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Abstract: In this paper, we prove that a conjugacy may exist for
two different maps only if both maps have a critical point whose
image is less than one. In all other cases, no conjugacy can exist.
We first provide an “elementary” proof of this. We then assess
the possibility of a proof using ergodic theory. On an unrelated
topic, we completely characterize the long term behavior of Ricker’s
model for p : 2 < p <

√
6.

1 Introduction

At their most basic, dynamical systems are functions that map a set I onto
itself (f : I → I). These systems operate on a wide variety of sets, but for our
purposes we are interested in continuous functions from a topological space onto
itself. Specifically, functions for which I is an interval of the real line. First, we
define a few notions from calculus important for our discussion.

Definition 1.1 (One-to-one) Let f be a continuous function f : I → J . The
function is one-to-one on I if for every x, y ∈ I, if x 6= y, then f(x) 6= f(y).

Definition 1.2 (Onto) f : I → J is onto if for every y ∈ J , there is a x ∈ I
so that f(x) = y.

Definition 1.3 (Homeomorphism) A function f : I → J is a homeomor-
phism if it is one-to-one, onto, and continuous, and f−1 is also continuous.

Of immediate interests in such systems are the orbits of a given point ({x, f(x), f2(x), . . . },
where f i = f ◦ f ◦ . . . f(x)︸ ︷︷ ︸

i

). For a given dynamical systems there are certain

seed values of x whose orbits have some regularity. Perhaps there is a point
where the orbit is constant, {x, x, x, . . . }. Or maybe a point x has a repeating
orbit. Such an orbit would be {x, f(x), . . . , fk−1(x), x, f(x), . . . }. We classify a
few of these special points below.

Definition 1.4 A point x of a dynamical system f is a fixed point if f(x) = x.
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Definition 1.5 A point x is periodic of period k if fk(x) = x. The smallest k
for which this holds is the prime period of x.

Definition 1.6 A point x is eventually periodic or eventually fixed if ∃k > 0
so that fk(x) is periodic or fixed, respectively.

In certain maps, it may be extremely difficult to understand the long-term
behavior of most points. Such maps are in some sense chaotic, and we define
chaos here ([?]).

Definition 1.7 Let V be a set. F : V → V is said to be chaotic on V if
1) (sensitive dependence) There exists δ > 0 such that for any x ∈ V and any

neighborhood N of x there exists y ∈N and n ≥ 0 such that |fn(x)− fn(y)|> δ.
2) (topologically transitive) If for any pair of open sets U, V ⊂ J there exists

k > 0 such that fk(U) ∩ V 6= ∅.
3) Periodic points are dense in V .

The following device will become useful later ([?]).

Definition 1.8 Let f : I → I. The map is unimodal if
1) f(0) = f(1) = 0.
2) f has a unique critical point c with 0 < c < 1.

Definition 1.9 Let x ∈ I. The itinerary of x under f is the infinite sequence
S(x) = (s0s1s2 . . . ) where

sj =

 0 if f j < c
1 if f j > c
C if f j = c

Most important for us will be the itinerary of the critical point.

Definition 1.10 The Kneading Sequence K(f) of f is the itinerary of f(c).

Between two dynamical systems a relationship may exist through a function
h. We call such a relationship a conjugacy and define it thus:

Definition 1.11 A conjugacy between two continuous functions f : I → I and
g : J → J is any function h : I → J satisfying the following condition:

h ◦ f = g ◦ h, ∀x ∈ I, and (1)

h ◦ fk = gk ◦ h. (2)

Furthermore, this h must be a homoeomorphism. That is, h maps one-to-one,
onto, and continuous.

Conjugate pairs (g and f) are of special interest in dynamical systems, because
each member mimics the behavior of its conjugate pair through the function h.
If x is a fixed point of f then h(x) is a fixed point of g, because h ◦ f(x) =
h(x) = g ◦h(x). Periodic points are mapped through h as well. If x is a periodic
point of f with period k, then h(x) is a periodic point of g also of period k.
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2 Conjugacies Between Tent Maps of the Inter-
val

The specific topic of research will be families of maps known as tent maps.
These maps have the general form:

Tµ =
{

µx 0 ≤ x ≤ 1/2
µx (1− x) 1/2 < x ≤ 1

While many interesting dynamics happen for µ > 2, we will constrict ourselves
to the case 0 ≤ µ ≤ 2. Clearly, for such µ′s T maps from [0, 1] to [0, 1]. Are
there any conjugate pairs in this family at all? An answer either way would
be extremely interesting. If there were no conjugacy at all possible, then in a
certain sense the dynamical behavior of each Tµ is unique from other maps in
the family. If a conjugacy is possible, then we can understand the behavior of
T for any one value of µ through the behavior of T for a second value of µ.

2.1 Specific Characteristics of a Conjugacy

Before attacking the problem outright, we want to investigate what a conjugacy
would have to look like if it were to exist. Natural points to investigate are
x = 0 and x = 1 and x = 1/2. This leads us to our first result.

Lemma 2.1 h(0)=0.

Proof: By definition of conjugacy, h ◦ Tµ1(0) = Tµ2 ◦ h(0)⇒ h(0) = Tµ2 ◦ h(0).
Thus, h(0) is a fixed point of Tµ2 . However, Tµ2 only has two fixed points
x = 0 and x = µ2

µ2+1 . If h(0) = µ2
µ2+1 , then by the onto condition there must be

0 < x1 < x2 < 1 such that h(x1) = 0 and h(x2) = 1. Then by the intermediate
value theorem, ∃x̄ where x1 < x̄ < x2 so that h(x̄) = µ2

µ2+1 . This violates the
one-to-one condition on h. Therefore, h(0) = 0. 2

Lemma 2.2 h(1)=1.

Proof: By definition of conjugacy, h ◦ Tµ1(1) = Tµ2 ◦ h(1)⇒ h(0) = Tµ2 ◦ h(1).
This means that h(1) is eventually fixed under Tµ1 . There are four eventually
fixed points of Tµ1 : 0, 1

µ2+1 ,
µ2
µ2+1 , 1. Because of the above, h(1) 6= 0, and a

similar argument with the intermediate value theorem shows that h(1) 6= 1
µ2+1

and h(1) 6= µ2
µ2+1 . Therefore, h(1) = 1. 2

Lemma 2.3 h is strictly increasing.

Proof: First, assume that h is not strictly increasing. Then on some interval
[a, b] ⊂ [0, 1] h must be decreasing. In other words, a < b and h(a) > h(b). By
the intermediate value theorem there must be a h(b) < d < h(a) so that there
is a c : a < c < b and a c′ : 0 < c′ < a so that h(c) = h(c′) = d. This violates
the one-to-one condition on h. 2
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Lemma 2.4 h(1/2)=1/2.

Proof: Let x ∈ [0, 1/2], then because T (1− x) = T (x)

µ2h(x) = Tµ2 ◦ h(x) = h ◦ Tµ1(x) = h ◦ Tµ1(1− x) = Tµ2 ◦ h(1− x) = µ2 − µ2h(1− x)

Cancelling out the µ2’s leaves h(x) = 1−h(1−x). We simply let x = 1/2 giving
us h(1/2) = 1− h(1/2)⇒ h(1/2) = 1/2. 2

These results suggest that a conjugacy might be possible, as they do not place
any bizarre restrictions on h. On the other hand, these restrictions are rather
specific. Perhaps, they can be easily violated. Indeed, the weak hypothesis of
the following theorem suggests exactly that.

Theorem 2.5 If there is a k > 0 so that T kµ1
(1/2) < 1/2 < T kµ2

(1/2) or
T kµ2

(1/2) < 1/2 < T kµ1
(1/2), then there can be no conjugacy.

Proof: Under the first case, the following would have to hold.

h ◦ T kµ1
(1/2) = T kµ2

◦ h(1/2) = T kµ2
(1/2)

Because T kµ2
(1/2) > 1/2 and h(0) = 0, by the intermediate value theorem there

must be an a : 0 < a < T kµ1
(1/2) < 1/2 so that h(a) = 1/2. However, a is

clearly not equal to 1/2. This violates the one-to-one condition on h. A similar
argument holds if T kµ2

(1/2) < 1/2 < T kµ1
(1/2). 2

This theorem simply says that if the iterations of x = 1/2 under Tµ1 and Tµ2

fall on opposite sides of 1/2, then we cannot find a conjugacy. This hypothesis
is not especially strong. Because µ1 6= µ2, it is easy to imagine that iterations
of 1/2 might eventually separate by enough to fall on opposite sides of 1/2.

3 Several Results on Conjugacies

Theorem 3.1 For µ1 6= µ2 and 0 < µ1 < µ2 < 1, conjugacies can be con-
structed between two maps Tµ1 and Tµ2 .

Proof: In this case, we prove conjugacy between Tµ1 and Tµ2 by explicitly
constructing a map h which satisfies all the conditions of a conjugacy. We
construct h starting with the interval [0, 1

2 ]. Proceed by induction, where q = 1
or 2. Let h|I0 : I0µ1

→ I0µ2
where I0µq = ( 1

2µq
, 1

2 ) we only require that h|I0 be
a homeomorphism (with of course h( 1

2 ) = 1
2 ).

In general we introduce, for i > 0, h|Ii : Iiµ1
→ Iiµ2

where Iiµq = ( 1
2µi+1
q
, 1

2µiq
].

All h|Ii are defined recursively by h|Ii(x) = µ2h|Ii−1( 1
µ1

) To show that h|Ii is
one-to-one, onto, and continuous use induction. We will solely demonstrate
one-to-oneness, but the other properties can be proven in a similar spirit. Note
the base case is satisfied by definition. So we, assume that it is true for i ≤ n

Suppose ∃ x, x′ ∈ I(n+1)µ1
such that h|In+1

(x) = h|In+1
(x′). Then by the

recursive definition of h|In+1
we have µ2h|In( xµ1

) = µ2h|In( x
′

µ1
) ⇒ h|In( xµ1

) =
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h|In( x
′

µ1
) since the intervals Iiµq have been chosen so that x ∈ Ii+1µq

⇒ x
µq
∈

Iiµq . But by the induction hypothesis, h|In is one-to-one, so h|In( xµ1
) = h|In( x

′

µ1
)⇒

x
µ1

= x′

µ1
⇒ x = x′.

Now we are ready to define h on [0, 1
2 ]. For x ∈ Ii, h(x) = h|Ii(x). Since

[0, 1
2 ] = ∪∞i=0Ii ∪ {0} and Ii ∩ Ij = ∅, i 6= j, h(x) is well-defined on [0, 1

2 ]. This
said, we define h on ( 1

2 , 1] by h(x) = 1− h(1− x).
At this point, it should be fairly clear that our h is, in fact, a conjugacy.

Take an x ∈ [0, 1
2 ]. Then x ∈ Ii and h ◦ Tµ1(x) = h(µ1x) = h|Ii+1

(µ1) =
µ2h|Ii(

µ1x
µ1

) = Tµ2 ◦ h(x). 2

Corollary 3.2 There can be no conjugacy between two maps Tµ1 and Tµ2 ,
where µ1 < 1 < µ2.

This is easily seen several ways. Proof1: First, one calculates Tµ1(1/2) =
µ1/2 < 1/2 and Tµ2(1/2) = µ2/2 > 1/2, and by Theorem 2.5 there is no
conjugacy. Proof2: One may also think about it thus. The function Tµ2 has
two fixed points (x = 0 and x = µ2/µ2 + 1), while Tµ1 only has one (x = 0). 2

Theorem 3.3 There can be no conjugacy between two maps Tµ1 and Tµ2 where
1 < µ1 < µ2 < 2.

Proof: We proceed by contradiction. Let µ1 < µ2, in particular µ2 = µ1 + ε.
Assume that two such maps do indeed have a conjugacy. Then the kth iteration
of x = 1/2 will be a polynomial in terms of µ that will have the same form for
both Tµi ’s. Another implication of conjugacy is that T iµ1

(1/2) < T kµ1
(1/2) <

T jµ1
(1/2) ⇔ T iµ2

(1/2) < T kµ2
(1/2) < T jµ2

(1/2). Using this and the fact that the
orbit of x = 1/2 is dense in our invariant interval implies that there are kth
iterations of µ’s k arbitrarily large that are arbitrarily close to 1

2 . For notation,
we denote pµ(n) to be the polynomial expansion of the nth iteration of 1

2 . So
from the above statements we conclude there are arbitrarily large n’s such that
|pµ2(n)− pµ1(n)|= a > 0 where a ≈ 0. Let Lµ(n) be the leading term of pµ(n).
Consider then |pµ2(n+ 1)− pµ1(n+ 1)|. If greater than 1

2 , then we are done. If
not, then note that since we can choose n large so |Lµ1(n+ 1)−Lµ2(n+ 1)|= L
and we would have to have |pµ2(n+1)−pµ1(n+1)−Lµ2(n+1)+Lµ1(n+1)|≈ L.
But this would imply |D(b0)−D(b1)± ...∓D(bj)|= L where D(bi) = [µbi2 −µ

bi
1 −

µbi+1
2 +µbi+1

1 ]. The bi are the exponents “missing” from pµ(n). But substituting
µ1 + ε for µ2 in the expressions |Lµ2(n+ 1)− Lµ1(n+ 1)|≈

∑j
i=0D(bi) we see

that for large n, the expression on the left is a polynomial all terms positive
whose leading term is εµn whereas the polynomial on the right is alternating
and the leading term is at most ε2µn−1 →←. So |pµ2(n + 1) − pµ1(n + 1) −
Lµ2(n+ 1) + Lµ1(n+ 1)|<< k ⇒|pµ2(n+ 1)− pµ1(n+ 1)|> 1

2 . 2
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4 A Different Approach

4.1 Ergodic Theory

We may assault the problem of conjugacy from a different direction, Ergodic
Theory. Let us first make the following observation: that when examining the
kneading sequences of the critical point, the frequency of zeros depends on µ.
In particular, the frequency of zeros seems inversely proportional to µ. First,
we define the following intervals.

Ia = [1− T−2
µ (1/2), T 0

µ(1/2)]

Ib = [T 2
µ(1/2), T 0

µ(1/2)]

Then, for x ∈ Ia, T
2(x) is to the left of the critical point (0 in the Kneading

Sequence); for x 6∈ Ia, x ∈ Ib, T
2(x) is to the right of the critical point(1 in

the Kneading Sequence). Define R(µ) = |Ia|
|Ib| where || denotes length, then we

note that for 1 < µ <
√

2, R is strictly decreasing. Heuristically speaking, we
might conclude that for points to the left of the critical point, the “chance” that
after two iterations the point returns to the left, is in a one-to-one relationship
to µ. Or, in terms of the kneading sequence, for every 0 in the sequence, the
probability that the digit two places over is 0 is unique to the value of µ. But
if Tµ1 ∼ Tµ2 then K(Tµ1) = K(Tµ2) so the frequency that for any 0 in the
kneading sequence a 0 follows two digits later must be identical for µ’s who are
conjugate. But we have reason to suspect that in fact the frequency is unique for
each µ. It is this “probabilistic” obstruction to conjugacy which will motivate
our further discussions.

Unfortunately, the above informal argument is rather impoverished and un-
qualified; to construct a solid mathematical proof, we must make a foray into
the realm of Ergodic Theory. The main falsity in the informal proof lies in the
assumption that R(µ)=the “probability” that for x ∈ Ib, T

2
µ(x) ∈ Ib . Thus,

we must abandon that crude argument, but not without trying to capture its
spirit in another more sophisticated form which involves borrowing a big gun
from Ergodic Theory, namely Birkhoff’s theorem.

Let us consider I and a measure m on it. A function τ : I → I is m-Ergodic
provided that:

i)τ is measure preserving i.e m([a, b]) = m(τ−1[a, b]) and
ii)if I ′ ⊂ I is τ -invariant, then m(I ′) = 0 or 1.

Theorem 4.1 (Birkhoff’s Theorem) Let τ be ergodic on I. Then for A ⊂ I
and almost every x ∈ I we have,

µ(A) = lim
n→∞

1
n

n∑
i=0

ai ai =
{

1 τ i(x) ∈ A
0 τ i(x) 6∈ A

Armed with this tool the outline of our proof is as follows. Assume Tµ1 ∼
Tµ2 . We seek probability measures, m1 and m2, absolutely continuous with
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respect to Lebesgue measure (the standard way of measuring intervals in R)
with respect to which Tµ1 and Tµ2 are ergodic. We also note that if there is
a conjugacy then Birkhoff’s Theorem tells us if there are corresponding inter-
vals Iaµ1

and Iaµ2
under conjugacy (where T kµ1

∈ Iaµ1
⇔ T kµ2

∈ Iaµ2
) then

m1(Iaµ1
) = m2(Iaµ2

). If an absolutely continuous T -invariant measure, φm(x)
can be found which we can integrate over the Iaµ ’s, and if∫

Iaµ1

φµ1dλ 6=
∫
Iaµ2

φµ2dλ⇐⇒ m1(Iaµ1
) 6= m2(Iaµ2

)→←

This is sufficient to show non-conjugacy.

4.2 Measure Theory

We wish to find, if it exists, an absolutely continuous invariant measure (hence-
forth referred to as an acim). To do so, we enlist the aid of the Frobenius −
Perron Operator, an operator which describes the effect of a transformation τ
(in our case T ) has on a probability density function.

Let X be a random variable on the space J = [a, b] having the probability
density function f . Then for any measurable set J ′ ⊂ J , Prob{X ∈ J ′} =∫
J′
fdλ where λ is the normalized Lebesgue measure on J . Let τ : J → J be

a transformation. Then τ(X ) is a random variable on the space J . How do we
find τ(X )?

Prob{τ(X ) ∈ J ′} = Prob{∈τ−1(J)} =
∫
τ−1J′

fdλ

More specifically we want a probability density function for τ(X ), so we let∫
τ−1J′

fdλ =
∫
J′
ψdλ

for some function ψ. Note that if ψ exists, it will depend on f and on τ . Let

m(A) =
∫
τ−1A

fdλ

where f ∈ L1 and A an arbitrary measurable set. By the Radon-Nikodym
Theorem, ∃ψ ∈ L1 such that for all measurable sets A,

m(A) =
∫
A

ψdλ.

Moreover, ψ is unique and depends on τ and f . Let Pτf = ψ. Pτ is an operator
from the space of probability density functions on J into itself. Pτ is called the
Frobenius − Perron operator associated with τ . Because f ∈ L1, Pτf ∈ L1.
Thus Pτ : L1 → L1 is well defined. If we let A = [a, x] ⊂ J , then∫ x

a

Pτfdλ =
∫
τ−1[a,x]

fdλ.
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Upon differentiation with respect to x we get

Pτf(x) =
d

dx

∫
τ−1[a,x]

fdλ.

Because we are interested in invariant measures, of particular interest are
f ’s such that Pτf = f . Certain theorems exist which proscribe what properties
such a function f should have in the case it exists.

Definition 4.1 Let I = [a, b]. The transformation τ : I → I is called piece-
wise monotonic if there exists a partition of I, a = a0 < a1 < ... < aq = b,
and a number r ≥ 1 such that i) τ|(ai−1,ai) is a Cr function, i = 1, ..., q which
can be extended to a Cr function on [ai−1, ai], i = 1, ..., q, and ii) | τ ′(x) |> 0
on (ai−1, ai), i = 1, ..., q.

If τ is piecewise monotonic then

Pτf(x) =
∑

z∈{τ−1(x)}

f(z)
| τ ′(z) |

.

Note that Tµ is in fact piecewise monotonic. A probability density function
which is fixed under PTµ must satisfy the following relation:

f(x) = PTµf(x) =
∑

z∈{τ−1(x)}

f(z)
| τ ′(z) |

.

Or more explicitly:

f(x) = PTµf(x) =
1
µ
f(1− x

µ
) +

1
µ
f(
x

µ
)X[T 3

µ( 1
2 ),T 1

µ( 1
2 )]

where X is the characteristic function.
In 1957, Renyi defined a class of transformations that have an acim. Since

then, Lasota and Yorke proved a generalization of Renyi’s result. It is this result
we state here (in slight variation) that guarantees our map has an acim.

Definition 4.2 Consider the interval I = [a, b] with normalized Lebesgue mea-
sure λ on I. Let T denote the class of transformations τ : I → I that satisfy the
following conditions: i) τ is piecewise expanding, i.e., there exists a partition
P = {Ii = [ai−1, ai], i = 1, ..., q} of I such that τ|Ii is C1, and | τ ′i(x) |≥ α > 1
for any i and for all x ∈ (ai−1, a); ii) g(x) ≡ 1

|τ ′(x)| is a function of bounded
variation, where τ ′(x) is the appropriate one-sided derivative at the endpoints
of P. For each n ≥ 1, we define the partition P(n) as follows:

P(n) ≡ ∨n−1
k=0τ

−k(P) ≡ {Ii0 ∩ τ−1(Ii1) ∩ ... ∩ τ−n+1(Iin) : Iij ∈ P}

So τn is piecewise expanding on Pn if τ is piecewise expanding on P.
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Theorem 4.2 Let τ ∈ T (I). Then it admits an absolutely continuous invariant
measure whose density is of bounded variation.

Note that Tµ ∈ T (I), so it must have an acim.
The major difficulty actually lies in arriving at an explicit formula for such

an invariant measure. For simpler maps such as l(x) = (ax)mod1 | a |> 1, the
invariant measure takes the form of

f(x) =
∞∑
n=0

an
µn

where

an =
{

1 x < ln(0)
0 otherwise

We would hope that a similar formula might be used for Tµ. Unfortunately,
after many failed attempts, no correct measure has been found so far. When
defining f , it seems necessary to include the µn’s in the denominator to respect
the functional relationship which has a factor of 1

µ . We also want an expression
for an(x) such that

an(x) =
∑

y,Tµ(y)=x

an−1(T−1(y).

In the above example, the map l(x) preserves less-than and greater than. Or
in terms of the kneading sequence, it preserves the kneading sequence’s ordering.
Unfortunately, this is not the case with our map, so a simple formula for an
will not suffice. To further complicate things, when we consider what Birkhoff’s
Theorem means, we come to the conclusion that the interval D = [T 4

µ( 1
2 ), T 3

µ( 1
2 )]

should have measure 0. The interval D is a “dead-zone” so to speak. All points
in D are eventually mapped outside of D, (except for the fixed point), and there
are no points outside of D which are mapped into it. Birkhoff’s Theorem states
that the invariant measure of an interval is equal to the asymptotic frequency
of entrances of interations of a point x into that interval. Clearly for D, the
asymptotic frequency approaches 0. Or in mathematical terms:

m(d) =
∫
d

f(x)dλ = 0.

where d ⊂ D. The obvious way to deal with this is to simply set f(x) = 0
for all x ∈ D. But this leads to serious problems. Consider points in the
interval [T 3

µ( 1
2 ), T 5

µ( 1
2 )]. By the functional relation derived form the Frobenius−

PerronOperator, f(x) = 1
µf( xµ ) + 1

µf(1 − x
µ ), but f(1 − x

µ ) = 0 so we get
f(x) = 1

µf( xµ ). But this in turn will “redetermine” more values of f(x) and we
run into the problem of recursively having to redefine our function on certain
intervals. Lastly, we have the problem that we would like a0(x) = 0, but not
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neccessarily
∑
y,Tmu(y) a0(y)=0. This in itself poses a problem. One possible

solution may be to let f(x) have a form of
∑∞
n=−∞. Once again, adopting this

characterization of f(x) may lead to unforseen problems. Of course, the answer
may be to adopt an expression of f(x) that is much different than the one
studied in this paper. However such a formula has not conveniently presented
itself. As of this paper, no known invariant measure has been found.

5 Ricker’s Model

Our topic in this section is a simplified version of Ricker’s population model.
Specifically, we were interested in the long-term behavior of its orbits. Because
the model is intended to model population, we restrict our attention to only
meaningful values for x (x > 0). We define the function thus:

f(x) = xep−x

We state some easily verifiable facts:
First, the reader can see that f has only two fixed points (x = 0 and x = p).

f(0) = 0 (3)
f(p) = p (4)

These facts about the derivatives of f will become useful later.

f ′(x) = ep−x(1− x) (5)

f ′′(x) = ep−x(x− 2) (6)
f ′(1) = 0 and f(1) is the maximum of f (7)

By a calculation, we know that for 2 < p <
√

6, f has a two-cycle (a point x̄ such
that f2(x̄) = x̄. Moreover, this two-cycle is attracting, because |[f2(x̄)]′|≤ 1.

For instructive purposes, we include a proof that there are at least two
periodic points of f (which then make up the two-cycle).

Theorem 5.1 The function f has at least one periodic point x̄, x̄ 6= 0 or p.

Proof: We notice that:

[f2(0)]′ = e2p > 1

[f2(p)]′ = (1− p)2 > 1

For small ε > 0, we can say f2(0 + ε) ≈ f2(0) + ε[f2(0)]′ > ε ⇒ f2(ε) > ε. We
call such an ε, a. By a similar argument there is a b < p so that f2(b) < b. We
next define the function g(x) = f2(x)−x. Therefore, g(a) > 0 and g(b) < 0. By
the intermediate value theorem, there is a x̄ so that g(x̄) = 0, then f2(x̄) = x̄.
2
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Corollary 5.2 As a consequence, f(x̄) is also a periodic point of period 2,
because f2 ◦ f(x̄) = f ◦ f2(x̄) = f(x̄). 2

This result means that x̄ has this orbit {x̄, f(x̄), x̄, f(x̄), . . . }.
Because f has periodic points with period 2, we can learn much by under-

standing the structure of f2. The following four results establish the existence
of an invariant region of f2.

Lemma 5.3 For 2 < p <
√

(6), f(1) < f−2
r (p), where r designates the greater

choice between pre-images of f−1(p).

Proof:For reasons that will become clear, we want to establish some bounds
on f−1(p). Because f has a maximum at x = 1 (remember that f ′(1) = 0)
and p > 1, it must be the case that f−1(p) < 1. The reader can verify that
for 2 < p <

√
6, f(1/5) < p and f(1/2) > p. Clearly, the following is true,

f(1/2) < f(f−1(p)) = p < f(1/5). Because f is increasing, 1/5 < f−1(p) <
1/2. It is easy to see with some calculation, that f2(1) > 1/2. Therefore,
f−1(p) < f2(1). On the interval (p,∞), f ′(x) < 1 and f is strictly decreasing.
Therefore, f−1(p) < f2(1)⇒ f−2

r > f(1). 2

Theorem 5.4 For any x > 0, there is a k so that fk(x) ∈ (f−1(p), f−2
r (p)).

Proof: The preceding fact allows everything to work out nicely. Consider the
following two sets of intervals, where subscript l designates the left choice of
inverses and r the right choice:

L1 = (f−1(p), p), Li = (f−il (p), f−i+1(p))

R1 = (p, f−2
r (p)), Ri = (f−il (p), f−i−1(p))

One can see that these intervals cover the entire positive region of the x-axis
except for the two fixed points (x = 0 and x = p) and their inverses. Without
much difficulty, one sees that f(Ri) = Li. Also, f(Li) = Li−1. Therefore, for
i > 1, there is a k so that fk(Li) = L1 and a k so that fk(Ri) = L1. The above
lemma allows us to say that f(L1) = (p, f(1)) ⊂ R1. Any x > 0 is either in
Li or Ri, or is a pre-image of p. Therefore, there is a k such that for all x > 0
fk(x) ∈ L1 ∪R1 = (f−1(p), f−2

r (p)). 2

Corollary 5.5 The interval L1 ∪R1 is invariant under f , because f(L1) ⊂ R1

and f(R1) = L1. 2

Corollary 5.6 The interval L1 is invariant under f2, because f(L1) ⊂ R1 and
f(R1) = L1 ⇒ f2(L1) ⊂ L1. 2

This result allows us to see more intuitively why any periodic point of f
must have an even period, because the iterates of any x under f will eventually
end up alternating between L1 and R1. Moreover, one can see that x̄ must be
in L1.

The following theorem is included in any book on dynamical systems ([?]),
and we adapt it here for instructive purposes.
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Theorem 5.7 If f2 is C1 (as our function clearly is) and x̄ is an attracting
fixed point (note that x̄ is not a fixed point of f but it is one of f2) , then there
is a region (x̄− ε, x̄+ ε) such that for any x in this region,

lim
2k→∞

(x) = x̄.

Proof: Because f2 is C1 there is a region (x̄− ε, x̄+ ε) such that for any x in
this region |[f2(x)]′|< A < 1. By the Mean Value theorem there is a x < c < x̄
so that,

|f2(x)− x̄|
|x− x̄|

= [f2(c)]′

However, for every x in (x̄− ε, x̄+ ε), |[f2(x)]′|< A; and c is one such x. Thus:

|f2(x)− x̄|
|x− x̄|

= [f2(c)]′

< A, then

|f2(x)− x̄| < A|x− x̄|

We notice that f2(x) must be in (x̄ − ε, x̄ + ε) as well, so we can do the same
thing again. Thus,

|f2k(x)− x̄|< A2k|x− x̄|.

If we take the limit, then:

lim
k→∞

f2k(x) = x̄. 2

Notice that Lemma 5.7 guarantees that any point inside a region around x̄
(defined as the region where |[f2(x)]′|< 1 for every point) will converge to x̄
upon repeated iterations of f2.

The following series of results proves that the two-cycle attracts every point
that is not a pre-image of the fixed point.

Lemma 5.8 For 1 < x < 2, [f2(x)]′ is strictly increasing.

Proof: We state some results from equations (5) and (6).

[f2(x)]′ = f ′(f(x)) · f ′(x)

[f2(x)]′′ = f ′′(f(x)) · f ′(x) · f ′(x) + f ′′(x) · f ′(f(x))

= ep−f (f − 2) · e2(p−x)(1− x)2 + ep−x(x− 2) · ep−f (1− f)

For any 1 < x < 2, f(x) − 2 > 0 and (1 − x)2 > 0. Therefore the first term
above is positive. Moreover, x− 2 < 0 and 1− f(x) < 0. Thus, the second term
is positive as well. So:

[f2(x)]′′ > 0. 2
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Theorem 5.9 For any p : 2 < p <
√

6, x̄ < 2.

Proof: To prove this, we just show that f2(2) < 2. If we let p = 2 + ε, then for
our values of p, 0 < ε < 1/2 and:

2p− 2− 2ep−2 = 2ε− 2eε < 0⇒ e2p−2−2ep−2
< 1⇒ f2(2) < 2

Now, by an intermediate value argument similar to the one used earlier, we
know that x̄ < 2. 2

Corollary 5.10 If x̄ > 1, then for any x : 1 < x < x̄, limk→∞ f2k = x̄.

Proof: Because f ′(1) = 0, then [f2(1)]′ = 0. Also, |[f2(x̄)]′|< 1. Because f2 is
strictly increasing on [1, 2] and [1, x̄] ⊂ [1, 2], then it must be true that for every
x ∈ [1, x̄], |[f2(x)]′|< 1. By Theorem 5.7, every x ∈ [1, x̄] is attracted to x̄. 2

Lemma 5.11 For any x : x̄ < x < p, limk→∞ f2k(x) = x̄.

Proof: It is a simple consequence of the above results that f2(x) < x for
x̄ < x < p.

Case 1, f2(1) ≥ 1: Because |[f2(p)]′|> 1, by the intermediate value thoerem
1 < x̄ < p (this is just a refinement of a our proof for the existence of x̄).
Because f2 is strictly increasing for 1 < x < p and f2(x) < x for x̄ < x < p,
it must be true that x̄ < f2(x) < p (in other words, f2(x̄, p) = (x̄, p)). In this
case, for any x one can iterate it enough times to get into the region around x̄
outlined in Theorem 5.7. At this point we know that limk→∞ f2k(x) = x̄.

Case 2, f2(1) < 1: We leave it to the reader to show that for |[f2(x0)]′|>
|[f2(x1)]′| where x0 < 1 and x1 is chosen so that f(x1) = f(x0). This can be
done knowing that f ′ increases faster on (f−1(p), 1) than on (1, p). After this,
we know that for any x : x̄ < x < p there is a k so that f2k(x) ∈ (x̄, a) where
1 < a < p and f2(a) = x̄. At this point we are in the region around x̄ described
in Theorem 5.7, and we know limk→∞ f2k(x) = x̄. 2

Theorem 5.12 If x satisfies the following conditions, then limk→∞ f2k(x) = x̄.

x 6= f−i(p), i ∈ Z
x 6= p

x 6= 0

Proof: We already know that the interval L1 is invariant under f2 and x̄ ∈ L1.
Moreover, one can see that f2 has a critical point at x = 1 and this point is
the global minimum on the interval L1. The reader can verify that f2(1) < p.
Now, either f2(1) < 1 or f2(1) > 1. If f2(1) ≤ 1, then f2((f−1(p), x̄)) ⊂ (x̄, p)
and then the above Corollary holds. If f2(1) > 1, then f2((f−1(p), 1)) ⊂ (1, p)
and the above holds again. In either case limk→∞ f2k(x) = x̄. 2

Corollary 5.13 Because f is continuous, as points approach x̄ under iteration
of f2 they will also approach f(x̄) under one additional iteration of f. 2
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Corollary 5.14 There are no periodic points of any prime period other than 2.

Proof: Clearly any periodic point must be in the interval L1 ∪ R1. However,
everything in this interval is either an inverse of the fixed point, or a periodic
point, or is attracted to a periodic point (Theorem 5.12). So there is no possi-
bility of a point that is of any period other than 2. 2

We have now completely characterized the behavior of Ricker’s model (for
2 < p <

√
6) under iteration. Clearly, the set of pre-images of p form a countable

set in R. Therefore, in almost every case, repeated iterations of Ricker’s model
will approach the attracting two-cycle.
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