pi(bi) > |A| ∗ maxi {Pi(bk)|k 6= i}. We know we can always
do this because given any vector v, v + ai ≡ v. Now, for any two elements
u and w ≡ |A| − 1, we can write their difference as u − w =

∑m
i=1 dibi,

where
∑m

i=1 di = 0 and
∑m

i=1 |di| ≤ |A|. Assuming u and w are not equal,
we must have at least one i such that |di| > 0, and therefore we must have
some i, j such that di > 0 and dj < 0. Then it follows that Pi(u − w) > 0
because Pi(dibi) ≥ Pi(bi) ≥ |A| ∗maxi{Pi(bk)|k 6= i} ≥ Pi(

∑m
k=1,k 6=i |dkbk|).

Similarly, we have that Pj(u−w) < 0. So, every two elements in S are also
in MIN , and from this the desired result follows.

Corollary 10.37. Given any n x n matrix A, it is possible to find m b-

vectors which yield exactly

(
|A|+ m− 2

m− 1

)
different Frobenius vectors.

Proof. We will show that using the same construction for bi as in the proof
for 10.36, each vector in the set S (defined in the proof for theorem 2) is
good. For any v ∈ S, v =

∑m
i=1 cibi where

∑m
i=1 ci = |A| − 1, define the

set Sv = {
∑m

i=1 dibi|di ≤ ci}. It is clear that all elements of Sv are less
than v in cone ordering. Also, since bi ≡ 1∀i, we have that

∑m
i=1 dibi ≡
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∑m
i=1 di, and thus this set contains at least one element in each equivalence

class mod |A|. This means that each element of S is good and therefore
each such element subtracted by A1 is a Frobenius vector, yielding exactly(
|A|+ m− 2

m− 1

)
different Frobenius vectors.

11 Induced Cone Ordering and lub-complete

vectors

11.1 Definitions

Definition 11.1. Call a vector lub-complete if it is greater than a complete
set of coset representatives. Call a minimal lub-complete vector with respect
to cone ordering minimal lub-complete. The set of all minimal lub-complete
is G +A1 and for each minimal lub-complete vector there is a corresponding
g-vector which is less than it by exactly A1.

Definition 11.2. Call vs a supporting vector of lub-complete v with respect
to ≤-ordering when vs ≤ v, vs 6≺ v and 6 ∃v′

s ≡ vs with v
′
s ≤ v.

Definition 11.3. Call two vectors of the same congruence class neighboring
if there is no vector of their congruence class between their lub and glb.

Definition 11.4. Denote ≤-relation with respect to B-basis as ≤
B

Definition 11.5. Define B-plane to be the plane spanned by B-vectors.

11.2 Induced cone ordering for m = 2

In the same way as A-vectors define cone ordering in Rn, there exist two
vectors defining the induced cone ordering on the B-plane. If B-vectors are
colinear, cone ordering defines a total ordering on BN0 . Here we are assuming
that B-vectors are not colinear.

Definition 11.6. On the B-plane define induced cone ordering to be the
ordering equivalent to the cone ordering on the B-plane. Below we find some
properties of this ordering. This ordering enables us to use arguments from
the 2-dimensional case in n-dimensions.
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Below we find the vectors defining the induced cone ordering:

First define
b2,i max

b1,i max
= max(

b2,i

b1,i
) and

b2,i min

b1,i min
= min(

b2,i

b1,i
) where i can only

be such that b1,i 6= 0. Analogously define
b1,i max

b2,i max
and

b1,i min

b2,i min
.

1. If for all i, b1,i 6= 0 or both b1,i = b2,i = 0, then the induced cone ordering

is defined by the vectors ã1 =
b2,i max

b1,i max
b1−b2 and ã2 = − b2,i min

b1,i min
b1 +b2.

2. If for all i, b2,i 6= 0 or both b1,i = b2,i = 0, then the induced cone ordering

is defined by the vectors ã1 =
b1,i max

b2,i max
b2−b1 and ã2 = − b1,i min

b2,i min
b2 +b1.

3. If there exist i and j with b1,i = 0, b2,i 6= 0 and b2,j = 0 and b1,j 6= 0,
then the induced cone ordering is defined by the vectors ã1 = b1 and
ã2 = b2.

Definition 11.7. Denote ≤-relation defined by the induced cone ordering as
≤
∼

and ≺-relation as ≺
∼
. Henceforth Ã will refer to ã1 and ã2.

Lemma 11.8. If for all i, b1,i 6= 0 or both b1,i = b2,i = 0, then
b2,i max

b1,i max
6=

b2,i min

b1,i min
. It then follows

b2,i max

b1,i max
6= 0.

Proof. If we suppose the opposite, we have
b2,i0

b1,i0
=

b2,i

b1,i
(assuming that there

is i0 with b1,i0 6= 0) which means that b2,i =
b2,i0

b1,i0
b1,i for all i with b1,i 6= 0.

The equality still holds when b1,i = 0 as then we also have b2,i = 0 from the
assumptions of the lemma. Thus, we reach contradiction as B vectors are
assumed to be not colinear.

Lemma 11.9. In all cases b1, b2 ≥
∼

0

Proof. When ã1 = b1 and ã2 = b2 the claim is obvious. When ã1 =
b2,i max

b1,i max
b1 − b2 and ã2 = − b2,i min

b1,i min
b1 + b2 we see that

b1 =
ã1 + ã2

b2,i max

b1,i max
− b2,i min

b1,i min

≥
∼

0
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and (as by Lemma 11.8
b2,i max

b1,i max
6= 0 and

b2,i max

b1,i max
>

b2,i min

b1,i min
)

b2 =
ã2 +

b1,i max

b2,i max

b2,i min

b1,i min
ã1

1− b1,i max

b2,i max

b2,i min

b1,i min

≥
∼

0

as claimed.

Theorem 11.10. The induced cone ordering and the cone ordering are equiv-
alent on the B-plane.

Proof. It is sufficient to show that ≥ 0 is equivalent to ≥
∼

0.

For every c1b1 + c2b2 for it to be ≥ 0 it is necessary and sufficient to
satisfy c1b1,i +c2b2,i ≥ 0 for all i. Next, in separate cases we obtain more spe-
cific criteria: If b1,i = 0 and b2,i = 0 the inequality holds trivially. If b1,i 6= 0

it is equivalent to c1 ≥ −c2
b2,i

b1,i
which is in turn equivalent to c1 ≥ −c2

b2,i min

b1,i min

when c2 ≥ 0 and c1 ≥ −c2
b2,i max

b1,i max
when c2 ≤ 0. If b1,i = 0 and b2,i 6= 0 it is

equivalent to c2 ≥ 0. Finally, if b2,i = 0 and b1,i 6= 0 it is equivalent to c1 ≥ 0.

We need to show that d1ã1 + d2ã2 ≥ 0 iff d1, d2 ≥ 0 where ã1 and ã1 are
as defined above.

First case: there doesn’t exist i with b1,i = 0 and b2,i 6= 0.

We rewrite d1ã1 + d2ã2 = (d1
b2,i max

b1,i max
− d2

b2,i min

b1,i min
)b1 + (d2− d1)b2 = c1b1 +

c2b2. Now let’s check when our criterion is satisfied: If d2 − d1 = c2 ≥ 0,
c1 ≥ −c2

b2,i min

b1,i min
is equivalent to d1

b2,i max

b1,i max
−d2

b2,i min

b1,i min
≥ −(d2−d1)

b2,i min

b1,i min
equiva-

lent to d1(
b2,i max

b1,i max
− b2,i min

b1,i min
) ≥ 0 by Lemma 11.8 equivalent to d1 ≥ 0 which with

d2−d1 ≥ 0 implies d2 ≥ 0. If d2−d1 = c2 ≤ 0, c1 ≥ −c2
b2,i max

b1,i max
is equivalent to

d1
b2,i max

b1,i max
− d2

b2,i min

b1,i min
≥ −(d2 − d1)

b2,i max

b1,i max
equivalent to d1(

b2,i max

b1,i max
− b2,i min

b1,i min
) ≥ 0

which is analogous to the d2 − d1 ≥ 0 case.

Second case: there doesn’t exist i with b2,i = 0 and b1,i 6= 0. This case is
analogous to the first case.
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Third case: there exist i and j with b1,i = 0, b2,i 6= 0 and b2,j = 0, b1,j 6= 0.

In this case d1ã1+d2ã2 = d1b1+d2b2 ≥ 0 iff c1 = d1 ≥ 0 and c2 = d2 ≥ 0
as claimed.

Lemma 11.11. For any v on the B-plane all of its supporting vectors with
respect to the induced cone ordering are also its supporting vectors with respect
to the cone ordering.

Proof. Let vs be a supporting vector of v with respect to the induced cone

ordering: vs ≤
∼

v, vs 6≺
∼

v and 6 ∃v′
s ≡ vs, v

′
s ≤

∼
v. If vs = Ã

[
ṽs,1

ṽs,2

]
and

v = Ã

[
ṽ1

ṽ2

]
, then either ṽs,1 = ṽ1 or ṽs,2 = ṽ2. As the cases are analogous

let’s deal with ṽs,1 = ṽ1. When for all i, b1,i 6= 0 or both b1,i = b2,i = 0,

ṽs,1 = ṽ1 means v − vs is a multiple of ã2 = − b2,i min

b1,i min
b1 + b2 which implies

that v − vs has a zero coordinate in the i-th dimension where i is the one
at which − b2,i

b1,i
reaches its minimum. Cases when for all i, b2,i 6= 0 or both

b1,i = b2,i = 0 and when there exist i and j with b1,i = 0, b2,i 6= 0 and b2,j = 0
and b1,j 6= 0 are analogous.

11.3 Clustering of minimal lub-complete in n-dimensions

Definition 11.12. Define lub-cluster to be a minimal lub-complete vector
with respect to the induced cone ordering.

The following lemma justifies the choice of the term lub-cluster:

Lemma 11.13. For every lub-cluster v there exists a minimal lub-complete
w with w ≤ v and for every such w its set of supporting vectors includes the
set of supporting vectors of v.

Proof. As the v is minimal lub-complete with respect to the induced cone
ordering it is lub-complete with respect to the cone ordering. Then there
exists a minimal lub-complete w with w ≤ v.

Suppose there exists a supporting vector vs of v which isn’t a supporting
vector of w. If vs 6≤ w, then there exists a MIN vector ws with ws ≡ vs
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and ws ≤ w ≤ v which contradicts with vs being a supporting vector of
v. If vs ≺ w ≤ v, we have vs ≺ v which is in contradiction with vs being
a supporting vector of v. Thus, we can only have vs ≤ w while vs 6≺ w.
Also by previous argument we cannot have ws ≡ vs and ws ≤ w, so vs is a
supporting vector of w.

Lemma 11.14. There exists a sequence of lub-clusters li = Ã

[
li,1
li,2

]
(i =

1, ..., ilast) such that

1. li,1 < li+1,1 for 1 ≤ i ≤ ilast − 1

2. There doesn’t exist an lub-cluster l
′
=

[
l
′
1

l
′
2

]
with l

′
1 < l1,1 or l

′
1 > lilast,1

3. There exist two neighboring supporting vectors s1(i) =

[
s1,1

s1,2

]
and

s2(i) =

[
s2,1

s2,2

]
with s1,2 = li,2, s1,1 ≤ li,1, s2,1 = li+1,1, s2,2 ≤ li+1,2 for

1 ≤ i ≤ ilast − 1

4. There exist supporting points s1 and silast of l1 and lilast respectively,
such that s1,1 = l1,1, silast,2 = lilast

and 6 ∃s′1, s
′

ilast
congruent to them

with s
′
1,1 < s1,1, s

′
ilast,1

> silast,1.

Proof. Choose lmin to be the least number such that there exists a complete
set of coset representatives {wi}i=|A|i=1 with wi,1 ≤ lmin. From minimality
of lmin we must have 4. Property 4 for the last li in the sequence can be
proved analogously. As the number of residue classes is finite, there exists

max({wi,2}) so that

[
lmin

max({wi,2})

]
is lub-complete. Then there exists an

lub-cluster l1 ≤
[

lmin

max({wi,2})

]
which also satisfies l1,1 = lmin and 2 by the

choice of lmin.
Now let’s define the rest of the sequence by induction. If we have li let’s

define li+1. Let {wj} is the set of all supporting vectors of li such that wj,2 =
li,2 for all wj. If for some of wj there doesn’t exist a neighboring w

′

j ≡ wj

such that w
′
j,1 > wj,1 we reached the last vector in our sequence because for
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any li+1 with li+1,1 > li,1 we have li+1,2 < li,2 = wj,2 and we cannot have a
complete set of coset representatives less than li+1. Otherwise there exists
the set {w′

j} of neighboring vectors with w
′
j,1 > wj,1. Let li+1,1 = max({w′

j})

and j be the index of one of w
′

j for which the max is achieved. Then

[
li+1,1

li,2

]
is lub-complete, there are no supporting vectors wj with wj,2 = li,2 so there

must exist an lub-cluster li+1 =

[
li+1,1

li+1,2

]
with li+1,2 < li,2. Then wj and

w
′

j are supporting vectors of li and li+1 respectively. Also as wj and w
′

j are
neighboring, 3 is satisfied and 1 is obviously satisfied by construction of the
li sequence.

11.4 Vadim’s Theorem

Here we show an application of the tools developed above in an alternate
proof of Vadim’s Theorem.

For the case m = 2 we want to show that for every element w ∈ MIN,
w ≤ g + A1 where g ∈ G.

Set b1,i and b2,i be i-th coordinates of corresponding B-vectors with re-
spect to the A-basis. As all B-vectors are in the cone spanned by A-vectors
all bj,i are nonnegative. If B vectors are colinear, then the MIN set lies on the
line spanned by the B vectors. As B vectors are inside the A cone, cone or-
dering defines total ordering on the line spanned by the B vectors. It follows
that |MIN| = |A| and we have a unique minimal lub-complete vector which
is greater than the entire MIN. Therefore, we can assume that B vectors are
not colinear.

Define B̃ =

[
b̃1,1 b̃2,1

b̃1,2 b̃2,2

]
as follows: b1 = b̃1,1ã1 + b̃1,2ã2 and b2 =

b̃2,1ã1 + b̃2,2ã2. As all B-vectors are in the cone spanned by Ã-vectors all
b̃i,j are nonnegative. As B vectors are not colinear we have |B̃| 6= 0 and by
swapping B-vectors if needed we will always have |B̃| > 0.

We will need the following lemma:
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Lemma 11.15. Let two vectors v1 = Ã

[
x1

y1

]
= ÃB̃

[
x1 b

y1 b

]
and v2 =

Ã

[
x2

y2

]
= ÃB̃

[
x2 b

y2 b

]
be such that x1 < x2 and y1 > y2. Then x1b < x2b

and y1b > y2b. If we start from non-strict inequalities the same proof yields
non-strict inequalities.

Proof. First

[
x1,b

y2,b

]
= B̃−1

[
x1

y1

]
= 1

|B̃|

[
b̃2,2x1 − b̃2,1y1

−b̃1,2x1 + b̃1,1y1

]
and analo-

gously

[
x2,b

y2,b

]
= 1

|B̃|

[
b̃2,2x2 − b̃2,1y2

−b̃1,2x2 + b̃1,1y2

]
.

As b̃2,2(x2 − x1) ≥ 0 ≥ b̃2,1(y2 − y1) we have |B̃|x1b = b̃2,2x1 − b̃2,1y1 <
b̃2,2x2− b̃2,1y2 = |B|x2b (the inequality becomes strict since one of the b̃2,2 and
b̃2,1 is non-zero and one of the inequalities above is strict) and as b̃1,2(x2 −
x1) ≥ 0 ≥ b̃1,1(y2− y1) we have |B|y1b = −b̃1,2x1 + b̃1,1y1 > −b̃1,2x2 + b̃1,1y2 =
|B|y2b. As |B| > 0 the claim follows.

Now let w1 = Ã

[
w1,1

w1,2

]
∈ MIN. Suppose for contradiction that w1 isn’t

less than any minimal lub-complete. Because w1 is in MIN, it isn’t greater
than any lub-cluster or else by Lemma 11.13 it will be greater than some
minimal lub-complete which must be greater than some MIN vector of the
same equivalence class as w1 which contradicts w1 ∈ MIN. Our proof will
be broken into two cases: when there exists an i such that li,1 ≤ w1,1 ≤ li+1,1

and when w1,1 < l1,1 (case when w1,1 > lilast,1 is analogous). First we prove
the latter case:

Proof. Let g = Ã

[
g1

g2

]
= ÃB̃

[
g1 b

g2 b

]
= l1 and gs = Ã

[
gs,1

gs,2

]
= ÃB̃

[
gs,1 b

gs,2 b

]
be a supporting vector of g with gs,1 = g1 and 6 ∃g′

s ≡ gs such that g
′
s,1 < gs,1

(such gs exists by 4 of Lemma 11.14). Now add to w1 enough copies of b1

and b2 so that it remains in MIN while neither w1+b1 nor w1+b2 is in MIN
(this is possible as all MIN elements can be expressed as linear combinations
of B vectors with coefficients < |A|). After this w1 will increase and there
still will be no minimal lub-complete vectors greater than it. If w1,1 ≥ g1,
we reach the contradiction in the second part of our proof. By Lemma 11.13
for any minimal lub-complete v ≤ g, gs is also a supporting vector of v and
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ls ≤ v. We cannot have w1 ≤ ls as this implies w1 ≤ v which contradicts
our assumption about w1. Then from w1,1 < gs,1, we have w1,2 > gs,2:

w1,1 < gs,1 and w1,2 > gs,2 (9)

From this by Lemma 11.15 we have

w1,1 b < gs,1 b and w1,2 b > gs,2 b (10)

If w1 ≡ gs we reach contradiction with the choice of gs as w1,1 < gs,1.

Since g is an lub-complete there is at least one vector w2 = Ã

[
w2,1

w2,2

]
=

ÃB̃

[
w2,1 b

w2,2 b

]
∈ MIN such that w2 ≡ w1 and w2 ≤ g. Among all vectors w2

such that w2 ≡ w1 (w2 6= w1) and w2,1 ≤ gs,1 choose the one with minimal
w2,1 and denote it w2. Note that our choice of w2 doesn’t anymore require
that w2 ≤ g.

If w2,1 < w1,1, we must have w2,2 > w1,2. From this by Lemma 11.15 we
have w2,1 b < w1,1 b and w2,2 b > w1,2 b. Vector

w2 + (gs −w1) = ÃB̃

[
w2,1 b + gs,1 b − w1,1 b

w2,2 b + gs,2 b − w1,2 b

]
≥
B

0

by (10) and w2,2 b > w1,2 b. By 0 < gs,1−w1,1 < w2,1 +gs,1−w1,1 < gs,1 (by (9)
and w2,1 < w1,1) we found that w2+(gs−w1) ∈ BN0 and as w2+(gs−w1) ≡
gs we reach contradiction with the choice of gs.

Then we are left with:

w1,1 < w2,1 < gs,1, w1,2 > w2,2 and w1,2 > gs,2 (11)

From (11) by Lemma 11.15 we have

w1,1b < w2,1b and w1,2b > w2,2b (12)

If w2,1 b ≤ gs,1 b, then the vector

w1 + (gs −w2) = ÃB̃

[
w1,1 b + gs,1 b − w2,1 b

w1,2 b + gs,2 b − w2,2 b

]
≥
B

0

(by w2,1 b ≤ gs,1 b and (11)) is in BN0 while w1,1 +(gs,1−w2,1) < gs,1 (by (11))
and gs ≡ w1 + (gs −w2) which again contradicts with the choice of gs.
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Also if w2,1b > gs,1 b we cannot have w2,2 b ≥ gs,2 b as this would imply
w2 ≥ gs while we know that w2,1 < gs,1. So we are left with the case

w2,1 b > gs,1 b and w2,2 b < gs,2 b (13)

Vectors v1 = w1+b2 and v2 = w1+b1 cannot be in MIN by the choice of

w1. Therefore there exist v1 s = ÃB̃

[
v1,1 s b

v1,2 s b

]
and v2 s = ÃB̃

[
v2,1 s b

v2,2 s b

]
such

that v1 s ≡ v1, v1 s � v1 and v2 s ≡ v2, v2 s � v2. We must have v1,2 b s =
v2,1 b s = 0 or else we have contradiction with w1 ∈ MIN as v1 s − b2 ∈ BN0

or v2 s − b1 ∈ BN0 . Let x = v1 s − b2 = ÃB̃

[
x1 b

x2 b

]
= ÃB̃

[
v1,1 b s

−1

]
and

y = v2 s − b1 = ÃB̃

[
y1 b

y2 b

]
= ÃB̃

[
−1

v2,2 b s

]
. As v1s < v1 and v2s < v2 we

also have x, y < w1 while also x ≡ y ≡ w1 ≡ w2.
If x1 b ≥ w2,1 b we reach contradiction as vector

x + (gs −w2) = ÃB̃

[
x1 b + gs,1 b − w2,1 b

x2 b + gs,2 b − w2,2 b

]
is in BN0 (by (13) and x1 b ≥ w2,1 b), x+(gs−w2) ≡ gs and x1+gs,1−w2,1 < gs,1

as x1 < w1,1 < w2,1 which contradicts with the choice of gs. Hence

x1 b < w2,1 b (14)

Let’s examine possible cases:

Case when y 6≥ x: If y1 ≥ x1, then we must have y2 < x2 or else y ≥ x.
Yet y1 ≥ x1 and y2 < x1 by Lemma 11.15 imply −1 = y1 b ≥ x1 b ≥ 0 so we
cannot have y1 ≥ x1. Then the vector

y + (w2 − x) = ÃB̃

[
y1 b + w2,1 b − x1 b

y2 b + w2,2 b − x2 b

]
≥
B

0

(by (14) and x2 b = −1) in BN0 , y+(w2−x) ≡ w1 ≡ w2 and y1 +w2,1−x1 <
w2,1 as y1 < x1. The parallelogram with congruent vertices {x, y, w2, y +
(w2−x)} must contain a vector congruent to gs as any vector on BZ can be
taken modulus the generating vectors of the parallelogram to obtain a vector
inside the parallelogram congruent to it. As all vectors of BZ on the segment
xy are weighted averages of x and y their B̃ coordinates are at least 0 as
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x1,2 b = y2,1 b = −1 (excepting x and y). Then also all BZ vectors inside the
parallelogram have non-negative B̃ coordinates and so are the vectors on the
segments between y and y + (w2 − x) and between x and w2. Also as all
vertices of the parallelogram have smaller first coordinates than that of gs,
all vectors inside the parallelogram have smaller first coordinates than that
of gs. Then the existing inside the parallelogram vector congruent to gs is
in BN0 (it is not congruent to x ≡ y as we proved that w1 6≡ gs) and gives
us contradiction with the choice of gs.

Case when y ≥ x and y2 b ≥ w1,2 b: Vector

w2 + (y −w1) = ÃB̃

[
w2,1 b + y1 b − w1,1 b

w2,2 b + y2 b − w1,2 b

]
≥
B

0

(by (12) and y2 b ≥ w1,2 b) is in BN0 and is less than w2 (as y ≤ w1) which
contradicts w2 ∈ MIN.

Case when y ≥ x and y2 b < w1,2 b: Vector

w1 + (x− y) = ÃB̃

[
w1,1 b + x1 b − y1 b

w1,2 b + x2 b − y2 b

]
≥
B

0

(as y1 b = −1 and y2 b < w1,2 b) is in BN0 and is less than w1 (as x ≤ y) which
contradicts with w1 ∈ MIN.

Now for the second part when w1,1 is between li,1 and li+1,1:

Proof. Again let

g1 = Ã

[
g1,1

g1,2

]
= ÃB̃

[
g1,1 b

g1,2 b

]
= li

g2 = Ã

[
g2,1

g2,2

]
= ÃB̃

[
g2,1 b

g2,2 b

]
= li+1

and

gs 1 = Ã

[
gs 1,1

gs 1,2

]
= ÃB̃

[
gs 1,1 b

gs 1,2 b

]
gs 2 = Ã

[
gs 2,1

gs 2,2

]
= ÃB̃

[
gs 2,1 b

gs 2,2 b

]
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be neighboring supporting vectors of g1 and g2 respectively with gs 1,2 = g1,2

and gs 2,1 = g2,1 (that they exist follows from 3 of Lemma 11.14). We are
assuming g1,1 ≤ w1,1 ≤ g2,1.

Since g1 is an lub-cluster (by Lemma 11.13 and by the assumption on
w1) there exists a MIN vector w2 ≡ w1 such that w2 ≤ g1. Let’s assume
that w2,1 < w1,1 as the other case is analogous. As w2 and w1 must be
incomparable we also have w2,2 > w1,2 and Lemma 11.15 yields w2,1 b < w1,1 b

and w2,2 b > w1,2 b.
It was shown in the previous case that we cannot have w1 ≤ gs 2 so

w1,2 > gs 2,2. By Lemma 11.15 this gives w1,1 b ≤ gs 2,1 b and w1,2 b ≥ gs 2,2 b.
Vector

w2 + (gs 2 −w1) = ÃB̃

[
w2,1 b + gs 2,1 b − w1,1 b

w2,2 b + gs 2,2 b − w1,2 b

]
≥
B

0

(as w1,1 b ≤ gs 2,1 b and w2,2 b ≥ w1,2 b) is in BN0 , congruent to gs 2, w2,1 +
gs 2,1 − w1,1 < gs 2,1 and w2,2 + gs 2,2 − w1,2 < w2,2 < gs 1,2 (as w2,1 < w1,1 and
w1,2 > gs 2,2). So we have contradiction with the choice of gs 2.

12 Bounding |G|
The following theorem finds a bound on |G(V )| where V is an n × (n + 2)
matrix.

Theorem 12.1. Let j be the smallest positive integer such that j · b2 can
be written as a non-negative integer linear combination of a1, . . . , an and b1.
Then |G(V )| ≤ j.

In the case where 0, b1, and b2 are linear, it has been proven that |G| = 1.
Thus we can assume that BR is a plane.

Definition 12.2. Given a vector v ∈ BR we define the values v1, v2, (v)1, . . .,
and (v)n to be the real numbers such that v1b1+v2b2 = v = (v)1a1+· · · (v)nan.

Before we prove this theorem, we will prove the correctness of several
geometric arguments which will be used. To avoid confusion between the
orderings, in this section we will use ≤A to denote our cone partial ordering.
We will now be algebraically defining several geometric concepts. These next
several definitions do not depend on the condition v||Bw, but many of the
proofs are simplified by only defining terms for this case.
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Definition 12.3. Suppose u, v, w ∈ BR and v||Bw. We say u is above line
←→vw if u2 − v2 < −v2−w2

w1−v1
(u1 − v1), and u is below line ←→vw if the inequality is

reversed, and u is on line ←→vw if we have equality.

From high school algebra, we can see that u is above ←→vw if u and 0 lie
on the same side of ←→vw whether we are looking at the Selmer lattice, or the
standard plane. Also, u is above←→vw iff u is above←→wv. The naming of above is
based on the orientation of the Selmer lattice; looking at the standard plane
would suggest the opposite definition.

Definition 12.4. Suppose u, v, w ∈ BR and v||Bw. We say u is above line
segment vw if u is above ←→vw, u1 ≤ max(v1, w1), and u2 ≤ max(v2, w2). Sim-
ilarly, we say u is below line segment vw if u is below ←→vw, u1 ≥ min(v1, w1),
and u2 ≥ min(v2, w2). Additionally, u is on line segment vw if u is on ←→vw,
max(v1, w1) ≥ u1 ≥ min(v1, w1), and max(v2, w2) ≥ u2 ≥ min(v2, w2),

This definition is best understood geometrically by looking at the Selmer
lattice. We see that u is above vw iff it is above and to the left of some
real point on vw. Now we will algebraically prove the correctness of several
geometric arguments.

Lemma 12.5. Suppose u, v, w ∈ BR, v||Bw, and u is on or above vw. Then
u ≤A lub(v, w).

Proof. WLOG assume v2 > w2, so that v1 < w1. If u1 < v1, then because
u2 ≤ max(v2, w2) = v2 we have u <B v thus u <A v ≤A lub(v, w). Now we
can assume u1 is between v1 and w1, and can write u

′
= u1−v1

w1−v1
w + w1−u1

w1−v1
v

as a weighted average of w and v with non-negative coefficients. Thus for
i = 1, . . . , n, we have (u

′
)i ≤ max((v)i, (w)i). We also have u

′
= u1−v1

w1−v1
w +

w1−u1

w1−v1
v =

u1−v1

w1−v1
(w1b1 + w2b2) + w1−u1

w1−v1
(v1b1 + v2b2) =(

u1−v1

w1−v1
w1 + w1−u1

w1−v1
v1

)
b1 +

(
u1−v1

w1−v1
w2 + w1−u1

w1−v1
v2

)
b2 =(

u1w1−u1v1

w1−v1
w1

)
b1 +

(
u1−v1

w1−v1
w2 − u1−v1

w1−v1
v2 + w1−v1

w1−v1
v2

)
b2 =

u1b1 +
(
v2 + u1−v1

w1−v1
(w2 − v2)

)
≥B u1b1 + u2b2 = u,

where the inequality is because u is below ←→vw. Finally, we have u ≤B u
′ ≤A

lub(v, w), thus u ≤A lub(v, w).
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Lemma 12.6. Suppose u, v, w ∈ BR, v||Bw, and u is below vw. Then v +
w − u is above vw. If u is instead on vw, then v + w − u is also on vw.

Proof. Let u
′
= v + w − u. We know that u2 > v2 − v2−w2

w1−v1
(v1 − u1), v2 =

v2− v2−w2

w1−v1
(v1− v1), and w2 = v2− v2−w2

w1−v1
(v1−w1). Taking the last two minus

the first, we see that u
′
2 < v2 − v2−w2

w1−v1
(v1 − u

′
1). Thus u

′
is above ←→vw. Also,

for i = 1, 2 we are given that ui ≥ min(vi, wi), thus u
′
i = vi + wi − ui =

max(vi, wi) + min(vi, wi)− ui ≤ max(vi, wi). Thus u
′
is above vw.

Now suppose instead that u is on vw. We still have u
′
i ≤ max(vi, wi),

and are given that u
′
i ≥ min(vi, wi). We can add the same three relations

as before, except in this case they are all three equalities. Thus u
′
2 = v2 −

v2−w2

w1−v1
(v1 − u

′
1), and u

′
is on vw.

Definition 12.7. We will define a complete ordering of the vectors, called
the row ordering, in BN0 where c >row c

′
if either c2 > c

′
2 or both c2 = c

′
2 and

c1 > c
′
1. Define maxrow(N) to be the element of N maximal with respect to

≤row. Given g ∈ G there are possibly many complete sets of residues N from
BN0 such that g = lub(N)−A1. We call N a minimal row representation of
g if maxrow(N) is minimized.

Lemma 12.8. For all g ∈ G there exists a row minimal representation of g
contained in the Selmer lattice.

Proof. By Theorem 1.6 there exists at least one complete set of residues
N in MIN ⊂ BN0 such that g = lub(N) − A1. Let N be a row minimal
representation of g. For each w ∈ N associate a w

′
in the Selmer diagram

from the same residue class such that w ≥B w
′
. Such a w

′
will always exist

because if w is significant, it is in the Selmer lattice, and if w is insignificant,
we have w ≥B w − z for some zero z. Let N

′
be the set of these associates.

Now lub(N)−A1 ≥ lub(N
′
)−A1 is complete. So lub(N)−A1 = lub(N

′
)−A1,

and N
′
is a row minimal representation for g from the Selmer lattice.

Lemma 12.9. If lub(N1) − A1 ∈ G and for some complete set of residues
N2 ⊂ BN0 we have lub(N2) ≤A lub(N1), then lub(N2) = lub(N1).
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Proof. For each w ∈ N2 associate a w
′ ∈ MIN from the same residue class

such that w ≥A w
′
. Let N

′
2 ⊂ MIN be the set of these associates. Now

lub(N2)−A1 ≥ lub(N
′
2)−A1 is complete by Theorem 4.1. But lub(N1)−A1

is a minimal complete point, so we have lub(N2) = lub(N1).

Lemma 12.10. Let g and g
′ ∈ G. Let N and N

′
be minimal row representa-

tions from the Selmer lattice of g and g
′
respectively. Suppose that maxrow(N)

and maxrow(N
′
) are in the same row. Then g = g

′
.

Proof. By Lemma 12.8, such a N and N
′
exist. Suppose that N and N

′
are

not equal but have k elements in common. We will show that N and N
′
could

have been chosen to have k + 1 elements in common. Let m = maxrow(N)
and m

′
= maxrow(N

′
). Let v ∈ N\N ′

and let v
′ ∈ N

′
with v

′ ≡ v. We have
v||Bv

′
so WLOG assume that v1 > v

′
1.

Case 1: m 6= m
′
. Because m2 = m

′
2 we may assume WLOG, that m <B

m
′
. Let w ∈ N such that w ≡ m

′
. Because m

′
> maxrow(N) we have m

′ 6= w,
and thus m

′||Bw. Now m
′
2 > w2 and w1 > m

′
1. Now consider w

′
= w+m−m

′
.

Both w
′
2 = w2 and w

′
1 = m1 + (w1 − m

′
1) are in N0, so w

′ ∈ BN0 . Also
w
′ ≤ w ≤ lub(N). Thus lub(w

′
, N\m) ≤ lub(w

′
, N) = lub(N). By Lemma

12.9, lub(w
′
, N\m) = lub(N), which contradicts the row minimality of N .

Case 2: m = m
′
and v <B m. We can replace v

′
with v in N

′
without

changing lub(N
′
), by Lemma 12.9. Now the new N

′
and N have k + 1

elements in common. The case where m = m
′
and v

′
<B m is equivalent.

Case 3: m = m
′
and v

′
is above or on←→mv. We have v

′
2 ≤ m2 and v

′
1 ≤ v1.

Thus v
′

is above mv. By Lemma 12.5, v
′ ≤ lub(m, v). Now lub(N) =

lub(v
′
, N) ≥ lub(v

′
, N\v), and by Lemma 12.9, lub(N) = lub(v

′
, N\v). Now

{v′ , N\v} and N
′
have k + 1 elements in common.

Case 4: m = m
′
and v

′
is below ←→mv. We can assume that we are not in

case 2, so v
′||Bm. Thus v

′
1 > m1 and v

′
2 < v2 so v

′
is below mv. By Lemma

12.6, m + v − v
′
is above mv and by Lemma 12.5, m + v − v

′ ≤ lub(m, v).
Notice that m ≡ m + v − v

′
. Now lub(N

′
) = lub(m + v − v

′
, N

′
) ≥ lub(m +

v − v
′
, N

′\m) and by Lemma 12.9, lub(N
′
) = lub(m + v − v

′
, N

′\m), which
contradicts the row minimality of N

′
.

Thus whenever N and N
′
are not equal, we can increase the cardinality

of their intersection. Applying this argument repeatedly, we see that we can
choose N = N

′
, and thus g = g

′
.
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Now we will prove Theorem 12.1.

Proof. Let g ∈ G. Let N be a row minimal representation of g. Let m =
maxrow N . Suppose for contradiction that m2 ≥ j. We know that there
exist non-negative integers c1, c2, c3 such that jb2 = c1a1 + c2a2 + c3b1. Now
m = m1b1 + m2b2 = c1a1 + c2a2 + (c3 + m1)b1 + (m2 − j)b2. By replacing m
with (c3 + m1)b1 + (m2 − j)b2, we see that N is not row maximal, and thus
m2 < j. The possible values for m2 are 0, 1, . . . , j − 1. But no two g-vectors
can share an m2 value by Lemma 12.10. Thus |G| ≤ j.

This bound is based on all of the generating vectors. As a corollary, we
immediately see that |A| alone can bound |G|.

Corollary 12.11. Let m = 2. Then |G| ≤ |A|.

Proof. Addition mod A is a group of order |A|, so |A|b2 ≡ 0, and |A|b2 ≥ 0.
Thus |A|b2 ∈ AN0 ⊂ MN0 . Defining j as in Theorem 12.1, we see that
|G| ≤ j ≤ |A|.

13 Clustering

Definition 13.1. Define h-vectors to be minimal g-complete vectors with
respect to cone ordering on Zn.

Given coordinates of one g-vector we can find all h-vectors which are
strictly inside its cone.

First we need some classification of lines parallel to a1 or a2 on the lattice.
If either a1 or a2 have GCD of their coordinates not equal to 1, we factor
this GCD out and obtain a pair of vectors with relatively prime coordinates.
When coordinates are relatively prime, it is easier for us to describe the
integral points on lines parallel to a1 and a2. To these vectors we shall
further refer as a1 r and a2 r. The matrix composed of these new vectors
shall be referred to as reduced A matrix and denoted Ar. To avoid confusion
with orientation, let a2 r have a steeper slope than a1 r.

Equation of a line parallel to a1 r and passing through an integral point
(x1, y1) is a1,2 r(x − x1) − a1,1 r(y − y1) = 0. This line intersects 0y axis at
the point (0, y1 − a1,2 rx1

a1,1 r
) = (0, a1,1 ry1−a1,2 rx1

a1,1 r
). Thus we can classify each line
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parallel to a1 r by the integer N which we will call id number with respect to
origin.

Line equation with id N can be rewritten as a1,2 rx− a1,1 r(y− N
a1,1 r

) = 0.

Then integral points on the line can be described as follows: x = ka1,1 r −
a−1

1,2 rN and y = N
a1,1 r

+
a1,2 r(ka1,1 r−a−1

1,2 rN)

a1,1 r
= ka1,2 r + N

1−a1,2 ra−1
1,2 r

a1,1 r
where

the inverses are taken modulus a1,1 r (and so we mean in later parts of
the document; inverse exists as GCD(a1,1 r, a1,2 r) = 1) and k ∈ Z. If we
make the translation of basis to the one defined by reduced A matrix the

points will be described as follows: x = k − N
a−1
1,2 r|Ar|+a2,1 r

a1,1 r|Ar| , y = N
|Ar| with

|Ar| = a1,1 ra2,2 r − a1,2 ra2,1 r. Notice that l = −a−1
1,2 r|Ar|+a2,1 r

a1,1 r
is an integer.

Thus x = k + N l
|Ar| , y = N

|Ar| !.

Let g =

[
g1

g2

]
= Ar

[
g
′
1

g
′
2

]
denote a g-vector. It is straightforward to

find the greatest integral point with the same a2 r coordinate as g and less
than g. First we find the id of the line parallel to a1 r passing through g with

respect to origin: a1,1 rg2 − a1,2 rg1. Denoting the point h = Ar

[
h
′
1

h
′
2

]
, h

′
1

must be maximal such that h
′
1 = k + (a1,1 rg2 − a1,2 rg1)

l
|Ar| ≤ g

′
1. From this

we have k = bg′1 − (a1,1 rg2 − a1,2 rg1)
l

|Ar|c so

h = Ar

[
h
′
1

h
′
2

]
= Ar

[
bg′1 − (a1,1 rg2 − a1,2 rg1)

l
|Ar|c+ (a1,1 rg2 − a1,2 rg1)

l
|Ar|

g
′
2

]
Analogously we find the greatest integral point less than g and with the same
a1 r coordinate as g:

f = Ar

[
f
′
1

f
′
2

]
= Ar

[
g
′
1

bg′2 − (a2,2 rg1 − a2,1 rg2)
m
|Ar|c+ (a2,2 rg1 − a2,1 rg2)

m
|Ar|

]

where m = −a−1
2,1 r|Ar|+a1,2 r

a2,2 r
(this time only the inverse is taken modulus a2,2 r).

Now if we move origin to h for our convenience, it is easy to calculate
coordinates of g with respect to h. Next with respect to this new origin we
consider the lines parallel to a1 r. They will be inside the cone of g if and only
if their id number is positive as id has the same sign as the a2 r coordinate
of points on the line. Also the ids are bounded by the id of the line passing
through f + a2 r which is exactly (f

′
2 + 1)|Ar| = M . As we increase the id N
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while 0 ≤ N ≤ (f
′
2 +1)|Ar| for each line with the id we find the point suspect

to be an h-vector – the least point on the line which is inside the cone: Recall
that the general form of a1 r coordinate of an integral point on the line with
N id is k+N l

|Ar| . If the coordinate is greater than 1, which is the coordinate
of h + a1 r, the point cannot be an h-vector. Also the coordinate cannot be
negative and still! be inside the cone of g. This leaves the a1 r coordinate only
to be mod(lN,|Ar|)

|Ar| . To decide whether the point is an h-vector, compare its a1 r

coordinate with the a1 r coordinate of the previous h-vector obtained by this
process (if this is the first line we need to compare with the a1 r coordinate
of h + a1 r = 1). If it is less than that of the previous and still greater than
that of f + a2 r = M

|Ar| , it is an h-vector; otherwise it isn’t an h-vector. So if
we define the sequence of a1 r coordinates of suspect h-vectors multiplied by

|Ar|, {mod(lN, |Ar|)}N<(f
′
2+1)|Ar|

N=1 (mod function here returns remainders from
1 to |Ar|), the strictly decreasing subsequence obtained from it by choosing
only terms which are less than the previously chosen terms and greater than
M = (f

′
1 + 1)|Ar|, will correspond to the h-vectors which are strictly inside

the cone of g. As the number of terms in such sequences is bounded by
|Ar|− 2 we can have no more than |Ar|− 2 h-vectors strictly inside the cone.
However, |Ar| − 2 is not achievable for all Ar matrices and we can give a

better bound if we use l: First b |Ar|
mod(−l,|Ar|)c terms will be decreasing and the

rest must be less than mod(b |Ar|
mod(−l,|Ar|)cl, |A

r|) which yields:

Theorem 13.2. Given a reduced matrix Ar, the number of h-vectors con-
tained strictly inside a cone of a g-vector is bound by b |A

r|
d
c+mod(|Ar|, d)−1

where d = mod(
a−1
1,2 r|Ar|+a2,1 r

a1,1 r
, |Ar|)

14 Unbound

Definition 14.1. For a vector v let vi denote i-th coordinate with respect to
the standard orthonormal basis and let v

′
i = (A−1v)i. For example, for gk,

g
′

k,i = (A−1gk)i.

Definition 14.2. Define e-class to mean equivalence class with respect to A.
If we have a generating vector b1 we can assign a residue number t(x) (0 ≤
t(x) ≤ |A| − 1) to each vector x so that x ≡ t(x)b1 mod(A). This number
will correspond to an e-class and we shall further refer to e-classes by these
numbers.
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Definition 14.3. For a vector g, we say that it contains vector x when
g + A1 ≥ x which is equivalent to g

′
i + 1 ≥ x

′
i for every i. We say that it

contains a residue class when it contains a vector from this residue class.

Theorem 14.4. Let b1 be a generator of all residue classes and b2 be such
that b2 ≡ tb1 mod(A) (1 ≤ t ≤ |A| − 1) while b

′
2,2 > (|A| − 1)b

′
1,2. Then for

k(0 < k ≤ min( |A|
|A|−t

,
tb
′
1,1

(|A|−t)b
′
1,1+b

′
2,1

)) the following will be g-vectors:

g0 = (|A| − 1)b1 −A1,

gk = lub((|A| − k(|A| − t)− 1)b1, kb2 + (|A| − t− 1)b1)−A1

Proof. Define s = |A| − t.
From the restriction on k we have k(sb

′
1,1 + b

′
2,1) ≤ (|A| − s)b

′
1,1 or kb

′
2,1 +

(s− 1)b
′
1,1 ≤ (|A| − ks− 1)b

′
1,1.

Also as b
′
2,2 > (|A| − 1)b

′
1,2, kb

′
2,2 + (s − 1)b

′
1,2 ≥ b

′
2,2 ≥ (|A| − 1)b

′
1,2 ≥

(|A| − ks− 1)b
′
1,2.

Putting this together we have gk = A

[
g
′

k,1

g
′

k,2

]
= lub((|A| − k(|A| − t) −

1)b1, kb2 + (|A| − t− 1)b1)−A1 = A

[
(|A| − ks− 1)b

′
1,1 − 1

kb
′
2,2 + (s− 1)b

′
1,2 − 1

]
First we prove that gk are g-complete.

As b1 is a generator (|A|−1)b1−A1 is g-complete. Also since gk +A1 ≥
(|A| − 1 − ks)b1 ≥ (|A| − 1 − ks − i)b1, (0 ≤ i ≤ |A| − 1 − ks), gk

contains the following e-classes: {0, 1, ..., |A| − 1 − ks} and as gk + A1 ≥
kb2 + (s − 1)b1 ≥ ib2 + jb1, (1 ≤ i ≤ k, 0 ≤ j ≤ s − 1), it also contains
{|A| − ks, |A| − ks + 1, ..., |A| − (k − 1)s− 1, |A| − (k − 1)s, |A| − (k − 1)s +
1, ..., |A| − (k− 2)s− 1, ..., |A| − s, |A| − s + 1, ..., |A| − 1} and is g-complete.
(here we are using Theorem 4.1)

Second we prove that gk are minimal g-complete.

For g0, g0 + A1 6≥ ib2 + jb1, (i > 0) as b
′
2,2 > (|A| − 1)b

′
1,2, so g0 =

lub(0,b1, ..., (|A| − 1)b1)−A1 is a g-vector as any vector which is less than
g0 will not contain |A| elements from MIN .

For gk, elements (k + i)b2 + jb1 (i > 0) are not contained by gk as
(k + i)b

′
2,2 + jb

′
1,2 ≥ kb

′
2,2 + b

′
2,2 > kb

′
2,2 + (|A| − 1)b

′
1,2 > kb

′
2,2 + (s− 1)b

′
1,2.

70



Now if we show that (|A| − ks − 1)b1 and kb2 + (s − 1)b1 are the only
elements of their respective e-classes that are contained by gk, we will prove
that gk is a g-vector.

For i ≤ k elements ib2+jb1 congruent to kb2+(s−1)b1 are not contained
by gk because ib2+jb1 ≡ kb2+(s−1)b1 implies j ≡ s(i−k)+s−1 mod(|A|)
or j = n|A| + s(i − k) + s − 1 where n > 0 as j ≥ 0 (except when i = k,
n ≥ 0). When i < k we have ib

′
2,1 + jb

′
1,1 ≥ jb

′
1,1 ≥ (|A| − ks + s − 1)b

′
1,1 >

(|A| − ks− 1)b
′
1,1 = g

′

k,1 + 1 and gk doesn’t contain ib2 + jb1. When i = k
we have ib2 + jb1 = kb2 + (n|A| + s− 1)b1 ≥ kb2 + (s− 1)b1 (for n > 0)
which proves that kb2 + (s − 1)b1 is the only element of its e-class that is
contained by gk.

Analogously, for elements ib2 + jb1 congruent to (|A|−ks−1)b1 are not
contained by gk because ib2 + jb1 ≡ (|A| − ks− 1)b1 implies j ≡ s(i− k)−
1 mod(|A|) or j = n|A|+s(i−k)−1 where n > 0 as j ≥ 0. This in turn implies
that ib

′
2,1 +jb

′
1,1 ≥ jb

′
1,1 ≥ (|A|+s(i−k)−1)b

′
1,1 ≥ (|A|−ks−1)b

′
1,1 = g

′

k,1 +1
(we have strict inequality when i > 0) which shows that (|A| − ks− 1)b1 is
the only element of its e-class that is contained by gk.

Corollary 14.5. If A =

[
a1 0
0 a2

]
and b1 =

[
1
1

]
we can have max(a1, a2)

g-vectors.

Proof. Use Theorem 1 with t = |A| − 1, b2,1 = a1 − 1, b2,2 = la2 − 1 where l
is such that b2,2 > (a1a2 − 1)b1,2.

15 Further Possibilities

On the topic of adjacency:
Explore the structure of blocks in n > 2 dimensions.
It is not true, as we at one time considered, that all blocks are either of

size n when |G| ≥ n or size |G| otherwise. It may be worthwhile to attempt
a characterization of these blocks.

On the topic of order and the MIN set:
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Let α(bi) ∈ N be the smallest element such that α(bi)bi ∈ [M − bi]N0 . We
define the following set:

S ′
M =

{
m∑

i=1

cibi | 0 ≤ ci < α(bi)

}

Conjecture 15.1. MIN ⊆ S ′
M

This result would be an improvement on Lemma 3.1. Furthermore, con-
sider x ∈ Nm such that Bx is minimal and Bx ≡ 0 mod A. Let X be the
set of all such x. We denote the ith coordinate in x as (x)i. Now consider
the following set:

S
′
M =

{
m∑

i=1

cibi | (x)i ≤ ci < α(bi),∀x ∈ X

}

Consider this rough argument:
Let v ∈ S

′
M ⊆ S ′

M . Then v = s + γBx where s ∈ S ′
M \ S

′
M . Thus

v = s + γBx ≡> s + 0γ

implies that v /∈MIN . Therefore MIN ⊆ S ′
M \ S

′
M .

The idea is that this set S
′
M contains the elements in S ′

M (or simply SM)
that are not in MIN due to this Bx element. We have the following two
possible conjectures, the first being a weaker version of the second. In the
n = m = 2 case, the second possibility seems to be true.

Conjecture 15.2.

• MIN ⊆ S ′
M \ S

′
M

• S ′
M \ S

′
M = MIN

On the topic of the Selmer Lattice:
Extend the Selmer Lattice to m > 2.

It may be possible to extend Theorem 12.1:
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Conjecture 15.3. Let m = 3. Let j1 be the smallest integer such that j1b2

is in [A|b1]N0 and let j2 be the smallest integer such that j2b3 is in [A|b1|b2]N0.
Then |G| ≤ j1j2.

Other conjectures:
The following conjecture concerns the “shape” of the distribution of the

g vectors in a monoid.

Conjecture 15.4. Elements of G are either concave up (with respect to cone
ordering) or lie along a line.
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