
A New Character for Polyhedrons in Rn

+

Evan O’Dea

January 19, 2007

1 Notation and Terminology

We begin by introducing the notation used throughout the paper. First, a subscript on a vector
refers to a specific component of that vector. A number as a subscript refers to a single component,
such as x1, x2, x3, xi, or xn. A set as a subscript refers to a new vector composed of the indicated
components. For example, if S = {1, 2, 4}, then xS = (x1, x2, x4)

T . Similar to how a subscript on
a vector refers to certain components, we use a subscript on a matrix to refer to a subset of the
columns of the matrix. A number as a subscript refers to a single column of a matrix. A set as
a subscript refers to the indicated collection of columns, so using S from above, AS = [A1|A2|A4].
Such labeling of vectors and matrices complement each other so that matrix multiplication works
and we get ASxS = A1x1+A2x2+A4x4. We use e to represent a vector of 1’s. The length of e varies
to accommodate context. For example, given the matrix multiplication Ae, we infer that the length
of e is the same as the number of columns in A. We use the notation <L to mean lexicographically
less than, and >L to mean lexicographically greater than. We say that x is lexicographically less
than y if the minimal index, i, such that xi 6= yi satisfies xi < yi. We write x <L y.

For a permutation σ, we write xσ to denote the vector x after its components are reordered ac-
cording to σ. For example, given x = (8, 5, 9, 7)T and σ = (3, 2, 4, 1), we have xσ = (x3, x2, x4, x1)

T =
(9, 5, 7, 8)T . We use the function “sort” as a function that rearranges the components of a vector in a
non-increasing order. For example, using x = (8, 5, 9, 7)T from above, we get sort(x) = (9, 8, 7, 5)T .
The “sort-order” of a vector x is the order of the components of x from greatest to smallest. We
formalize this notion of sort-order by defining the set Σ(x) = {σ : xσ = sort(x)}. We see that
for x = (8, 5, 9, 7)T , we have Σ(x) = {(3, 1, 4, 2)}. This is a clear and succinct way to denote that
x3 ≥ x1 ≥ x4 ≥ x2. We should point out that when a vector x contains repeated values, there are
multiple permutations on the components of x that produce sort(x), and so in general |Σ(x)| ≥ 1.
Consider x = (5, 7, 6, 6)T . Using bold font to show the effect of the repeated 6, we have

sort(x) = (7, 6, 6, 5)T = (x2, x3, x4, x1)
T = (x2, x4, x3, x1)

T ,

so Σ(x) = {(2,3,4, 1), (2,4,3, 1)}. We say that two vectors x and y are sort-similar if

Σ(x) ∩ Σ(y) 6= ∅.

We should point out that sort-similarity is not transitive. For example, consider x = (4, 5, 6)T , y =
(4, 6, 6)T , and z = (4, 6, 5)T . We get

Σ(x) = {(3, 2, 1)}, Σ(y) = {(3, 2, 1), (2, 3, 1)}, Σ(z) = {(2, 3, 1)}.

Notice that x and y are sort-similar, and y and z are sort-similar, but x and z aren’t sort-similar.
This example illustrates that two vectors x and z are not sort-similar if and only if there exist indices
i and j such that xi > xj and zi < zj . This fact is fundamental to some of the proofs included in
this paper.

2 Introduction

Our work is motivated by the beam selection problem in radiotherapy, as presented in [1]. We
will briefly review the essential parts of their treatment design process, but for an in-depth look
please refer to the paper. The method in [1] is based on a probability distribution that assigns a
probability to each angle from which radiation might be delivered. The probability assignment is
based on the lexmin-sort vector, which we call z∗ and will define shortly. In [1], the authors present
an iterative algorithm that computes the lexmin-sort z∗, and we expect our audience to have some
familiarity with this, but we will review the algorithm and introduce our own notation to better suit
our purposes.

2

In the first step of treatment design, a physician details a prescription. The prescription defines
the amount of energy sought to be delivered to the target, as well as the limitations on the energy
that can safely be delivered to the healthy anatomy. We model the prescription as a vector b̂, which
describes the bounds for the various anatomical structures. A treatment refers to one possible way
to deliver radiation to the patient, that is, a particular treatment assigns an exposure time to each
angle. We model a treatment as a vector x, whose components represent the exposure time for each
angle. Finally, since the physical interactions of the beams and the energy that they deliver follow
linear relationships, we can create a linear transformation that accurately maps a treatment to the
energy that it delivers throughout the patient’s anatomy. We model this as a matrix A so that the
function x 7→ Ax maps the treatment x to the energy that it delivers throughout the anatomy. This
forms the basis for the system from which an ideal treatment x will be selected. We consider the
polyhedron

P = {x : Ax = b, x ≥ 0},

where all x ∈ P are considered optimal. Assume in all cases that A ∈ Rm×n.
In the beam selection method presented in [1], a probability distribution assigns value to each

i ∈ {1, 2, 3, . . . , n}. Since each index of x ∈ P represents one angle from which radiation might be
emitted, this effectively assigns probability to each angle. The probability distribution is based on
the lexmin-sort vector of P , defined as

z∗ = lexmin{sort(x) : x ∈ P}.

Additionally, we define

P∗ = arglexmin{sort(x) : x ∈ P} = {x ∈ P : sort(x) = z∗}.

The probability distribution that the authors of [1] have designed assigns probability as

p(i) =
1

‖x∗‖
x∗.

This method effectively assigns high probability values, meaning that it is useful in beam selection,
but for the purpose of reducing the size of the problem we are interested in angles that are assigned
a value of zero, i.e. p(i) = 0. If we can isolate angles such that xi = 0 for all x ∈ P , then we can
remove them from consideration and thus reduce the size of the problem. So for the purpose of
radiotherapy, our question becomes Does p(i) = 0 imply that xi = 0 for all x ∈ P? (The reverse of
this is clearly true.) Notice, though, that if xi = 0 for all x ∈ P , then in our system P we have an
implied equality for xi ≥ 0. So our question in radiotherapy leads us to the broader task of studying
if (and if so, when) this probability distribution can identify implied equalities in linear systems.

We pose our question using two characters defined on {1, 2, 3, . . . , n}. We define the character
(B|N) by

N = {i : xi = 0 ∀ x ∈ P}, and B = {i : ∃ x ∈ P such that xi > 0},

and (β|ε) by
η = {i : x∗

i = 0}, and β = {i : x∗
i > 0}.

So we see that we have p(i) = 0 ⇐⇒ xi = 0 for all x ∈ P if and only if we have (B|N) = (β|η). It
is simple to conjure examples that show that this is not always the case, so our work is aimed at
identifying conditions that could guarantee that (B|N) = (β|η).

3 Results and Conjectures

Now we move into our results, the first of which requires a lengthy lemma.

3

Lemma 3.1 Let h, k be such that h, k ∈ Rn, h, k ≥ 0, h 6= k, and sort(h) = sort(k). Let ha and hb

be two components of h such that ha > hb and ha − hb = min{hi − hj : hi 6= hj}. (Notice that there
must exist two such elements because if hi = hj for all i, j then h = k, contradicting our hypothesis.)
Let x(α) = (1 − α)h + αk. If

α ∈

(

0,
ha − hb

hmax + ha − hmin − hb

)

,

then x(α) and h are sort-similar, and sort(x(α)) <L sort(h).

Proof: In the process of forming x(α) from h and k, we say that hi “combines” with ki to form
xi(α). Suppose that x(α) and h are not sort-similar and suppose that ha combines with kmin and
hb combines with kmax. Since x(α) and h are not sort-similar, then there exist i, j (not necessarily
distinct from a, b) such that hi > hj and xi(α) < xj(α), so we have

x(α′)i < x(α′)j

(1 − α′)hi + α′ki < (1 − α′)hj + α′kj

(1 − α′)(hi − hj) < α′(kj − ki)
(1 − α′)(ha − hb) ≤ (1 − α′)(hi − hj) < α′(kj − ki) ≤ α′(kmax − kmin)

(1 − α′)ha + α′kmin < (1 − α′)hb + α′kmax

x(α′)a < x(α′)b.

Now we show that our constraints on α guarantee xa(α) > xb(α), regardless of which components
of k ha and hb combine with.

Let α′ ∈
(

0, ha−hb

hmax+ha−hmin−hb

)

. Then

ha−hb

hmax+ha−hmin−hb
> α′

ha − hb > α′(hmax + ha − hmin − hb)
> α′hmax + α′ha − α′hmin − α′hb

ha − α′ha + α′hmin > hb − α′hb + α′hmax

(1 − α′)ha + α′hmin > (1 − α′)hb + α′hmax.

Since hmin = kmin and hmax = kmax, for all i we have

(1 − α′)ha + α′kmin > (1 − α′)hb + α′kmax

(1 − α′)ha + α′hi ≤ (1 − α′)ha + α′hmin > (1 − α′)hb + α′hmax ≥ (1 − α′)hb + α′hi.

So xa(α′) > xb(α
′). Therefore given our constraint on α, we are assured that if hi > hj , then we

have xi(α) > xj(α). Thus x(α) and h are sort-similar.

Now we show that sort(x(α)) <L sort(h). From the definition of x(α) we see that

hi = ki ⇔ hi = x(α)i

hi > ki ⇔ hi > x(α)i.

Since h 6= k and sort(h) = sort(k), we know that h and k are different permutations of the same
values, so for some i we might have hi = ki. Since h 6= k, there exists some i such that hi 6= ki. Let
t be the index such that ht 6= kt and ht ≥ hj for all hj 6= kj . So ht is the maximal component of
h that doesn’t combine with an equivalent component of k. For each hi > ht, we have hi = ki, so
hi = xi(α). Since h and k are permutations of the same values, each ki > ht has already combined
with hi > ht. Thus since ht 6= kt, we have ht > kt, and so ht > xt(α). Since x(α) and h are sort-
similar, we have that the first discrepancy encountered when lexicographically comparing sort(x(α))

4

and sort(h) is xt(α) < ht. Therefore sort(x(α)) <L sort(h).

Now we use this lemma to prove our first theorem.

Theorem 3.2 |P∗| = 1.

Proof: Suppose h, k ∈ P∗ with h 6= k. Then h, k ∈ P , so h, k ≥ 0. Letting x(α) = (1 − α)h + αk
as defined in Lemma 3.1, we have x(α) ∈ P for α ∈ (0, 1) because it’s a convex combination of h
and k. Let us constrain

0 < α <
h1 − h2

hmax + h1 − hmin − h2
.

Since h, k ∈ P∗ we know that sort(h) = sort(k) = z∗. So by Lemma 3.1, x(α) and h are sort-similar
and sort(x(α)) <L sort(h), contradicting that h ∈ P∗. Thus there cannot be two elements in P∗.

We continue by discussing the lexmin-sort algorithm presented in [1] and the relevance of the
lexmin-sort vector. We expect some familiarity with the lexmin-sort algorithm, but we adapt the
notation to the (B|N) and (β|η) partitions to better suit our presentation.

We begin by defining η0 = {1, 2, . . . , n} and β0 = ∅. As the algorithm progresses, we fix certain
components of x ∈ P , and in doing so remove them from ηt and assign them to βt. The intuition
behind these steps and the selected notation is that in the t-th iteration of the algorithm, ηt describes
the set of all components of x that are not yet fixed, so ηt is the set of indices that could possibly
be in η. Contrarily, βt is the set of indices that we have so far determined are in β. To be consistent
with our notation from the start, we think of Ax = b as Aη0xη0 = b, and we think of P as P0. We
then define

z∗1 = min{‖xη0‖∞ : xη0 ∈ P0},

β1 = {i : (xη0)i must be z∗1 when ‖xη0‖∞ is minimized to z∗
1}, and η1 = η0 \ β1.

Next we define
P1 = {x : x ∈ P0, xβ1 = z∗1},

and then begin the process again, this time working with P1. We define

z∗2 = min{‖xη1‖∞ : x ∈ P1},

β2 = {i : (xη1)i must be z∗2 when ‖xη1‖∞ is minimized to z∗
2}, and η2 = η1 \ β2,

and then define P2 = {x : x ∈ P1, xβ2 = z∗2} to repeat. The algorithm terminates in the i-th
iteration when ηi = ∅, and the result is that x∗ is the only element contained in Pi.

We attain the following generalized form for the algorithm.

• Define η0 = {1, 2, . . . , n}, β0 = ∅, and P0 = P = {x : Ax = b, x ≥ 0} as above; and initialize
t = 1.

• Do until ηt = ∅:

5

Let
z∗t = min{‖xη(t−1)

‖∞ : x ∈ Pt−1}
βt = {i : (xη(t−1)

)i must be z∗t when |xη(t−1)
|∞ = z∗t }

ηt = η(t−1) \ βt

Pt = {x : x ∈ Pt−1, xβt
= z∗t }

t = t + 1

• When ηt = ∅, we have |Pt| = 1 with Pt = {x∗}.

From x∗ we can then find (β|η). If in the last iteration z∗
t = 0, then η = ηt−1. Now we present

some corollaries that follow directly from the algorithm.

Corollary 3.3 Pt ⊆ Pt−1 for all t, so for i > j we have Pi ⊆ Pj .

Corollary 3.4 zt < zt−1 for all t, so for i > j we have zi < zj .

Now we take a more in-depth look at the steps of the algorithm to help illustrate the process.
Consider the first step of the algorithm. To make P1 we fix xβ1 = z∗1 , but consider how this affects
the equation Aη0xη0 = b. By definition β1 and η1 form a partition of η0, so we get

Aη0xη0 = [Aη1 |Aβ1]x = Aη1xη1 + Aβ1xβ1 = b.

Fixing xβ1 = z∗1 then gives
Aη1xη1 + z∗1Aβ1e = b,

so Aη1xη1 = b − z∗1Aβ1e.

This provides an alternative way to represent P1:

P1 = {x : x ∈ P0, xβ1 = z∗1} = {x : Aη1xη1 = b − z∗1Aβ1e, x ≥ 0}.

We can carry out this process again in the next step by separating Aη1 according to β2 and η2, and
then fixing xβ2 = z∗2 :

Aη1xη1 = b − z∗1Aβ1e

[Aη2 |Aβ2]xη1 = b − z∗1Aβ1e

Aη2xη2 + Aβ2xβ2 = b − z∗1Aβ1e

Aη2xη2 + z∗2Aβ2e = b − z∗
1Aβ1e

Aη2xη2 = b − z∗1Aβ1e − z∗2Aβ2e.

Again we have the alternative form P2 = {x : Aη2xη2 = b − z∗1Aβ1e − z∗2Aβ2e, x ≥ 0}. In general,
we have

Pt = {x : x ∈ Pt−1, xβ(t−1)
= z∗t−1} =

xηt
: Aηt

xηt
= b −

t
∑

j=1

z∗j Aβj
e, xηt

≥ 0

.

Before we conclude our discussion of the algorithm, let us define u to be the last iteration of
the algorithm so that ηu = ∅, Pu = {x∗}, and z∗u = min{x∗

i : i = 1, 2, . . . , n}. Notice that we have
z∗u > 0 if and only if η = ∅.

Now we introduce some theorems and proofs that expand our understanding of the relationships
between a linear system and how (B|N) and (β|η) compare to each other. But first, we provide the
following corollary that follows directly from the definitions of these partitions.

6

Observation 3.5 We have (B|N) 6= (β|η) if and only if |N | < |η|. So if |η| = 0, then (B|N) =
(β|η).

Theorem 3.6 Let A+ ∈ Rn×m be the generalized inverse of A ∈ Rm×n. Given Ax = b, if either
A+b > 0 or if there exists y ∈ Null(A) such that y > 0, then there exists x > 0 such that Ax = b.

Proof: From the properties of the generalized inverse, we know that solutions to Ax = b are of
the form

x = A+b + (I − A+A)q, for any q ∈ Rn.

From the following algebra, we see that (I − A+A)q ∈ Null(A):

A[(I − A+A)q] = (A − AA+A)q = (A − A)q = (0)q = 0.

Further, by letting q ∈ Null(A), we see that the elements of Null(A) are of the form (I − A+A)q.
Thus x = A+b + y, where y is any vector in Null(A).

If A+b > 0, then we let y = 0 and we have x = A+b > 0.
If A+b ≯ 0 and y > 0, then we let

δ > max

{

(A+b)i

yi

i = 1, 2, . . . , n

}

,

so A+b + δy > 0. Since y ∈ Null(A), we have that δy ∈ Null(A). Thus we have x = A+b + δy > 0.

Theorem 3.7 There exists x ∈ Pt with xηt
> 0 for all t if and only if there exists x ∈ Pu with

xηu
> 0.

Proof: The fact that xηt
> 0 for all t =⇒ xηu

follows directly from the definitions of ηt and ηu.

Let x′ ∈ Pu with x′
ηu

> 0. Since u is the last iteration of the algorithm, we have ηu ∪
(

⋃u
j=1 βj

)

=

{1, 2, . . . , n}. Suppose i ∈ ηu. Then x′
i > 0. Now suppose i /∈ ηu. Then we have i ∈ βt for some t,

so x′
i = z∗t > 0. So for all i we have x′

i > 0, so x′ > 0. Since Pu ⊆ Pt for all t, we have that x′ ∈ Pt

for all t.

Theorem 3.8 If (β|η) = (B|N) with η = N = ∅, then there exists x ∈ Pu−1 with xηu−1 > 0.

Proof: Suppose that there does not exist x ∈ Pu−1 with xηu−1 > 0. Then there exists i such that
xi = 0 for all x ∈ Pu−1. Thus by the definition of u as the last iteration, i ∈ η, and so η 6= ∅, and
the theorem is proven by contrapositive.

The reverse of Theorem 3.8 is true only given that the columns of Aηu−1 are linearly independent,
and we present this theorem followed by an example illustrating the necessity of the additional
restriction.

Theorem 3.9 If the columns of Aηu−1 are linearly independent and if ∃ x ∈ Pu−1 with xηu−1 > 0,
then (β|η) = (B|N) with η = N = ∅.

7

Proof: Assume the hypothesis. Since the columns of Aηu−1 are linearly independent, the linear
transformation xηu−1 7→ Aηu−1xηu−1 is 1:1. So

Aηu−1xηu−1 = b −
u−1
∑

j=1

z∗j Aβj
e

has a unique solution, x̂, with x̂ηu−1 > 0 by hypothesis. So z∗
u > 0, η = ∅, and (B|N) = (β|η).

Example 3.10 We demonstrate that the condition that the columns of Aηu−1 are linearly indepen-
dent is necessary for Theorem 3.9.

Let

A0 =

[

2 0 0
0 1 0

]

and b = (2, 2)T ,

so P0 = {(1, 2, x3)
T : x3 ≥ 0}.

We see that (1, 2, 1)T ∈ P0, so B = {1, 2, 3} and N = ∅. Proceeding with the algorithm we have
z∗1 = 2 and β1 = {2}, and we get

[

2 0
0 0

]

xη1 =

(

2
2

)

−

[

0
1

]

(2) =

(

2
0

)

with P1 = {(1, x3)
T : x3 ≥ 0}. Proceeding again we have z∗

2 = 1 and β2 = {1}, which gives

[

0
0

]

xη2 =

(

2
0

)

−

[

2
0

]

(1) =

(

0
0

)

with P2 = {(x3) for any x3 ≥ 0}. We see that ∃ xη2 ∈ P2 with xη2 > 0, but z∗
3 = 0, so 3 ∈ η. Thus

η 6= N and (B|N) 6= (β|η).

In some cases when (B|N) 6= (β|η), negligible adjustment of b can result in (B|N) = (β|η) as
desired.

Example 3.11 Let A =

[

1 0 1
0 1 −1

]

and b =

(

1
1

)

. Then P =

1 − x3

1 + x3

x3

 : x3 ≥ 0

, so

N = ∅. But z∗ = (1, 1, 0)T , so η = {3} 6= N . However, if we change b to b′ =

(

1 + ε
1

)

for arbi-

trarily small ε > 0, then the results are different. We get that P =

1 + ε − x3

1 + x3

x3

 : x3 ≥ 0

, so

again we have N = ∅, but this time z∗ =
(

1 + ε
2 , 1 + ε

2 , ε
2

)T
, so η = ∅ = N .

In the beam selection problem, the prescription is based on medical approximation, so tiny
adjustments would not have adverse effects on the patient. Though we have observed this possibility,
we have not yet had an opportunity to investigate how we might identify the direction(s) in which
we could shift b to achieve (B|N) = (β|η). However, further inspection verified that in some cases
no adjustment of b provides (B|N) = (β|η) as desired.

8

Example 3.12 Let A =

[

1 0 −1
0 1 −1

]

and b =

(

b1

b2

)

be arbitrary. Then P =

b1 + x3

b2 + x3

x3

 : x3 ≥ 0

,

so N = ∅. But z∗ = (b1, b2, 0)T , so η = {3} 6= N . This shows that 3 ∈ η for all b, highlighting that
we can’t always perturb b to get our result.

Theorem 3.13

β = B =⇒ Null(Aη) ∩
(

R
|η|
+ \ {0}

)

= ∅.

Proof: By contrapositive: Suppose

y ∈ Null(Aη) ∩
(

R
|η|
+ \ {0}

)

.

Let y′ ∈ Rn be such that y′
β = 0, y′

η = y. Since y′
β = 0, x∗

η = 0, and y′
η ∈ Null(Aη), we have

A(x∗ + y′) = Aβ(x∗ + y′)β + Aη(x∗ + y′)η

= Aβx∗
β + Aβy′

β + Aηx∗
η + Aηy′

η

= Aβx∗
β + 0 + 0 + 0

= Aβx∗
β .

Similarly,
b = Ax∗ = Aβx∗

β + Aηx∗
η = Aβx∗

β + 0,

so
A(x∗ + y′) = Aβx∗

β = b.

Also, we know x∗ ≥ 0 and y′ ≥ 0, therefore (x∗ + y′) ∈ P . But ∃ i ∈ η such that y′
i > 0, so

(x∗
i + yi) > 0. Thus i ∈ B and i /∈ N , and so η 6= N and β 6= B.

The reverse of Theorem 3.13 is not true, which we show with the following counterexample.

Example 3.14 Let

A =

[

1 0 2 1 0
0 1 3 0 1

]

and b =

(

4
3

)

.

Then the vector x∗ =

1
0
1
1
0

∈ P∗. So η = {2, 5}, and Aη =

[

0 0
1 1

]

. Thus

Null(Aη) = span

{(

1
−1

)}

, so Null(Aη) ∩
(

R
|η|
+ \ {0}

)

= ∅.

Thus the hypothesis is true, but x′ =

1
1
1
2
2
1
2

∈ P, so B = {1, 2, 3, 4, 5} 6= {1, 3, 4} = β.

9

To close our paper, we consider the environment(s) in which z∗ exists. For P = {x : Ax = b, x ≥
b}, let Σj be one of the n! permutation matrices on the columns of A. (So AΣj is a reordering of
the columns of A.) We define the following:

Pj = {x : AΣjx = b, x ≥ 0},
C = {x ∈ Rn : x1 ≥ x2 ≥ x3 ≥ · · · ≥ xn}, and
P̄ = C ∩ conhull {

⋃

Pj} .

Let us represent P̄ as {x : Āx = b̄, x ≥ 0}. Notice that for any x ∈ P , the union
⋃

Pj contains all
permutations of the components of x. Therefore sort(x) ∈ P̄ for all x ∈ P , and so z∗ ∈ P̄.

Conjecture 3.15 z∗ is a vertex of P̄.

We do not have a formal proof for this idea, but we have established the conjecture with an
additional condition. This proof relies on the following generalization of Lemma 3.1.

Lemma 3.16 For any x ∈ Rn, there exists δ > 0 such that for all q with d(x, q) < δ, we have that
q and x are sort-similar.

Proof: Let xa and xb be components of x such that xa > xb and xa−xb = min{xi−xj : xi−xj > 0}.
Let δ < 1

2 (xa − xb). Then for all q ∈ N(x, δ) we have

qa > xa − δ > xa − 1
2 (xa − xb)

= 1
2xa + 1

2xb

= xb + 1
2 (xa − xb) > xb + δ > qb.

So qa > qb, and so q and x are sort-similar.

Theorem 3.17 If z∗ contains no repeated values, then z∗ is a vertex of P̄.

Proof: Suppose z∗ is not a vertex of P̄. Then z∗ is not a basic feasible solution of P̄, and so the
columns of Aβ are linearly dependent. Therefore there exists y 6= 0 such that Āβy = 0. So for any
scalar α, we have

Ā(z∗ + αy) = Āz∗ + Ā(αy) = Āz∗ + 0 = b̄.

By selecting α sufficiently close to zero, we get that (z∗ + αy) ≥ 0, so (z∗ + αy) ∈ P̄. Let t be
an index such that yt 6= 0 and z∗

t > z∗i for all i with yi 6= 0. (We can assert strict inequality
here because z∗ contains no repeated values.) From Lemma 3.16, let δ > 0 be such that for all
q ∈ N(z∗, δ), q and x are sort-similar. Select α′ ∈ (−δ, δ) \ {0} sufficiently close to zero such that
(z∗ − α′y) ∈ N(z∗, δ). Then (z∗ − α′y) and z∗ are sort-similar. Also select α′ with appropriate sign
so that (z∗−α′y)t = (z∗t −α′y) < z∗t . Then for z∗

i > z∗t , since yi = 0 by definition of t, we have that
(z∗ − α′y)i = z∗i . Therefore sort(z∗ − α′y) <L sort(z∗), contradicting the definition of z∗. Thus z∗

is a vertex of P̄.

4 Conclusion

We’ve only begun to understand the relationships between (β|η) and (B|N). This area of study is
new, so we think it can be a fruitful field for further research, and hopefully we can accumulate more
results and better understand the relationships at hand.

10

5 Supplementary Examples

To end, we provide several examples of simple linear systems, pointing out how they compare to the
theorems and counterexamples previously established.

1. Follows Theorem 6:

[A|b] =

2 0 0 0 2
0 1 1 0 8
2 0 0 1 2

 , P =

1
8 − x3

x3

0

, x∗ =

1
4
4
0

, N = {4}, η = {4},

Null(A) = span

0
−1
1
0

, Null(Aη) = {
(

0
)

}, Null(Aη) ∩
(

R
|η|
+ \ {0}

)

= ∅.

2. Counterexample to the reverse of Theorem 6:

[A|b] =

2 0 0 0 2
0 −1 1 0 4
0 −2 2 0 8
2 0 0 1 2

, P =

1
x3 − 4

x3

0

, x∗ =

1
0
4
0

, N = {4}, η = {2, 4},

Null(A) = span

0
1
1
0

, Null(Aη) =

{(

0
0

)}

, Null(Aη) ∩
(

R
|η|
+ \ {0}

)

= ∅.

3. Counterexample to the reverse of Theorem 6:

[A|b] =

2 0 0 0 2
0 1 −1 0 4
0 2 −2 0 8
2 0 0 1 2

, P =

1
4 + x3

x3

0

, x∗ =

1
4
0
0

, N = {4}, η = {3, 4},

Null(A) = span

0
1
1
0

, Null(Aη) =

{(

0
0

)}

, Null(Aη) ∩
(

R
|η|
+ \ {0}

)

= ∅.

4. Follows Theorem 6:

[A|b] =

2 0 0 0 2
0 1 1 0 4
0 2 2 0 8
2 0 0 1 2

, P =

1
4 − x3

x3

0

, x∗ =

1
2
2
0

, N = {4}, η = {4},

Null(A) = span

0
−1
1
0

, Null(Aη) = {
(

0
)

}, Null(Aη) ∩
(

R
|η|
+ \ {0}

)

= ∅.

5. Counterexample to the reverse of Theorem 6, and example showing that reducing ‖x‖∞ does
not force all other components to increase.

[A|b] =

[

1 1 2 18
1 2 3 24

]

, P =

12 − x3

6 − x3

x3

, x∗ =

6
0
6

 , N = ∅, η = {2},

11

Null(A) = span

−1
−1
1

, Null(Aη) = {
(

0
)

}, Null(Aη) ∩
(

R
|η|
+ \ {0}

)

= ∅.

Some example elements of P with decreasing ‖x‖∞ follow. Notice that x2 decreases instead of
increasing.

12
6
0

 ,

11
5
1

 ,

10
4
2

 ,

9
3
3

 ,

8
2
4

 ,

7
1
5

 ,

6
0
6

6. There exists y ∈ Null(A) with y > 0, but (B|N) 6= (β|η) because there does not exist such y
at each step of the lexmin-sort algorithm, so there does not exist y ∈ Null(Aη) with y > 0

[A|b] =

[

1 0 −1 12
0 1 −1 −6

]

, P =

12 + x3

−6 + x3

x3

, x∗ =

18
0
6

 , N = ∅, η = {2},

Null(A) = span

1
1
1

, Null(Aη) = {
(

0
)

}, Null(Aη) ∩
(

R
|η|
+ \ {0}

)

= ∅.

References

[1] M. Ehrgott, A. Holder, and J. Reese., Beam Selection in Radiotherapy Design., Trinity Univer-
sity, Mathematics Technical Report #95, 2005.

12

