THE STRUCTURE OF DIFFERENTIAL MANIFOLDS VIA MORSE THEORY

SUSAN ABERNATHY

Senior Project - MATH 4394

April 27, 2007



2 SUSAN ABERNATHY

1. INTRODUCTION

A fundamental question in any branch of mathematics is thesdication problem. In the case of
Topology, our question can be translated into the problenfaskifying spaces; specifically, classifying dif-
ferentiable manifolds up to equivalence class. Classicatk consider the equivalence classes of manifolds
up to homeomorphism. However, in this paper we will focustendquestion of classifying manifolds up to
homotopy, although we will address the issue of classificatip to homeomorphism as well. For instance,
let us examine the toruk?® and the spher&?. Intuitively, it seems that they are not topologically aguént.
Note that the torus hasteleand the sphere does not (see Figure 1). In order to formadlyepthat they are

not topologically equivalent, we need a concrete way to éxartihem.
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FIGURE 1. S andT?

A strikingly simple and effective way to do this is to looklatrizontal slicesof these manifolds and
observe what these cross-sections look like. Back to ounpheg we see that the slices f generally are
either circles, empty, or points at the north and south pofeke sphere. However, when we 100k T,
we see that the cross-sections generally are either giar@sty, points at the north and south poles like the
sphere; but in addition, the slices of the torus look like thigoint circles around the hole. Intuitively, this is
a compelling reason to argue tf#tand T2 are not equivalent. In order to look at these slices moreelps
we are going to consider real-valued functions on the matsfoOur philosophy is that manifolds which
fall into different homotopy equivalence classes wouldehdifferent kinds of function on them. However,
before we can study these functions, we must know exactlyt atdifferentiable manifold is and what

functions on it we want to study. Hence, we begin the papdr thigir definitions and some properties.
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FIGURE 2. Height functions or$? andT?

It turns out that differentiable manifolds locally look éikhe Euclidean spad®'. Therefore, Analysis
is a natural tool to use in studying these functions. Moreisipally, since we can diffeomorphically map a
neighborhood of each point on a manifold to a subs@&'fit is not difficult to apply results from Analysis

to our study of differentiable manifolds.

FIGURE 3. Height function without isolated critical points

Next, we look at functions and observe that the height fonstiare nice candidates for our study (see
Figure 2). Height functions allow us to easily look at slioésnanifolds since each slice is the pre-image of
a single point inR. However, not all height functions will be of interest to @onsider the height function
in Figure 3. We have infinitely many points mapping to a caiticalue. It turns out that this is a highly
undesirable condition because it does not allow usatate critical points. However, we see in Figure 4
that any slight global perturbation of the manifold, suchitimg, yields a height function with isolated
critical points.

In view of the discussion above, it becomes natural to cenglteHessianof a map. Using Analysis,

we see that if the Hessian imn-degeneratethe critical points of the function are isolated. Hence, we
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FIGURE 4. Height function with isolated critical points

will study mapsf : M — R with a non-degenerate Hessian whitas a compact differentiable manifold.
We observe that compactness allows some degree of finitenessresults, since continuous functions on

compact sets attain their maximums and minimums, and softratedy many critical points.
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FIGURE 5. Horizontal cross-sections (slices)$fand T2

Once we consider the real-valued maps, we re-evaluate scustiion of height functions on the torus
and sphere. From Figure 5, we can geometrically observettaiological change occurs in the slices at
critical points. For instance, the number of connected aomepts changes. Hence, we say that the level sets
only change at critical points. An equivalent way to say thithat the slices do not change between critical
points. These two statements give us two very importanttsesthe first statement leads us to a result called
Morse Lemma, which is proven using almost entirely Anabftiechniques. We note that Morse Lemma
gives us a local description of the manifold at critical geirin contrast, the second statement leads us to a
result called the Flow Lemma, which shows that betweercatipoints the level sets are homeomarphic to

one another via the gradient flow. This is a topological itethat uses ideas from Dynamical Systems and
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allows us to give a global characterization of the manifolé: provide the details of both of these proofs in
sections 2 and 3 of the paper.

From the discussion above, we are now interested in seemgilgxappens to the structure of the
manifolds at these critical points. We know that the slidesnge, but we would like to know how exactly
the structure of the manifold changes. An application ofloese Lemma and the Flow Lemma yields that
at a critical point of indeX\ we change the topology by attachingdnandle to the level set. This result is
formalized in the Fundamental Structure Theorem, which egein section 3.2.

We conclude the paper with some applications of Morse thieditye study of differentiable manifolds.
Among the most important of these applications is Reeb ®mpwhich states that any manifold that
admits a Morse function with exactly two critical points isrheomorphic to a sphere. Finally, we return
to our example comparing the sphere and the torus to congidePoincaré polynomial associated with
each manifold. Using this polynomial, we show that there Isveer bound on the number of index-1
critical points forT?2, showing thafT2 and S cannot behomotopic In addition, we can use the Poincaré
polynomial to show that the torus does not admit a Morse fanawith two critical points, thus showing by

way of Reeb Theorem that’ andS* cannot benhomeomorphic

1.1. Differentiable Manifolds. We begin with the definition of a differentiable manifold. rromore in-

depth discussion of this definition, see [7] and [11].

Definition 1. An ndimensional differentiable manifoldll is a Hausdorff topological space that has a cov-
ering of countably many open setg,U», ... satisfying the following conditions:

(i) For each U there is a homeomorphisiy : U — R".

(ii) If Ui NU;j # 0, the homeomorphismfs and; combine to give a diffeomorphisy; = ququ‘l of

gi (UinU;) ontoy; (Ui NUY;).
The pair(U;, ;) is called acoordinate chaytand the set of all coordinate charts, called thi¢as is denoted

{Ui, i}

So, for each, y; mapsU; to an open subset &". Thus, each poinp € M is contained in a neigh-
borhood, say,, which is diffeomorphic taR". In simpler terms, an-dimensional differentiable manifold
locally looks like R". We see an example of a 2-dimensional differentiable mhkhifo Figure 6. The

neighborhoodJ, is mapped to a subset Bf by ¢ .
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FIGURE 6. The coordinate function for a poipte S
We now define theangent spacat a pointp, an important concept needed later in the paper. For a

more detailed discussion, see [7] and [11].

Definition 2. Let M be an n-dimensional differentiable manifold contdias a submanifold d&™ for some
m> n, and let pc M. Then thetangent spacef M at p, denoted JM, is the set of all velocity vectors of

curves contained in M which pass through p.
Remark 1. Notice that for any point g R", T,R" isR" itself.

Given a differentiable manifold, there is a natural struetthat we can put on it which allows us to
consider distance and angles; that is, we have a Riemanmaicnilhe fact thaM has a countable cover
and is indeed Hausdorff ensures that a metric always esists[{]). Once we have a metric, we can consider

an inner product and gradient as follows:

Definition 3. Let M be a differentiable manifold. Choose a Riemmanianimetr M and let(X,Y) denote
the inner product of two tangent vectors. Then, giverMf— R, thegradientof f is the vector field]f on

M which is characterized by the identifX, 0 f), = X (f).
A standard concept is the idea of a critical point, which we define.

Definition 4. Let f be a smooth real-valued function on a manifold M. A ppirtM is acritical pointof

f if the induced map dfT,M — T¢(, R is zero.

Note that this vector field vanishes at the critical pointg of
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1.2. Morse Functions. Before we discuss what Morse functions are, let us consaaegpreliminary Ana-
lytical concepts. We begin by defining the Hessian, whicgpkavery important role. It lets us characterize
the functions we want to consider when studying differdsiéiamanifolds, and also lets us define ihe
dexof a critical point. Note that we define the Hessian only fopsan Euclidean space. The nature of
differentiable manifolds allows us to extend this definitio fit our purposes. More specifically, because
a differentiable manifold is locally diffeomorphic &" with diffeomorphic transition functions and we as-
sume smoothness in the atlas, we can apply the Analytic maticdhe Hessian to manifolds. For more

details see [1], [3], and [4].

Definition 5. Given a smooth function :fR" — R the Hessiarof f is the nx n matrix

We can now define exactly the functions which we wish to study.

Definition 6. Given a compact differentiable manifold M, a function M — R is a Morse functionif

detHs (p) # O for every critical point p of f.

As mentioned before, the Hessian also allows us to definedyeimportant concept of thedexof a

critical point.

Definition 7. Given a differentiable manifold and a Morse function M — R with critical point p the

indexof p is the dimension of the largest negative definite sulespéek; (p).

1.3. Analytical Results. In this section, we revisit several results from Analysisalihprove to be very
important. We begin with the Inverse Function Theorem, adfasranalytical result, adapted to differentiable

manifolds by Lee in [7].

Inverse Function Theorem for Manifolds. Suppose M and N are smooth manifolds; !, and
dF : ToM — Te(p)N is bijective. Then there exist connected neighborhood$ pJamd V of Hp) such that

Flu :U —V is a diffeomorphism.

We skip the proof of this important result as we choose imstedocus on its pertinent application in the

proof of Morse Lemma. For a detailed proof, see [7].
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Our first result shows that non-degenerate critical poiftslorse functions are isolated. First, we

prove a technical lemma on the submultiplicity of norms okntible matrices.
Lemmal. IfH : R" — R"is linear and invertible, then there exists>cO such thatHx| > c|x|.

Proof. LetH be as above and take= ﬁ Then

1
X = H(HX)] < H Y IHX] = ZJHX.

O

Theorem 2. Let F = (fy,...,f;) : R" — R" be a function such that; f R" — R is differentiable for all

1<i<n. IfA= [% (a)} has a non-zero determinant, then there exdsts0 such that Fx) # F (a) with
j

0<|x—al <.
Proof. Sincef; € C! we have that Taylor's Formula holds. So, foriall

o 0fi

fi (%) = f; !
M =fi@+3 5

(@) (xj —a) +pi (X) [x— 2|
wherep; (x) |x— @] is the error term with the property thgt;i;m(x) — 0. Then,

F(X)=F(a)+A-(x—a)+R(x)|x—a|

whereR(x) = (p1(X),...,pn(X)), and thusxligR(x) = (0,...,0). Now using Lemma 1, we can piakso

: c
that|Ax| < c|x|. Next, there existd > 0 such that for alk € R,0 < [x—a| < dand|R(x) | < > Hence,

F-F@[ = [Ax—a)|-[R(X)|[x—al
> c[x—al—3|x—a
> Sx-al
> 0.

g

For a more detailed treatment of such Analytical results,[$kand [10]. Using these results, we can

prove a corollary which confirms our initial observation abnon-degenerate critical points.

Corollary 1. Let F:R" — R such that Fe C2. Then every non-degenerate critical point of F is isolated.
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Proof. Let F be defined as above and lgte a critical point ofF. Let f = (fy,..., f,) where fi = g—z

%ng (p) # 0 sincep is non-degenerate. The{nd::_% (p)} has a non-zero

determinant. Thus by Theorem 1, there ex&ts 0 such that for alk € R" such that 0< |x— p| < 9, we

Thenf (p) =0andf’(p) =

have thatf (x) # f (p). Thus,pis isolated. O

2. MORSELEMMA

In this section, we provide a detailed proof of Morse Lemmihich gives us a local description of a
manifold in a neighborhood of its critical points. In simpéms, it states that regardless of the coordinate
map on a manifoldv there is a change of coordinates around a critical point kvgiges us a quadratic

expression off depending on its index. Before we can state and prove it, \wd adg¢echnical lemma.

Lemma 2. Let f:V — R be a smooth function, where V is a convex neighborhood infR", and let

f (0) = 0. Then there exist smooth functions,defined on V such that

le -3 Xn lelgl X,

for some suitable smooth functionsdgfined in V.

Proof. Let f be defined as above, whefé¢0) = 0. Then, by the Fundamental Theorem of Calculus, we

have that

f(Xey..sXn) = Xn) — F(0)

f(xq,
df
= / ot (txq,...,tx,) dt
nof
/Zla— (txq,...,t%) X dt.

Since the sum is finite, we have that

X17 > Xn le/ t 1>7txﬂ)dt

1 n
Let us defineg; (Xq,...,X)) = gf (tXq,...,tX,) dt. Thenf (Xq,..., %) = leigi (X1,...,X%n). In particular,
of B
b thatyi (0) = =— (0).
observe thaty; (0) ax;( )
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Morse Lemma. Let M be a differentiable manifold and let:™M — R be a smooth function where p is
critical point of f. Then there is a local coordinate syst€w,...,y,) in a neighborhood, U of p with

yi (p) = O for all i and such that the identity

f(Yeeyn) = F(D) Y B gt + R

holds where\ is the index of f at p.

The general idea of the proof is that we can use Lemma 2.1 &rmatsymmetric expression éfat a
critical point. Then, following Milnor’s proof in [8], we aause a diagonalization technique for symmetric
forms to obtain our desired coordinate change. Thus, weltan that regardless of the given expression of
f, we can always change coordinates to express it in the defsinm. We conclude the proof by showing

thatA is indeed the index of.

Proof. Let f be a smooth, real-valued function on a manifMdandp be a critical point off. By transla-
tions, we can assume without loss of generality thgt) = f (0) = 0. Let(U, ) be a coordinate chart for
p € M. Apply Lemma 2.1 tof, so that forj = 1,2,...,n, there exist smooth functiorgg (x1,...,%n)

such that

n
f(Xg,.... %) = Z XQj (X1, .-, %n) -
=1

Observing that the proof of Lemma was constructive, we s&egtf0) = % (0) =0 asiitis a critical point.
i
Therefore, we can apply Lemma 2.1gpto get
n .
@ 0j (X1,..., %) = zlxjhij (X1,...,%), foreachj=1,...,n.
i=

Substituting (1) into our original expression bfwe have
n
f(X1,...,%) = Z xiXjhij (X1, ..., %n)
i,]=1

whereh;; (0) = g—i: (0). We claim thaty; may be considered as a symmetric function with respect to

iandj.
Indeed, lety; = 2 (hj + h;i). Then

n n _
f(X1,...,%X) = z XiXjhij (X1,...,%) = Z XiXjhij (X1, .., %n) -
i,j=1 i,)=1
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First we note that_lij IS symmetric, since
hy = 3(h+hy)
(hji +hij)

| NI NI

I
=

Next, for any 1< i, j < n, we see that
xxihi +xpihi =g (3 (g + i) i (3 (i + i)
XX (2-3 (ij +hji))

= xxj (hij +hi)

= XXjhij +X;xh;i.
Hence, it is now clear that
n n —
f(X1,...,%) = iJz:lXinhij (X1,-.-, %) = iJzzlxixjhij (X1,--5%n) -

For the rest of the proof, we write the functidrixy,...,X,) asf; hij (x1,...,%,) ashj; andﬁij (X1,.--sX%n)
aSHij for the sake of brevity.

We show that there exists an inductive transformation wigighs us our desired expression fofis
quadratic forms. We begin by finding a change of coordinatesref is quadratic with respect to the first

variable. Finally, we iterate this processimes total to obtain our desired expressiorf ot.et us

now begin.
First, we may assume thdt;1| # 0. Notice, hjj (0) = %(o) _1 o f (0). Since the Hessian
| ’ s U o T T 200k ’
2
a?qafx (0), is non-degenerate, there exists somsuch thaty; # 0, where 1< k < n. Thus, there exists
10X

some linear transformation, shysuch that (Xg, ..., X—1,X, - -+, Xn—1,%n) = (X, X2, - - - , Xk—1, X1, - - - s Xn—1,%n) -
SO,|h11| 75 0.

Then, we have that the following holds foe= (x1,...,X,) throughout a neighborhood); of f (p):

n
fro= % xxhy
i,j=1
n
= Xehi1+XpXoh1a+ ... + XaXnhan + > xxjhi
i,]>2
2 2
hyo+ Xahya+ ...+ Xh noo_ hio+Xshgs+ ... +xh
S !hn\Xlerz 12+ X3N13+ ... + XnN1n +Z)<ixjhij— Xoh12 4+ Xshiz+ ... +Xnhin .
VIl 12 Vha
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This provides a quadratic term using; for all j = 1,2,...,n and a remainder term witk; where

i,j > 2. So we may define a change of coordinate funcfign R" — R" such thatd; (u) = (v, ...

where

v = /|y <X1+ X2h12+“-1-1-1|‘|‘xnhln> andv; = x; for all i # 1.

n
Thus, f(u) = £vi+ 3 xixjHj.

i,]>2

. hij — hgihy;j . - ,
We claim thatH;; = ”le'll and is in fact symmetric. First, notice that
11

= hgihygj

Hij = h” — —|h11|

_ p_ Majhy

" Thal
= Hji.

Also, we see that

n — Xohia+ ...+ Xhgn\ 2
z (Xixjhij _( 2M2 o Xn ln>
=2 11]

—  x5h? —  XoXszhpoh —  xh?
= (Xghzz— 2 i2> + <X2X3hz3—7zx3 = 13) +ot <X§hnn—n—1n>

!h% | LCEY 2 |1
— h — hioh —
= % (hzz—i> + XoX3 (hzs— 12 13) o <hnn— In >
] ] a4
- i wxi [ haihy;
- |
=2 Y by

Thus,

2
h h h n
fzi(Mxl—kxz 12+ X313+ ...+ Xn 1n> I Z xix; Hij.

Vi i£2

whereH;; is a symmetric form.

7VI’1)

Observe thad is a local diffeomorphism. Hence from the Inverse Functibedrem, we can compose

¢1 with our original map in the atlas), perhaps in a smaller neighborhood containetd jrto obtain an

expression which is quadratic on.
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We now provide the details of our observation. Indeed, rwdé t

0y
dp, = En dvi
001 001 01
= —d —=d ...+ =—=d
v, Vi+ N, Vo+...+ e Vi

= /|ha|dvi +0-dva+ ... +0-dw,
= /Ihuajdvy #0.
Then by the Inverse Function Theorem, there edjst_ U; andV, C V1, neighborhoods o (p) and
d1(W(p)) respectively, such thafii|u, : Uz — V» is a diffeomorphism. We now iterate this process 1

more times. In theth step, we obtain a functiopy : R" — R" such thatx, ..., X)) — (V1,...,Vy) given by

vi:xiforalli;érandvr:m(ereriHir).

i>r |H”|

Note thatd, is a local diffeomorphism. Next, by the Inverse Function Giteen, we may restrich,
to a smaller neighborhood qf, sayU,. Since we iterate finitely many times, after thié step, we find a
neighborhood, namelg!_,U;, wheref = £v2 + ... + £v2.

Finally, we show that this expression bfis unique up to the number gf's and—'s; that is, we may
write f = f(p) —Vi—... —V§+V2 | +...+ V3, for some 1< A < nand where\ is unique. We do this by

showing that\ is the index off at the critical pointp. Notice that

=2ifi=j <A,
0%f (p) = L
0 otherwise
So we have that i i
-2 0 0
0
-2
Ht (p) =
2
0
0 0 2

So, there is a subspate of T,M of dimensionA whereHs (p) is negative definite and a subspace
V of dimensionn— A whereHs (p) is positive definite. We claim that is the maximal dimension of a

negative definite subspace. Indeed, suppose there is aasehspof T,M of dimensionk > A + 1 where
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Hs (p) is negative definite. Sindé’ andV are both subspaces §M which is dimensiom, andk+n—A >

A+1+n—A=n+1, we have tha’ andV must intersect. This is a contradiction sirdéis negative
definite andv is positive definite. Thug) is the maximal negative definite subspacélg¥ and therefore

A is the index off at p. This concludes the proof. O

3. RECONSTRUCTINGMANIFOLDS USING MORSE THEORY

3.1. The Flow Lemma. In this section, we confirm our intuitive idea that the topplof the level sets does
not change between critical points, as well as proving ariraavhich allows us to completely describe the
changes in topology at a critical level set using the indethefcritical point. The first result is the Flow
Lemma and the second result is the Fundamental Structurerdiine Before we discuss these results, we

need a definition about flows and 1-parameter diffeomorphism

Definition 8. A 1-parameter group of diffeomorphisrofa manifold, M, is a smooth map: R x M — M

such that

(1) Forallt e R, ¢ : M — M defined byp: (q) = ¢ (t,q) is a diffeomorphism of M onto itself.

(2) Forallt,se R, we haved s = ¢ o ¢s.

Throughout this section, for a real-valued functibron a compact differentiable manifold, i.e.

f:M—R,weletM2 = f~}(~w,a = {pecM|f(p) <a} foracR.

Flow Lemma. Let f be a smooth real-valued function on a manifold M. Let b and suppose that the
set 1[a,b], consisting of all p= M with a< f (p) < b, is compact and contains no critical points of f.
Then M is diffeomorphic to M. Furthermore, M is a deformation retract of §| so that the inclusion map

M2 — MP is a homotopy equivalence.

The idea of this result is to use the gradient flow to carry qaaiht of M2 diffeomorphically up to
MP. Since the manifold is compact, we are guaranteed that #meeder of the neighborhoods we are using
to flow does not vanish; hence we can always flow upito This establishes surjectivity. Injectivity will
follow from the uniqueness of solutions in Ordinary Diffetial Equations. Finally, the flow will induce a
family of diffeomorphisms by the transversality of the gead. Before we continue with the proof, recall
that a continuous maid : M x [0, 1] — M is adeformation retractiorof M ontoAC M if H (a,t) = afor all

acM;te€]0,1 andH (x,0) = xfor all xe M andH (x,1) € Afor all x € M.
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d

Proof. Letc: R — M be a curve andgl—f be its velocity vector. Note th%j—,mf> gt (foc). Let
: : - _ 1 1
p: M — R be a smooth function defined Ip(x) = T (), 07 ) throughout the compact sét - [a, b
and which vanishes outside a compact neighborhood of this se
1

Now consider the vector field defined by = (Of) (p) which is smooth and van-

(Of (p),0Of (p)
ishes outside the compact det! [a, b]. We consider the 1-parameter group of diffeomorphispasM — M,
generated b, (see Lemma 2.4 in [8]). Our idea here is to use this paranzetérn of the gradient flow to
pushMP diffeomorphically ontavi@.

Then,

9 (0e(p)

O

—
—
pg
—
o
S—
~—

= 1

So, the fucntiorF is linear and has derivative 1; thois(p) € f~1[a,b].

Now, consider the diffeomorphisigy_5 : M — M. We will show thatdp, 5 carriesM? diffeomorphi-
cally ontoMP. The idea of this process is thi_, takes a point itM2 and carries it tv® along the flow of
integral curves of the vector field given by the gradient. Asven by the computation above, this flow has
the rightspeed By the uniqueness of solutions of ordinary differentiali@ipns, we have that,_j is in-
jective. We see that it is surjective since we could rivehto M2 by carrying it backwards along the flow of
integral curves. In addition, we have thlat 5 is continuous with a continuous inverse by the orthogopalit
of the gradient at the level sets .

Now, we show thaM? is a deformation retract d¥i®. To do so, let us define a 1-parameter family of

mapst; : MP — MP by

a, if f(q) <a
bra—t(q) (@), ifa<f(g)<h.

re(q) =

Thenr is the identity, and is a retraction fronMP to M2 HenceM? is a deformation retract d¥1°. For

further details see [8].
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3.2. Fundamental Structure Theorem. In this section, we will consider a compact maniféid and a
Morse functionf : M — R. From our previous observation that the topology of thellee¢s does not
change in regions without critical points, we can show thatthe index of a critical point which is an
analytic property, allows us to completely describe thengleain the topology of the level sets that occurs
at the critical point. Namely, wattacha A-cell to the level set. Now, we define these terms and provide a

precise statement

Definition 9. LetA € N and D' be aA-disk. Let M be a manifold. We attach\ahandleto M by

f:0(D") =S""1— M. So, M with a\-handle attached is

MUD%, =Mus D,

x~f(x).x60(D)\)
We now state the main result. Although our main concern ispamnmanifolds, we give the result in

its full generality.

Fundamental Structure Theorem. For M a differentiable manifold, let f M — R be a smooth function
and let p be a non-degenerate critical point with indexSetting f(p) = ¢, suppose that - [c —€,c+ €] is
compact, and contains no critical point of f other than p fonee > 0. Then, for all sufficiently sma#,

the set M has the homotopy type of Vf = {x € M : f (x) < c—¢€} with aA-cell attached.

The main idea of the proof is to define a new functien which is the same a$ outside ane-
neighborhood off (p) = ¢, but has no critical values between- € andc+ €. Then, by an application

of the Flow Lemma we will diffeomorphically shrink the mawiid so it becomes a handle abdvé=.

Proof. From Morse Lemma, we have that there exists a neighborihbofl p such that the equality =
c— (€ +---+x2) + (X, +---+>3) holds throughouN. For convenience, let us defiéxy,...,x,) =
X+ andn (Xe,.... %) =X+ +X3. Thenf =c—&(x,....X) +N(Xs,...,%). We letU =
{XeM:&(X1,..., %) +Nn(x1,...,%) < 2€}. For convenience, we abbrevidéx,, ..., x,) andn (xi,...,Xn)
to ¢ andn, respectively, for the remainder of the proof.

We now build a functior- : M — R in terms of f and a suitable functiory as follows. Letu: R — R
be a smooth function such that

() u(0) > €

(i) u(r)=0forr > 2¢
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(i) =1 <y (r)<Oforallr e R.

Note the graph oftin Figure 7.

H(r)

FIGURE 7. Graphofu:R — R

Therefore considdf : M — R such thaf (xi,...,%n) = f (X1,..., %) — (& (X1,..., %) + 2N (X1,...,%n))
orsimply,F =f —uE+2n)=c—&+n—pE+2n).

Observe that outside the neighborhdaddF and f coincide by conditioni{). Thus, outside ofJ, the
possible critical points of are trivially the same as those b6f Howeverf has no critical points outside of
U; thusF has no critical points outsidé.

Now let us consideF insideU and in particular, investigate its possible critical psinFirst, let us
show thatF =1 (—o0,c4€) = M. We have two cases; +2n > 2¢ or & +2n < 2. We consider the first
case. Supposk+2n >2e. Then&+4n > 2t andF = f —pu(§+2n) = f. So, if§ +n > 2¢, we have
F~1(—o,ct€)=MC"E,

Now, we consider the second case and show thatH®n < 2¢, we haveF ! (—ow, c+¢g) = M,
Since 0< p(& +2n), we have thaF = f — (& +2n) < f. Lety € M®*&. Then,F (y) < f(y) < c+¢ and
yeF1(—w,ct+e). SO MHECF1(—0 cte).

What remains to be shown is that! (—w,c+¢€) C MS*¢, Letx € F~1(—o,c+€). Then,F (x) <
f (X) by argument above.

Now, back to our analysis of the critical pointsfof We have already determined tlahas no critical

points outsidéJ, we must only consider the possibility of a critical poinsimheU. Notice

oF
0
oF
on

=1-24(§+2n)>1and

=-1-Y(E&+2n)<0
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since—1 < [/ (r) <Oforallr € R. At a critical point, we havelF = 0. Then, since&lF = a—FdE + a—Fdr],

0¢ on
we have thatl§ = dn = 0 at a critical point. This implies

(lev"'>2X)\) = (ZX)\Jrlv"'»zxn) :07

which can only happen ¥= (0,...,0). The only point at which this is true & Thus,pis the only possible
critical point forF.
However, we see that

F(p) = c—&+n—pE+2n)

sincep(0) > €. HenceF ~1[c— ¢, c+ €] contains no critical points. So, we can apply the Flow Lemma.

In fact, we use it to show thaé—! (—c,c—¢] is a deformation retract df1°"¢. Notice that since
there are no critical values & betweenc — € andc+ €, we have by the Flow Lemma=1 (—o0,c+ €]
F~1(—o,c—€]. We remark that up to this point, our analysis was localizing investigation oM+ to
the region near the critical points, since away from it theaAFLemma ensures that the topology of the level

sets does not change.

In order to conclude, I6E 1 (—o,c+€) = M EUF -1 (—o,c—g]\ Mc¢. If we can show thaH =

F-1(—ow,c—¢]\ M ¢ retracts to a\-disk, we can use the Glueing Lemma from point-set topolagy t
continuously attach the two spaces (for details, see [2hreMprecisely, leD? be ai-cell inU with respect
to the coordinates, ..., x,. We will show thatD* C H and then thab” is a deformation retract df. This
allows us to prove tha¥1c*¢ is diffeomorphic toM®~¢ with aA-handle D*) attached.

Let us show thaD* C H. Notice for allx € D* we have thai = 0. So for all suchx, F (x) =
c—&—H(&) <c—u(0) < c—e. Indeed, we claim thaf + pn(§) > €. Notice for allr € R we have that

u(r) > —1. Thus,

8a &(a)
/ W(rydr > / —ldr =
0 0

HE(@)—n0O > 0-&(@ =
HE(a) —p(0) > &(a). =
HE@)+E(@ > n0) >e.

So,F (x) < c—¢€. Also, observe thaf (x) =c—& > c—¢. ThusD? C H.
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Notice,{xc M F(x) <c—g} = {xeM: f(x) <c—e}UD So,{XxcM:F(x)<c—¢e}\{xeM:
f(x)<c—e}=H. Then{xe M:F(x) <c—e}n{xeM: f(x) >c—e} CU, which implies thaH C U

sinceF = f only insideU.

_ — 1 /Case3

Casel D?

— Case2 o

FIGURE 8. We retracH to D* according the these three cases.

Now we show thaD” is a deformation retraction ¢, following Milnor’s proof in [8]. From Figure
8, we observe that we can map the points identified in Case &ihbyg the identity, and the points identified
in Case 2 by using a linear retraction. Finally, for the p®imt case 3, we will use a nonlinear retraction.
We proceed as follows. Let us define a functipnM“ ¢ UH — M® 2 UH wherer; is the identity outside
U, andr; is defined withinJ according to the cases below:

Case 1 Within the regiom) + € < (that is, insideM® ¢, letr; be the identity.

Case 2 Within the regiorg <e¢, letr; (u,...,un) = (Ug,...,Uy,tUy,1,...,tun). Thus,r is the identity,
andro maps the entire region in®*. The fact that each, mapsF 1 ( —co,c— €] into itself follows from
the inequalityg—E > 0.

Case 3 Within the regione <& < n+¢, letr; (ug,...,un) = (Ug,...,U\,SUp,1,---,SUn) Wheres €

[0,1] is defined by
1

—e\ o
&:t+(l—0<§——>2.
n
Then, r; is again the identity, andy maps the entire region intb~*(c—¢). Note that this definition

coincides with Case 2 if =&. Thus,D? is a deformation retraction ¢f. O

Notice that wherM is compact and is a Morse function, we can apply the Fundamental Structure

Theorem, thus obtaining a global characterizatiorMotip to homotopy using the critical points éfas
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a guide for the homotopic building blocks bf. Without loss of generality we can assurmpés the only
critical point whose value is. Indeed, if there were another such point, sawheref (q) = ¢, we could
diffeomorphically map a neighborhood gfusing a local gradient flow so that the valuegatas no longer

at the level set.

4. APPLICATIONS OFMORSETHEORY

In order to better see the usefulness of Morse theory, itiefigal to see a concrete example of how
the theory can be applied. Below, we introduce the theoreResb, which states that altdimensional
manifolds that admit a Morse function with exactly two nagngrate critical points are homeomorphic to
S'. This fits in as a surprising result with the overall goal ofris®theory, which is to classify differentiable
manifolds up to homotopy. This theorem goes even furthed, gives us classification up to homeomor-

phism.

4.1. Characterization of S".

Theorem 3 (Reeb) If M is a compact manifold and f is a differentiable functiom il with exactly two

critical points, both non-degenerate, then M is homeomiarfiha sphere.

The general idea of this proof is to partition the manifividnto two pieces - a bowl and a cap. Using
the Flow Lemma and Morse Lemma, we can show that each of thesgiéces is homeomorphic to a disk
in R". Then we can identify the boundaries of the two disks, thuklimg S, and the remaining task of

explicitly defining the homeomorphism is not too difficult.

Proof. Let p andg be the non-degenerate critical pointsfofSinceM is compact, these critical points must
be a minimum and a maximum. Without loss of generality, agstiip) = 0 is the minimum and (q) =1
is the maximum.

For sufficiently smalle > 0, we can use the Flow Lemma to obtain tih\4t is homeomorphic to
M1=¢, ThusM = M~8Uf~1[1—¢, 1]. Sincep andq are non-degenerate, we know from Morse Lemma that
f~1[0,¢] and f~1[1— ¢, 1] are diffeomorphic to closed disks R", sayD! and D} respectively. Without
loss of generality, identifp} andD’ to {x € R": |x| < 1}. (For details on identification, see [2].)

Let Y : M® — DY andy, : f~1[1—¢,1] — DJ denote these diffeomorphisms. Notice that p) = 0

andyy; (q) = 0. We have thad (D}) = S/~* andd (D}) = Sy, whereS]* andS}* are copies oS8 *.
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Let f: St — S* given by f (x) = x. This function identifies the boundaries Bf andD}. Thus, the
n-dimensional spherg' = DJUD} , .
Using the representation above, we mimic it to extend thatifieation of the boundary of =1 (0,¢)
to f~1(1—¢,1) as a homeomorphism. Indeed, define the homeomorphism beMemdS" as follows.
We first mapx € M to a copy ofD" by eithery; or Y, and then identify the boundaries of the two disks.
d(X)=WP1(x), if xe ME,
d(X) =W (x), if xe f11—¢1].

Letd : M — S be given by the following:

Thus, we have tha¥l is homeomorphic t&" by f o ¢. O

4.2. The Poincaré Polynomial. Given a Morse function on a compact manifditl we can associate a
polynomial called thd?oincae polynomialto the Morse function. It is a known result that this polynami
gives us important topological information; for instanitegives us the Euler number of a manifold, which
is a homotopic invariant. Then, by way of Reeb Theorem, weusanthis property to differentiate between
two manifolds up to homeomorphism. We illustrate this bymekang the Poincaré polynomial associated
with height functions or$? andT?, but first let us state the definition of the Poincaré polyrabmassociated

with f : M — R.

Definition 10. Given a Morse function f on a compact n-dimensional diffesdshe manifold M, the

Poincaré polynomiahssociated with f is

n
Prt) =Y ot
A=1

where 6 denotes the number of critical points of index

Notice that the Poincaré polynomial depends on the fundtibecause the summation depends on the
critical points off. This fact makes the following theorem about the Poincatgromial quite remarkable.

We simply state it as a known result. Recall tR@M) is the Euler number of a manifoldy).

Theorem 4. Given a Morse function f on a compact n-dimensional diffeadte manifold M, we have that

X (M) =Py (~1).
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Using the height functions pictured in Figure 2, we can complue Euler numbers & andT?. Let
fi: ¥ — R andf,: T2 — R. First, we compute the Poincaré polynomial associatet thi¢ functionfy.

We see thatg = 1,¢1 =0, andc; = 1. So,Py, (t) = 1+t2. Using this to find the Euler number, we have that
X(S) =P (-1)=1+(-1)*=1+1=2

Now, we apply this same procedure to the functfeion T2. From Figure 2, we see theg=1,¢; = 2,

andc, = 1. So,Py, (t) = 1+ 2t +t2 and furthermore,
X (T2) =P (—1) =14+ 2(-1) + (1) =1-2+1=0,

Thus, the torus is not homotopic to the sphere since they tlbawve the same Euler number.
Next, we use the Euler number ©f to show that the torus always has a lower bound on the number
of its critical points of index 1. We now state and prove thisgosition, which we will use to show th&¢

andT? are not homeomorphic.

Proposition 1. Given any Morse function fT2 — R, f always has at least two critical points of index 1.

Thatis, g > 2.

Proof. SincePy, (—1) = 0, we have thag (T?) = 0 for all Morse functions off 2. Since Morse functions

are defined as continuous functions on compact manifoldfiave thaty > 1 andc, > 1 for such function

onT?2. Thus,
0 = x(T?
= Co+Ci(—1)+c2(—1)°
= C—C+C
> 1-c+1
= 2—C
So,c, > 2. O

So, any Morse function om? always has at least four critical points: one of index 0, twandex 1,

and one of index 2. Thus, by the Reeb Theorem, the torus céerttdmeomorphic to the sphere.
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