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Abstract

A jump system is a set of lattice points satisfying a certain existence
axiom. The main result in this paper is the proof of a descriptive charac-
terization of 2-dimensional jump systems. Further results in the direction
of characterizing higher-dimensional jump systems follow. In addition,
a few other directions are handled yielding results that inspire further
pursuit.

1 Jump Systems-Introduction

1.1 Introduction

A jump system is a set of lattice points in any number of dimensions that satisfy
a certain existence axiom. The idea of jump systems was conceived by Bouchet
and Cunningham in order to generalize the sets of bases of a matroid, degree
sequences of subgraphs of a graph, and others. While many applications of
jump systems lay in the formerly-stated areas, it is possible to naively work
with jump systems, ignoring the details of their inspiring topics.

1.2 Two-Step Axiom and Basic Definitions

Definition 1.1. Let S be a finite set. For x, y ∈ ZS we use the [so-called
taxicab] norm

‖x‖ =
∑
i∈S
|xi|

and the corresponding distance

d(x, y) = ‖x− y‖.

Definition 1.2. For vectors x, y ∈ ZS, a step from x to y is a vector s ∈ ZS
such that ‖s‖ = 1 and d(x + s, y) = d(x, y) − 1. St(x, y) denotes the set of all
steps from x to y. Note that if s is a step from x to y then s = ±ei, where ei
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is ith standard unit vector. For notational convenience, we will sometimes use
x

y−→ x+ s to denote a step from x to x+ s in the direction of y.

Definition 1.3. Jump System Given a collection of points J ⊆ ZS, we say
that J is a jump system if and and only if J satisfies Axiom 1.4.

Axiom 1.4. (2-Step Axiom) If x, y ∈ J ⊆ ZS, s ∈ St(x, y), and x + s /∈ J ,
then there exists t ∈ St(x+ s, y) with x+ s+ t ∈ J .

1.3 Jump System Operations and Additional Definitions

The following operations allow us to simplify many of the later proofs concerning
various properties of jump systems.

Definition 1.5. Let J be a jump system and let a ∈ ZS. Then the translation
J ′ of J by a is defined by J ′ = {x+ a : x ∈ J}.

Example 1.6. Let J = {(1, 1), (1, 3)} and a = (2, 4). Then the translation of
J by a is J ′ = {(3, 5), (3, 7)}.

Definition 1.7. Let J be a jump system and let N ⊆ S. We call J ′ the re-
flection of J in N if and only if J ′ = {x′ : x ∈ J, x′j = xj for j /∈ N,x′j =
−xj for j ∈ N}.

Example 1.8. Let J be as in Example 1.6, with S = {1, 2} and N = {1}. Then
the reflection of J in N is J ′ = {(−1, 1), (−1, 3)}.

Definition 1.9. The sum of two jump systems J1 ∈ ZS and J2 ∈ ZS, denoted
J1 + J2 = J , where J = J1 + J2 = {x+ y : x ∈ J1, y ∈ J2}.

Example 1.10. Let J1 = {(2, 2), (2, 3)} and J2 = {(0, 0), (1, 0), (3, 0)}. Then
J = J1 + J2 = {(2, 2), (2, 3), (3, 2), (3, 3), (5, 2), (5, 3)}.

Definition 1.11. Let J be a jump system in ZS. Let v ∈ RS. Then if
vTx = v1x1 + . . .+ v|S|x|S| =

∑
i∈S vixi remains bounded for all x ∈ J and

ωv = max{vTx : x ∈ J} we call fv = {x : x ∈ J, vTx = ωv} a face of J. For
notational convenience we define the set V = {v : v ∈ {−1, 0, 1}S , v 6= 0)}.

Since the jump systems addressed in this paper are finite, the reader should
note that all faces are in fact nonempty sets.

Example 1.12. Let J be as in Example 1.10 and v = (1, 0). Then ωv = 5 and
fv = {(5, 2), (5, 3)}.

The geometry of two and three-dimensional jump systems and their ensuing
faces yield great insight into the general properties of faces. Later it will be
shown that the faces fv with v ∈ V are sufficient for working with jump systems.

Theorem 1.13. [Bouchet, Cunningham] Let J be a jump system in ZS. Then:

1. The translation of J is a jump system.
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2. The reflection of J is a jump system.

3. The sum of two jump systems is a jump system.

4. If v ∈ V , then fv is a jump system.

Since a jump system is a collection of points in n-dimensional space, we need
a convention for determining the location of a point with respect to the extremes
of the jump system.

Definition 1.14. Let J be a jump system in ZS. Then we associate a collection
of points in ZS called a polytope with J. The polytope, denoted PJ , is the set

P = {x : x ∈ ZS , vTx ≤ ωv∀v ∈ RS}

Definition 1.15. Let ai ≤ bi for all i ∈ {1, . . . , |S|} Then the set of points
{x : ai ≤ xi ≤ bi for all i}is called a box. A box B can be denoted by B =∏|S|
i=1[ai, bi].

Note that while it is possible for ai ∈ (R ∪ −{∞}) and bi ∈ (R ∪ {∞}), we
will always refer to boxes with finite dimensions and integral boundaries unless
stated otherwise.

2 2-Dimensional Characterization and Additional
Properties

Theorem 2.1. Let J be a jump system and let v ∈ V . We define the set S1

such that S1 = {i | vi 6= 0}. Let S2 ⊂ S1 with |S2| = |S1| − 2. If a, b ∈ fv and
ai = bi for all i ∈ S2, then all the points between a and a′, and b and b′, where

a′i =

{
bi if i ∈ S1,

ai otherwise.
and b′i =

{
ai if i ∈ S1,

bi otherwise.
are also in fv.

Proof. By reflection, translation, and coordinate-swapping, we may assume the
following:
1)v = (1, . . . , 1, 0, . . . , 0), where the first m entries of v are ones, and the re-
maining |S| −m entries are zero.
2)S1 = {1, . . . ,m}, S2 = {3, . . . ,m}.
3)a = (0, 0, 0, . . . , 0).
4)b = (b1,−b1, 0, . . . , 0, bm+1, . . . , bn) where b1 > 0.

To prove that all the points between a and a′ and between b and b′ are in fv,
it is enough to show that the point (1,−1, 0, . . . , 0) ∈ fv because if we prove that,
we can recursively let a = (1,−1, 0, . . . , 0) and prove that (2,−2, 0, . . . , 0) ∈ fv,
and so on, all the way to (b1,−b1, 0, . . . , 0). Take a step a b−→ (1, 0, . . . , 0). We
see that (1, 0, . . . , 0) /∈ J because vT (1, 0, . . . , 0) > vTa. By Axiom 1.4, we can
take a second step that will get us back into J . The only possible second step is
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(1, 0, . . . , 0) b−→ (1,−1, 0, . . . , 0), because a step in the last |S| −m coordinates
will take us out of fv. Therefore, (1,−1, 0, . . . , 0) ∈ J . Also, by an analogous
argument, we can prove that all the points between b and b′ are in fv.

Example 2.2. Let v = (1, 1, 1, 1, 0, 0), a = (3, 4, 5, 6, 7, 11), and b = (0, 4, 5, 9, 10, 2)
with a, b ∈ fv. Then S1 = {1, 2, 3, 4} and S2 = {2, 3}. Now, a′ = (0, 4, 5, 9, 7, 11)
and b′ = (3, 4, 5, 6, 10, 2). The above lemma states that the points between a and
a′, (3, 4, 5, 6, 7, 11), (2, 4, 5, 7, 7, 11), (1, 4, 5, 8, 7, 11), (0, 4, 5, 9, 7, 11), and the
points between b and b′, (0, 4, 5, 9, 10, 2), (1, 4, 5, 8, 10, 2), (2, 4, 5, 7, 10, 2),
(3, 4, 5, 6, 10, 2), are all in fv.

Corollary 2.3. If J ⊆ Z2 is a jump system and a, b ∈ fv where the support of
v is 2, then all the points between a and b are also in the jump system.

Proof. S1 = {1, 2} and S2 = {}. We see that theorem 2.1 applies here, with
a′ = b. Therefore all points between a and b are in the jump system.

Theorem 2.4. [Lovász]
Let J be a jump system and let v, w ∈ V . Define the function abs(a) =

(|a1|, . . . , |an|). If the dot product of abs(v) and abs(w) equals zero, then (fv)w∩
f(v+w) 6= ∅.
Lemma 2.5. Let J ⊆ Z2 be a jump system and a ∈ PJ \ J such that vTa = ωv
for some v ∈ V . Then there exist points x, y ∈ fv such that a lies on the line
segment connecting x and y.

Proof. We will prove this in two cases. The first case will deal with v whose
support is one, and the second case will deal with v whose support is two. By
reflection, translation, and coordinate flipping, we will assume that a = (0, 0)
and it lies on f(1,0) in case one and f(1,1) in case two.

Case 1: (1, 0)Ta = ω(1,0).
Assume there are no points in J that are above a. By theorem 2.4, we
know that f(1,0) ∩ f(1,1) 6= ∅, so there must have been some point below a
that is in f(1,1). But that would imply that a is outside f(1,1) and therefore
not in the polytope of J . This is a contradiction.

Case 2: (1, 1)Ta = ω(1,1).
Assume there are no points in J that are of the form (−α, α), α > 0. By
theorem 2.4, we know that f(0,1) ∩ f(1,1) 6= ∅, so there must be a point
of the form (α,−α) that is in f(1,1) and f(0,1). But that would imply
that a is outside f(0,1) and therefore not in the polytope of J . This is a
contradiction.

Theorem 2.6. Let J ⊆ Z2. Then J is a jump system iff
1) For all x′, x′′ /∈ J with d(x′, x′′) = 1 that are in the polytope of J , there are
no points x ∈ J that are on the line that passes through x′ and x′′

and
2) each face of J is a jump system.
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Proof. Throughout the proof, the word gap will signify a point z for which
z ∈ PJ \ J . Also, the expression y is on a face will mean vT y = ωv for some
v ∈ V regardless of whether y ∈ J or y /∈ J .
(⇒) Assume that J is a jump system.

Because our conclusions are invariant under reflection and translation, we
may, without loss of generality, assume that x = (0, 0) ∈ J , x′ = (1, 0) /∈
J, x′′ = (2, 0) /∈ J with x, x′, x′′ in the polytope of J . This implies that there
are no points in J of the form (k, 0) where k > 0.

There are two cases we have to consider. The first case is when x′ is on a
face and the second is when x′ is not. If x′ is on a face, we see that x and x′′ are
on that same face. This observation holds because any face fw that contains x′

and neither x nor x′′ places x and x′′ on opposite sides of itself. Then we would
have either x /∈ PJ or x′′ /∈ PJ , contradicting our hypothesis.

Case (1) x, x′, x′′ are on a face fv for some v ∈ V .
We may assume that v = (0, 1), (i.e. x lies on the north face of J). Since we
know there are no points to the right of x, x will be on the (1, 0) face of fv.
Therefore, x ∈ f(1,1) of J by 2.4.

Thus our assumption that x′ is in the polytope of J is false, because (1, 1)Tx′ =
1, which is greater than ω(1,1) = 0, and therefore outside the polytope.

Case(2)vTx′ < ωv for all v ∈ V .
Since we know that there are no points in J of the form (k, 0), with k > 0, and
(1, 0) is in the polytope, there must be some gap y = (m, 0),m > 1 on some face
of J . By corollary 2.3 and lemma 2.5, we know that a ”diagonal” face of a 2-
dimensional jump system cannot contain any gaps in it, therefore (m, 0) must be
on the (1, 0) face. By the previous case, we know that if (m, 0) /∈ J is on a face,

then either (m, 1) or (m,−1) are in J. If we take a step (m,±1)
(0,0)−→ (m, 0), we

will not have a second step toward (0, 0) that will land on a point ∈ J . Therefore
J is not a jump system, and we have a contradiction.

(⇐)Assume (1) and (2)
We will show that the two-step axiom holds for any arbitrary pair of points,
x, y ∈ J . Because we can reflect and translate the jump system, we can, without
loss of generality, assume x = (0, 0) and y = (p, q) where p, q ≥ 0. To avoid
triviality, we assume that d(x, y) > 2 and that x and y are not on the same
face. There are two cases to consider. The first case is where p or q equal zero
(because of symmetry, we will only prove this case for q = 0) and the second is
where p, q > 0.

Case (1)q = 0.
By (1) we know that (1, 0) or (2, 0) is in J . Thus, the two-step axiom holds.

By symmetry, this case also applies to y = (0, q).
Case (2)p ≥ 1. q ≥ 1.

Without loss of generality, we can assume that the first step is x
y−→ (1, 0) and

we assume that (1, 0) /∈ J . We will show that either
i)(1, 1) ∈ J or
ii)(2, 0) ∈ J .

If (1, 1) ∈ J , then it is a step from (1, 0) to y and the 2-step axiom is satisfied.
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So we will assume that (1, 1) /∈ J . Clearly, (1, 1) is in the polytope of J . Now
we will show that (1, 0) is in the polytope. Assume for the sake of contradiction
that (1, 0) is not in the polytope. Then, (0, 0) must have been on a face of J .
Since vT (1, 0) > vT (0, 0) = 0 for some v, we know that v1=1. So the possible
faces that (0, 0) could be on are: f(1,0), f(1,1), or f(1,−1). If x is on f(1,0) or f(1,1),
then we have a contradiction because vT y > 0 and thus y is not in J .

If (0, 0) ∈ f(1,−1), then by Lovász, we know that there must be a common
point on f(1,−1) and f(1,0). Since, x /∈ fv, there must be a point (α, α) ∈ J where
α > 0. But now, Corollary 2.3 implies that (1, 1) ∈ J , which is a contradiction.
Therefore the point (1, 0) is in the polytope. Thus, by (1), we know there are
no points of the form (1, q) (because (1, 0) and (1, 1) are in the polytope, but
not in J). So y = (p, q), where p > 1.

Now we will show that (2, 0) is in the polytope. Assume for the sake of
contradiction that (2, 0) is not in the polytope. Then vT (1, 0) = ωv for some
v ∈ V . Since vT (2, 0) > vT (1, 0) = 0 for some v, we know that v1=1. But (1, 0)
cannot be on f(1,1) or f(1,−1) because of corollary 2.3 and lemma 2.5. And it
can not be on f(1,0) because (1, 0)T y > (1, 0)T (1, 0) = 1. Thus, we have shown
that the point (2, 0) is in the polytope. By (1) we know that (2, 0) ∈ J , since
the line passing through (1, 0) and (2, 0) also passes through (0, 0). There fore
(1, 0)

y−→ (2, 0) satisfies the 2-step axiom.

3 Additional Properties of Jump Systems

Theorem 3.1. Let J ⊆ ZS with associated polytope PJ . Let x ∈ J ,
x+ en ∈ PJ \ J , x+ 2en ∈ PJ \ J for some n ∈ S. If k ≥ 1,∑
i 6=n |ki| ≤ k − 1, ki ∈ Z, then

x+ ken +
∑
i 6=n

kiei /∈ J.

Proof. Let y ∈ J such that y = x + ken +
∑
i 6=n kiei with d(x, y) minimal.

Through reflection we may assume that ki ≥ 0 for all i. Step y
x−→ y − ei for

some ei. Then y − ei violates minimal choice of y, so y − ei /∈ J . By Axiom 1.4
there exists a second step from y to x contained in J . There are three possible
choices for this second step:

1. y − ei
x−→ y − 2ei, which violates the minimal choice of y.

2. y − ei
x−→ y − ei − ej for some j 6= i and j 6= n, which also violates the

minimality of y.

3. y − ei
x−→ y − ei − en, which again violates our minimal choice of y.

Thus all three possibilities from Axiom 1.4 result in contradictions, and we have
that y /∈ J .
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We define some notation to make the following theorem less cumbersome.
Consider Z3 and let v ∈ V where the support of v is 3. Let x ∈ Z3, and define
the following set Mv(x) = {y : y ∈ J, yi ≥ xi for vi = 1, yi ≤ for vi = −1}.

Theorem 3.2. Let J ⊆ Z3 be a jump system. If x ∈ PJ \ J and v ∈ V with
support equal to three, then there exists a point z ∈ J such that z ∈Mv(x).

Proof. We prove the theorem for v = (1, 1, 1), which is sufficient due to the
symmetry of the arguments.

Consider fe1 . Then a1 ≥ x1 for all a ∈ fe1 , or else x /∈ PJ . Maximize a3 over
fe1 , yielding points in the set (fe1)e3 . By [Lovász] we know that (fe1)e3 ⊆ f(1,0,1).
Maximize a2 over (fe1)e3 , yielding ((fe1)e3)e2), which is contained in f(1,1,1) by
[Lovász]. Thus for all points a ∈ ((fe1)e3)e2), we have that a1 ≥ x1, a1 + a3 ≥
x1 + x3, and a1 + a2 + a3 ≥ x1 + x2 + x3.

Define the set A = {y ∈ J, y1 ≥ x1, y1 + y3 ≥ x1 + x3, y1 + y2 + y3 ≥
x1 + x2 + x3}. It is clear that ((fe1)e3)e2) ⊆ A, so A is nonempty.

Consider fe3 . Then b3 ≥ x3 for all b ∈ fe3 , or else x /∈ PJ . Maximize b1 over
fe3 , yielding points in the set (fe3)e1 . By [Lovász] we know that (fe3)e1 ⊆ f(1,0,1).
Maximize b2 over (fe3)e1 , yielding ((fe3)e1)e2), which is contained in f(1,1,1) by
[Lovász]. Thus for all points b ∈ ((fe3)e1)e2), we have that b3 ≥ x3, b1 + b3 ≥
x1 + x3, and b1 + b2 + b3 ≥ x1 + x2 + x3.

Define the set B = {y ∈ J, y3 ≥ x3, y1 + y3 ≥ x1 + x3, y1 + y2 + y3 ≥
x1 + x2 + x3}. It is clear that ((fe3)e1)e2) ⊆ B, so B is nonempty.

Choose a ∈ A and b ∈ B such that a3 and b1 are maximal. Define the set
M13 = {y ∈ J, y1 ≥ x1, y3 ≥ x3, y1 + y2 + y3 ≥ x1 + x2 + x3}. Then M13 is
nonempty, or else a3 < x3 and b1 > x1.

Assume M13 is empty, and take the step a
b−→ a+ e3. We know that

a + e3 /∈ J , because (1, 1, 1)T (a + e3) > (1, 1, 1)Ta = ω(1,1,1). Then by Axiom
1.4 one of a+ 2e3 ∈ J , a+ e3 − e1 ∈ J , or a+ e3 − e2 ∈ J must hold. However,
each of these possibilities violates the maximal choice of a, and therefore M13

must be nonempty.
Through analogous arguments, the setsM12 = {y ∈ J, y1 ≥ x1, y2 ≥ x2, y1+

y2 + y3 ≥ x1 + x2 + x3} and M23 = {y ∈ J, y2 ≥ x2, y3 ≥ x3, y1 + y2 + y3 ≥
x1 + x2 + x3} are nonempty.

Choose f ∈M13 with f2 maximal, g ∈M23 with g1 maximal, and h ∈M12

with h3 maximal. If f2 ≥ x2, g1 ≥ x1, or h3 ≥ x3, then we are done, so
assume otherwise. Thus f2 < x2, g1 < x1, and h3 < x3. Since f2 < x2,
we may assume without loss of generality that f1 > x1 in order to preserve
f1 + f2 + f3 ≥ x1 + x2 + x3.

Examine the step f
g−→ f + e2. Since f + e2 violates the maximal choice

of f , we know that f + e2 /∈ J . Axiom 1.4 thereby states that one of f + 2e2,
f + e2 + e1, or f + e2 + e3 is in J . However, each of these points contradicts the
maximal choice of f . Therefore there exists a point z ∈ J such that z1 ≥ x1,
z2 ≥ x2, and z3 ≥ x3.
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Theorem 3.3. Let J ⊆ Z3 be a jump system with associated polytope PJ . Let
x ∈ PJ \ J , x + e3 ∈ PJ \ J , and x + 2e3 ∈ J . Then the eight points in
{x± e1 ± e2;x± e1 + e3;x± e2 + e3} are contained in J .

Proof. Since x is contained in the polytope PJ , by Theorem 3.2 we know that
there exists a point b ∈ f(1,1,−1) such that b1 ≥ x1, b2 ≥ x2, and b3 ≤ x3. Step

x + 2e3
b−→ x+ e3 /∈ J . Then by Axiom 1.4 there exists a second step from

x+ e3 to b. Since x+ e3
b−→ x /∈ J by our hypothesis, it must be the case that

either x+ e1 + e3 ∈ J or x+ e2 + e3 ∈ J . Whichever occurs, we will show that
x+ e2 + e3 ∈ J .

Assume that x+e1 +e3 ∈ J and consider the step x+e1 +e3
b−→ x+ e1 /∈ J .

Then there must be a second step from x+e1 to x+2e1, x+e1+e2, or x+e1−e3,
although Theorem 3.1 dictates that x+ e1 − e3 /∈ J .

Assume that x+ e1 + e2 /∈ J , implying that x+ 2e1 ∈ J . We will show that
this results in a contradiction, and x+ e1

b−→ x+ e1 + e2 ∈ J .
Then by Theorem 3.2 we know that there is a point c ∈ f(−1,1,−1) such that

c1 ≤ x1, c2 ≥ x2, and c3 ≤ x3. Consider the step x + 2e3
c−→ x+ e3 /∈ J . By

Axiom 1.4, there is a second step x+e3
c−→ x− e1 + e3 or x+e3

c−→ x+ e2 + e3,
because x is ineligible due to our hypothesis.

If x−e1 +e3 ∈ J , then x−e1 +e3
x+2e1−→ x− e1 /∈ J , and x /∈ J by hypothesis.

The only other possible step from x− e1 to x+ 2e1 is x− e1
x+2e1−→ x /∈ J , which

violates Axiom 1.4, so we cannot have x− e1 + e3 ∈ J .
If x+ e2 + e3 ∈ J , then x+ e2 + e3

x+2e1−→ x+ e2 /∈ J . There are two possible
second steps from x + e2 to x + 2e1, namely x and x + e1 + e2. However,
x /∈ J by hypothesis, so we must have x+ e1 + e2 ∈ J , contradicting our earlier
assumption. Therefore x+ e1 + e2 ∈ J .

Through a symmetric argument we conclude that x − e1 − e2 ∈ J . Then
taking x− e1 − e2

x+e1+e2−→ x− e1 /∈ J , it must be the case that x− e1 + e2 ∈ J ,
because we disregard x by our hypothesis. Also, by taking x− e1 − e2

x+e1+e2−→
x− e2 /∈ J , it must be the case that x+ e1 − e2 ∈ J .

Consider the step x + e1 + e2
x+2e3−→ x+ e1 /∈ J . Then since x /∈ J , we

must have x + e1 + e3 ∈ J , because our hypothesis disallows x ∈ J . Similarly,
x+ e1 + e2

x+2e3−→ x+ e2 /∈ J . Then because x /∈ J , we arrive at x+ e2 + e3 ∈ J .
Analogously, we can step x − e1 − e2

x+2e3−→ x− e1 /∈ J and x − e1 − e2
x+2e3−→

x− e2 /∈ J , forcing x− e1 + e3 ∈ J and x− e2 + e3 ∈ J , respectively.

Definition 3.4. Let J be a jump system. Then the reduction J ′ of J , written
as J ′ = J(x1,... ,xi+xj ,... ,x|S|) means that for all x = (1, . . . , |S|) ∈ J,
x′ = (x1, . . . , xi−1, xi + xj , xi+1, . . . , xj−1, xj+1, . . . , x|S|) ∈ J ′.

Theorem 3.5. [Ponomarenko] The reduction operation preserves the jump sys-
tem property.
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Definition 3.6. Let J ⊆ ZS be a jump system and i ∈ S. Then a projection
J ′ of J , written as J ′ = J(x1,... ,xi−1,xi+1,... ,x|S|) means that for all
x = (x1, . . . , x|S|) ∈ J , x′ = (x1, . . . , xi−1, xi+1, . . . , x|S|) ∈ J ′.
Theorem 3.7. The projection operation preserves the jump system property.

Example 3.8. example of reduction

Definition 3.9. Let J be a jump system. Then the strong reduction J ′ of J ,
written as J ′ = J(x1,... ,xi+αxj ,... ,x|S|) where α ∈ {−1, 0, 1}, means that for all
x ∈ J, x′ = (x1, . . . , xi−1, xi + αxj , xi+1, . . . , xj−1, xj+1, . . . , x|S|) ∈ J ′.
Corollary 3.10. The strong reduction operation preserves the jump system
property.

Proof. Case 1: α = 1 or α = −1
This case is exactly the reduction operation (with reflection having been

used for α = −1), so by Theorem 3.5, we know that J ′ is a jump system.
Case 2: α = 0. This case is exactly the projection operations Thus by Theorem
3.7, we know that J ′ is a jump system.

Theorem 3.11. If J is a collection of points and there exists a v ∈ {−1, 0, 1}S
such that vTx is a constant for all x ∈ J then J is a jump system if and only if
every strong reduction is also a jump system.

Proof. By Theorem ??, we immmediately get one direction of the proof. For the
other direction, we will show that if J is not a jump system, then there exists a
strong-reduction that is also not a jump system. Since J is not a jump system,
there exist points a, b ∈ J and s /∈ J such that after taking a step a b−→ s, there
are no steps from s to b. By reflection, translation, and coordinate swapping,
we can assume the following:
1)v = (1, . . . , 1, 0, . . . 0). v contains n elements with the first m of them being
ones and the rest zeroes.
2)a = (0, 0, . . . , 0).
3)vTx = 0 for all x ∈ J , that is

∑m
i=1 xm = 0 (Direct consequence of above)

4)b = (b1, b2, . . . , bn).
There are two cases that we have to consider. The first one is when s is such

that si = b̄i for some i ≤ m and zero everywhere else. The second case is when
si = b̄i for some i > m and zero everywhere else. For the first case, without loss
of generality, we will assume that i = 1 and for the second case, we will assume
that i = m+ 1.

Case I: s = (b̄1, 0, . . . , 0).

We may assume that b̄1 = −b̄2 and m > 2. (since there must exist a bi
with a sign opposite b1 in order for vT b = 0 and we just let i = 2). We
will break up this case into the following four subcases:
1)(2b̄1, 2b̄2, 0, . . . , 0) ∈ J .
2)(b̄1, 2b̄2, 0, . . . , b̄i, . . . , 0) ∈ J where b̄1 = b̄i and i ≤ m.
3)(b̄1, b̄2, 0, . . . , b̄i, . . . , 0) ∈ J where i > m.
4)Subcases 1-3 are false.
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Subcase 1: (2b̄1, 2b̄2, 0, . . . , 0) ∈ J .
Let J ′ = J(x1−x2,x3,... ,xn). We know that a′ = (0, . . . , 0) and b′ =
(4b̄1, 0 . . . , 0) are in J ′. To prove J ′ is not a jump system, we
will first prove that e = (b̄1, 0, . . . , 0) /∈ J ′ and then prove that

2e = (2b̄1, 0, . . . , 0) /∈ J ′. Thus, after a′ b′−→ e, the only next valid
step towards b′, mainly 2e, is not in J ′, which is a violation of the
2-step axiom.
Assume (b̄1, 0, . . . , 0) ∈ J ′. Then for some x ∈ J , we have x1−x2 = b̄1
and x3 = · · · = xn = 0. Also, we know that x1 + x2 + · · ·+ xm = 0.
So we have the following two equations: x1−x2 = b̄1 and x1 +x2 = 0.
Therefore x1 = b̄1/2, which is absurd, and so we have a contradiction
and hence (b̄1, 0, . . . , 0) /∈ J ′.
Assume (2b̄1, 0, . . . , 0) ∈ J ′. Then for some x ∈ J , we have x1−x2 =
2b̄1 and x3 = · · · = xn = 0. Also, we know that x1+x2+· · ·+xm = 0.
So we have the following two equations: x1−x2 = 2b̄1 and x1+x2 = 0.
Therefore x1 = b̄1 and x2 = −b̄1 = b̄2. But this would mean that
(b̄1, b̄2, 0, . . . , 0) ∈ J and that would be a step from s to b which
contradicts our initial assumption, that (a, b, s) violates the 2-step
axiom. Thus, J ′ is not a jump system and subcase 1 is proved.

Subcase 2: (b̄1, 2b̄2, 0, . . . , b̄i, . . . , 0) ∈ J where b̄1 = b̄i and i ≤ m.
Let J ′ = J(x1,xi−x2,x3,... ,xn). We know that a′ = (0, . . . , 0) and
b′ = (b̄1, 3b̄1, 0 . . . , 0) are in J ′. To prove that J ′ is not a jump sys-
tem, we will first prove that e = (b̄1, 0, . . . , 0) /∈ J ′ and then prove

that f = (b̄1, b̄1, 0, . . . , 0) /∈ J ′. Thus after a′ b′−→ e, the only next
valid step toward b′, mainly f , is not in J ′, which is a violation of
the 2-step axiom.
Assume (b̄1, 0, . . . , 0) ∈ J ′. Then, for some x ∈ J , we have x1 =
b̄1, xi − x2 = 0 and x3 = · · · = xn = 0. Also, we know that
x1 + x2 + · · · + xi + · · · + xm = 0. So we have the following two
equations: xi − x2 = 0 and xi + x2 = −b̄1. That implies xi = −b̄1/2,
which is absurd, and we have a contradiction.
Assume (b̄1, b̄1, 0, . . . , 0) ∈ J ′. Then, for some x ∈ J , x1 = b̄1, xi −
x2 = b̄1;x3, . . . , xn = 0. Also, we know that x1 +x2 + · · ·+xi+ · · ·+
xm = 0. So, we have the following two equations: xi − x2 = b̄1 and
xi + x2 = −b̄1. That implies xi = 0, x2 = −b̄1 = b̄2. But, this would
mean that x = (b̄1, b̄2, 0, . . . , 0) ∈ J and that would be a step from s
to b, which contradicts our initial assumtion that (a, b, s) violates the
2-step axiom. Thus J ′ is not a jump system, and subcase 2 is proved.

Subcase 3: (b̄1, b̄2, 0, . . . , b̄i, . . . , 0) ∈ J where i > m.
Let J ′ = J(x1−x2,x3,... ,xn). We know that a′ = (0, . . . , 0) and b′ =
(2b̄1, 0 . . . , b̄i, . . . , 0) are in J ′. To prove that J ′ is not a jump system,
we will first prove that e = (b̄1, 0, . . . , 0) /∈ J ′ and then prove that
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both 2e = (2b̄1, 0, . . . , 0) and f = (b̄1, 0, . . . , b̄i, . . . , 0) are not in J ′.

Thus, after a′ b′−→ e, the only next valid steps toward b′, mainly 2e
and f , are not in J ′, which is a violation of the 2-step axiom.
Assume (b̄1, 0, . . . , 0) ∈ J ′. Then for some x ∈ J , we have x1−x2 = b̄1
and x3 = · · · = xn = 0. Also, we know that x1 + x2 + · · ·+ xm = 0.
So we have the following two equations: x1−x2 = b̄1 and x1 +x2 = 0.
Therefore x1 = b̄1/2, which is absurd, and so we have a contradiction
and hence (b̄1, 0, . . . , 0) /∈ J ′.
Assume (2b̄1, 0, . . . , 0) ∈ J ′. Then for some x ∈ J , we have x1−x2 =
2b̄1 and x3 = · · · = xn = 0. Also, we know that x1+x2+· · ·+xm = 0.
So we have the following two equations: x1−x2 = 2b̄1 and x1+x2 = 0.
Therefore x1 = b̄1 and x2 = −b̄1 = b̄2. But this would mean that
(b̄1, b̄2, 0, . . . , 0) ∈ J and that would be a step from s to b which
contradicts our initial assumption.
Assume (b̄1, 0, . . . , b̄i, . . . , 0) ∈ J ′. Then for some x ∈ J , we have
x1 − x2 = b̄1 and x3 = · · · = xn = 0. Also, we know that x1 + x2 +
· · ·+ xm = 0. So we have the following two equations: x1 − x2 = b̄1
and x1 + x2 = 0. Therefore x1 = b̄1/2, which is absurd, and so we
have a contradiction. Thus J ′ is not a jump system because (a′, b′, e)
violates the 2-step axiom, and subcase 3 is proved.

Subcase 4: Subcases 1-3 are false.
Let J ′ = J(x1,x3,x4,... ,xn). We know that a′ = (0, . . . , 0) and b′ =
(b1, b3, b4, . . . , bn) are in J ′. Let s′ = (b̄1, 0, . . . , 0) be a step from a′ to
b′. We see that the only way s′ can be in J ′, is if (b̄1, b̄2, 0, . . . , 0) were
in J . But, if that were the case, then the latter would be a step from
s to b, which would contradict our initial assumption. Now, we will
show what happens if there exists a step in J ′ from s′ to b′. Assume
(b̄1, 0, . . . , b̄i, . . . , 0) where i ≤ m and b̄1 = −b̄i is in J ′. Then we see
that (b̄1, 0, 0, . . . , b̄i, . . . , 0) must have been in J , which is a step from
s to b, and thus a contradiction. Now, assume (2b̄1, 0, . . . , 0) ∈ J ′.
Then we see that (2b̄1, 2b̄2, 0, . . . , 0) must have been in J . But that is
subcase 1, which is false by assumption, and thus we have a contra-
diction. Now, assume (b̄1, 0, . . . , b̄i, . . . , 0) where i ≤ m and b̄1 = b̄i
is in J ′. Then we see that (b̄1, 2b̄2, 0, . . . , b̄i, . . . , 0) must have been in
J . But that is subcase 2, which is false by assumption, and thus we
have a contradiction. Now assume (b̄1, 0, . . . , b̄i, . . . , 0) where i > m
is in J ′. Then we see that (b̄1, b̄2, 0, . . . , b̄i, . . . , 0) must have been in
J . But that is subcase 3, which is false by asumption, and thus we
have a contradiction. Thus J ′ is not a jump system because (a′, b′, s′)
violates the 2-step axiom. And so, subcase 4 and case I are proved.

Case II: s = (0, . . . , 0, b̄m+1, 0, . . . , 0).
We shall break this case up into two subcases:
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1)(−b̄i, 0, . . . , 0, b̄i, 0, . . . , 0, b̄m+1, 0, . . . , 0) ∈ J .
2)Subcase 1 is false.

Subcase 1: (−b̄i, 0, . . . , 0, b̄i, 0, . . . , 0, b̄m+1, 0, . . . , 0) ∈ J .
Let J ′ = J(x1−xi,x2,x3,... ,xn). We see that a′ = (0, . . . , 0) and b′ =
(−2b̄i, 0, . . . , b̄m+1, . . . , 0) are in J ′. We will prove that J ′ is not a
jump system by first proving e = (0, . . . , b̄m+1, 0, . . . , 0) /∈ J ′ and
then proving that f = (−b̄i, 0, . . . , b̄m+1, 0, . . . , 0) /∈ J ′. Thus, after

a′
b′−→ e, the ony valid step from e to b′, mainly f , is not in J ′, which

is a violation of the 2-step axiom.
Assume (0, . . . , b̄m+1, 0, . . . , 0) ∈ J ′. Then for some x ∈ J , we have
x1 − xi = 0 and x2 = · · · = xi−1 = 0, xi+1 = · · · = xm = 0, xm+1 =
b̄m+1. Also, we know that x1 + · · ·+ xi + · · ·+ xm = 0. So we have
the following two equations: x1 − xi = 0 and x1 + xi = 0. Thus,
x1 = xi = 0 and therefore (0, . . . , 0, b̄m+1, 0 . . . , 0) must have been
in J . But that is a contradiction.
Assume (−b̄i, 0, . . . , b̄m+1, 0, . . . , 0) ∈ J ′. Then for some x ∈ J , we
have x1 − xi = −b̄i and x2 = · · · = xi−1 = 0, xi+1 = · · · = xm =
0, xm+1 = b̄m+1. Also, we know that x1 + · · ·+xi + · · ·+xm = 0. So
we have the following two equations: x1 − xi = −b̄i and x1 + xi = 0.
Thus, x1 = −b̄i/2, which is absurd and we have a contradiction. And
the subcase is proved.

Subcase 2: 1)(−b̄i, 0, . . . , 0, b̄i, 0, . . . , 0, b̄m+1, 0, . . . , 0) /∈ J .
Let J ′ = J(x2, x3, . . . , xn). We see that a′ = (0, . . . , 0) and b′ =
(b2, b3, . . . , bn) are in J ′. Let s′ = (0, . . . , b̄m+1, 0, . . . , 0). This is
a step from a′ to b′. We see that the only way s′ can be in J ′ is
if (0, 0, . . . , b̄m+1, 0, . . . , 0) were in J . But, by our assumption, we
know that that the latter is not in J . Now, we consider all steps
from s′ to b′. Assume (0, . . . , 2b̄m+1, 0, . . . , 0) ∈ J ′). That would
imply that (0, 0, . . . , 2b̄m+1, 0, . . . , 0) was in J . But that would be a
step from s toward b, which contradicts our initial assumption. Now,
assume (0, . . . , b̄m+1, 0, . . . , b̄i, 0, . . . , 0) ∈ J ′). That would imply
that (0, 0, . . . , b̄m+1, 0, . . . , b̄i, 0, . . . , 0) was in J . But that would
also be a step from s to b and thus a contradiction. Now, assume
(0, . . . , b̄i, 0, . . . , b̄m+1, 0, . . . , 0) ∈ J ′. But that would imply that
(−b̄i, 0, . . . , b̄i, 0, . . . , b̄m+1, 0, . . . , 0) ∈ J . But this contradicts our
assumption. There are no other possible steps from s′ to b′, and
thus, case II and the theorem are proved.

Lemma 3.12. Let v ∈ V , α ∈ ZS such that vTα = b, and β ∈ ZS such that
vTβ > b. Then there exists i ∈ S such that viβi > viαi.

Proof. Assume the lemma is not true. Then βi > αi ⇒ vi ∈ {−1, 0}, and
βi < αi ⇒ vi ∈ {0, 1}. These facts imply that vi(βi − αi) ≤ 0 for all
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i ∈ {1, . . . , |S|}. Hence, vTβ − vTα = vT (β − α) =
∑
i vi(βi − αi) ≤ 0, which

contradicts the hypothesis that vTβ > vTα.

Lemma 3.13. Let v ∈ V , α ∈ ZS such that vTα = b, and β ∈ ZS such that
vTβ > b. Then there exists δ ∈ ZS such that δ ∈ St(α, β) and vT δ = b+ 1.

Proof. vTα = b and vTβ > b ⇒ vTβ − vTα > 0. This inequality implies that
v1(β1 − α1) + . . .+ v|S|(β|S| − α|S|) > 0. By Lemma 3.12 there exists
i ∈ {1, . . . , |S|} with vi(βi − αi) > 0.

Take a step α
β−→ δ such that δ = α± ei. Then: d(α, δ) = 1,

d(δ, β) = d(α, β)− 1, and vT δ = vT (α± ei) = vTα+ 1 = b+ 1.

Definition 3.14. Let J ⊆ Z
S be a jump system and v ∈ V . Then a set of

points {x : vTx = b for b ∈ Z, x /∈ J}, denoted R(v, b), is called a rift. We say
that J admits R(v, b).

Theorem 3.15. Let J be a jump system in ZS, v ∈ V , and α ∈ J such that
vTα = b−1. If J admits both R(v, b) and R(v, b+1), then vTβ > b+1⇒ β /∈ J .

Proof. Let J ⊆ ZS be a jump system, v ∈ V , and β ∈ J such that vTβ > b+ 1.
Let α ∈ J such that vTα = b− 1 and d(α, β) is minimized. Let J admit R(v, b)
and R(v, b+ 1). Apply Lemma 3.13. Thus there exists δ such that d(α, δ) = 1,

d(δ, β) < d(α, β), and vT δ = b. Take a step α
β−→ δ. δ /∈ J by our hypothesis,

so there must be a step δ
β−→ δ′ such that δ′ ∈ J . Also, vT δ′ 6= b − 1, or else

the minimal choice of α would be violated. Thus by Lemma 3.13 we take a step
δ

β−→ δ′ such that d(δ, δ′) = 1, d(δ′, β) < d(δ, β), and vT δ′ = b + 1 or b, both
of which imply that δ′ /∈ J . Therefore the pair α, β violates Axiom 1.4, and β
cannot exist.

Theorem 3.16. Let x ∈ PJ . If x+ ei /∈ PJ or x− ei /∈ PJ for some
i ∈ {1, . . . , |S|}, then vTx = ωv for some v ∈ V . Furthermore, if x ∈ J , then
x ∈ fv.

Proof. Let x ∈ PJ and x + ei /∈ PJ for some i ∈ {1, . . . , |S|}. Then x ∈
PJ ⇒ for all v ∈ V , vTx ≤ ωv. x ± ei /∈ PJ ⇒ there exists v′ ∈ V such that
v′
T (x± ei) > ωv′ . In particular we have that vi ∈ {−1, 1}, or else v′T (x+ ei) =

v′1x1 + . . .+ v′i(xi + ei) + . . .+ v′|S|x|S| = v′1x1 + . . .+ v′ixi + . . .+ v′|S|x|S|, which
is a contradiction of our hypothesis.

Thus v′T (x + ei) > ωv′ ≥ v′
T
x and v′

T (x + ei) = v′
T
x + 1. So v′Tx + 1 >

ωv′ ≥ v′Tx, and since ω′v ∈ Z, we have that v′Tx = ωv′ .

4 Prime Jump Systems

Definition 4.1. A jump system J ∈ ZS is called a prime jump system iff

1. |J | ≥ 2
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2. There does not exist jump systems Ja and Jb such that both |Ja| ≥ 2,
|Jb| ≥ 2, and Ja + Jb = J .

Theorem 4.2. Given a jump system J ⊆ Z
S where |J | = 3, we have that

J = {a, b, c}. Then there exists Jx ⊆ ZS , Jy ⊆ ZS such that |Jx| = 2, |Jy| = 2
and Jx+Jy = J where c is the point of J obtainable by two different combinations
of points in Jx, Jy iff

1. ck = (ak+bk
2 ) for all coordinates,

2. ak = bk = ck fails for at most two coordinates, and

3.
∑
i∈S |ai − bi| = 0, 2 or 4.

Proof. (⇒) Let J ⊆ ZS be a jump system such that |J | = 3 and J = Jx + Jy
where |Jx| = 2, |Jy| = 2. Thus J = {a, b, c}, Jx = {(x, x′)}, and Jy = {(y, y′},
and we can assume that c is the point obtained through summation in two
different ways. With this assumption we have

xi + yi = ai x′i + y′i = bi xi + y′i = ci x′i + yi = ci for all i,

which implies 2ci = ai + bi ⇒ ci =
(
ai+bi

2

)
. This statement proves the first

condition of the theorem.
Suppose ai = bi = ci fails and assume without loss of generality that bi > ai.

Thus bi = ai + ki for some ki ∈ Z. If ki is odd, then ci = 2ai+ki
2 /∈ Z, so ki

must be even. Furthermore, if ki ≥ 6, then ci ≥ ai + 3. Then a
c−→ a+ ei /∈ J ,

so there must be a second step from a + ei to c that is in J. We know that
a + 2ei /∈ J , so a + ei ± ej ∈ J for some j 6= i. However, this is impossible,
because bi > ci > ai, and a, b, and c are the only points in J. Therefore ki = 2
or 4. This conclusion proves that |ai − bi| = 2 or 4.

Suppose ai = bi = ci fails for all i ∈ {1, . . . , k}where 3 ≤ k ≤ |S|. Through
reflection and translation we may assume that bi > ai for all i. Thus ci ≥ ai+ 1
for all i ∈ {1, . . . , k}, and d(a, c) ≥ k ≥ 3. Step a

c−→ a+ ei /∈ J . Then there
must be a second step from a + ei to c. However, we have that d(a + ei, c) ≥
k−1 ≥ 2, so any step a+ei

c−→ a+ ei + ej /∈ J , which is a contradiction. Thus
there can only be two coordinates i for which ai = bi = ci fails.

If
∑
i∈S |ai − bi| > 4, then we know from the first two arguments of the

proof that |aj − bj | = 4 for some j ∈ S and |ak − bk| = 2 or 4 for some k 6= j,
k ∈ S. Thus d(a, b) = 6 or 8, d(a, c) = 3 or 4, and Axiom 1.4 is violated. Thus∑
i ∈ S|ai − bi| = 0, 2, or 4.

Example 4.3. The jump system J = {(0, 0); (1, 1); (2, 0)} is a prime jump sys-
tem by Theorem 4.2.

To develop an intuition for determining whether a particular jump system is
prime, the reader is encouraged to observe some simple examples of sums of jump
systems. Paying special attention to the way in which each of the summands
can ”tile” the resulting jump system led to a few interesting examples.
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Due to the geometric intuition that can be developed in Z and Z2, it is rea-
sonable to believe that infinitely many prime jump systems may be constructed
using the following iterative methods, although we have not yet arrived at a
proof.

Example 4.4. Define the jump systems J1, . . . , Jn where Ji ⊆ Z defined as
follows:

• J1 = {1}

• Jn + 1 = Jn
n⋃
i=1

{maxJn + i+ 1}.

Example 4.5. Define jump system J0, . . . , Jk, where Ji ⊆ Z, as follows:

• J0 = {(0, 0), (1, 0), (−1, 0), (0, 1), (1, 0)}

• J2n+1 = J2n + (bn2 c, b
n
2 c) + (1, 0)

• J2n = J2n−1 + (bn2 c, b
n
2 c) + (0, 1)

The following example shows that if a jump system J can be expressed as
J = Ja + Jb, then the pair Ja, Jb is not necessarily unique. Furthermore, the
example shows that the number of summands is not necessarily unique for a
particular jump system.

Example 4.6. Let J = {0, 1, 2, 3}, Ja = {0, 1}, Jb = {0, 1, 2}, and Jc = {0, 2}.
Then Ja+Jb = J = Ja+Jc, but the pairs of summands are distinct. Also notice
that Ja + Jc = J = Ja + Ja + Ja, while Jc 6= Ja + Ja.

5 Hyperplane Separating a Box and a Jump Sys-
tem

Theorem 5.1. [Lovász] Let J be a jump system in ZS and B be a box such
that (bi − a1) ≥ 1for all i. Then there exists a vector v ∈ {−1, 0, 1}S such that

d(J,B) = min
x∈J

vTx−max
b∈B

vT b.

Corollary 5.2. [Lovász] Let J be a jump system and B a box with bi − ai ≥
1 for all i. Then J ∩B = ∅ if and only if there exists v ∈ V and corresponding
ωv such that
vTx ≤ ωvfor all x ∈ J but vT b > ωvfor all b ∈ B.

Separating Hyperplane Algorithm Given a box B in ZS such that
(bi − ai) > 0for all i and a jump system J ⊆ Z

S , the following algorithm
determines whether there exists a hyperplane that separates the box from the
jump system J.

1. Choose v ∈ V .
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2. Find β ∈ B with vTβ. For B =
∏|S|
i=1[ai, bi], take

β = (β1, . . . , β|S|) such that βi = ai if vi = −1, βi = bi if vi = 1, and β is
any integer in [ai, bi] if vi = 0. Calculate vTβ = ωB .

3. Find point j ∈ J such that −vT j is maximal over all x ∈ J . Let ωJ =
max{−vTx : x ∈ J}.

4. Compare ωJ with ωB .

• If ωJ ≥ ωB , then the hyperplane defined by v does not separate.

• If ωJ < ωB , then the hyperplane defined by v separates J and B.

5. Unless all 3|S| − 1 possible choices for v have been made, choose another
v ∈ V and go to step 2.

The worst-case running time for this algorithm is O(3|S|) for the case where
J intersets B, because the algorithm checks all possible hyperplanes. Since the
hyperplanes are chosen naively, the average running time is O( 3|S|

2 ), with the
best case being where a separating hyperplane is the first to be tested.

6 Jump Systems and NP-completeness

Theorem 6.1. Let Ji be jump systems such that Ji ⊆ ZNi , where Ni ⊆ S for
i ∈ {1, . . . , n}. Let J be a jump system in ZS such that

J = J1 + J2 + . . .+ Jn. (1)

Then deciding whether a point

α = (α1, α2, . . . , α|S|) ∈ J (2)

is an NP-complete problem.

Proof. The membership problem is in NP, because given α = β1 +β2 + · · ·+βn
where βi ∈ Ji, one can verify in polynomial time whether each βi is actually
in Ji and also whether their sum equals to alpha. To show that it is NP-
hard, we will reduce the perfect matching problem to it. Let G = (V,E) be a
graph. Then the set of all degree sequences of all subgraphs H ⊆ G forms a
jump system. Express this jump system as a sum of |E| |V |-dimensional jump
systems, each containing two elements. Each of these jump systems corresponds
to a particular edge and consists of the (0, . . . , 0)-element and a (0, 1)-vector x.
The point x = (x1, . . . , x|V |) where xi = 1 for i corresponding to the vertices
adjacent to the relevant edge and xi = 0 for i corresponding to vertices not
adjacent to the edge.

Example 6.2.

J1 =
{

(0, 0, 0, 0); (1, 1, 0, 0)
}

J2 = {(0, 0, 0, 0); (0, 1, 1, 0)}
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J3 = {(0, 0, 0, 0); (0, 1, 0, 1)} J4 = {(0, 0, 0, 0); (0, 0, 1, 1)}

J =
4∑
i=1

Ji

If (1, . . . , 1) ∈ J , then the graph G has a perfect matching. If (1, . . . , 1) /∈ J ,
then J has no perfect matching.

Therefore the perfect matching problem has been reduced to the member-
ship problem, showing that the α-inclusion problem is NP-complete for a jump
system J such that J is a sum of jump systems.

7 Convex Hulls

Definition 7.1. Let J be a jump system in ZS. Then the convex hull of J,
denoted Co(J), is the set

Co(J) =
⋃
v∈RS
{x : x ∈ fv}

A point z ∈ J is said to be on the convex hull of J if z ∈ Co(J).

Definition 7.2. Let J be a jump system in ZS and the set V be as in definition
1.11. Then the orthogonal convex hull of J, denoted OCo(J), is the set

⋃
v∈V

fv.

A point z ∈ J is said to be on the orthogonal convex hull of J if z ∈ OCo(J).

Definition 7.3. A point z ∈ J is an interior point of J if z /∈ Co(J).

Theorem 7.4. Let J be a jump system in ZS. Then OCo(J) = Co(J).

Proof. Let x ∈ OCo(J). Then x ∈ fv ⊆ Co(J) because v ∈ V ⊆ RS . Thus we
have OCo(J) ⊆ Co(J).

To prove that Co(J) ⊆ OCo(J), we will show that if x ∈ Co(J), then x ∈ fv
for some v ∈ V , and therefore x ∈ OCo(J).

Let x ∈ fw for some w ∈ RS . It will be shown that x ∈ fv, where vi = |wi|
wi

for
all i. Through reflection and coordinate-swapping we may assume that wi ≥ 0
for all i and that w1 ≥ w2 ≥ . . . ≥ w|S|. Define the setM = {i such that vi = 1},
where |M | = m. Therefore v = (1, . . . , 1, 0, . . . , 0) where the first m coordinates
are 1, and the remaing |S| −m coordinates are 0.

Assume x /∈ fv. Then choose y ∈ fv such that d(x, y) is minimal. Since
vT y > vTx, and wTx ≥ wT y, there must exist i ∈ M for which yi > xi and
j ∈M for which xj > yj . If no such i existed, then we would have vTx ≥ vT y,
contradicting the assumption that x /∈ fv. Since i exists, if no such j existed,
then we would have wT y > wTx, contradicting x ∈ fw.

Consider the step y
x−→ y + ei. Because vT (y + ei) > vT y, we know that

y+ei /∈ J . Therefore Axiom 1.4 states that there exists a second step y+ei
x−→
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y + ei ± ej ∈ J . If j /∈ M , then vT (y + ei ± ej) = vT (y + ei) > vT y, and then
y+ei±ej /∈ J . For j ∈M we must consider y+ei+ej and y+ei−ej separately,
although both will lead to contradictions.

The point y+ ei + ej /∈ J , because vT (y+ ei + ej) > vT (y+ ei) > vT y. Also,
vT (y + ei − ej) = vT y, so y + ei − ej ∈ fv. However, d(y + ei − ej , x) < d(y, x),
violating the minimal choice of y.

Therefore x ∈ fv, and Co(J) ⊆ OCo(J), completing the equality.

Corollary 7.5. Let J be a jump system with J ⊆ Z2. Then all faces fv ∈ Co(J)
are contained in lines with slope m ∈ {−1, 0, 1,∞}.

Proof. This corollary is an immediate consequence of Theorem 7.4

Theorem 7.6. The following algorithm determines the orthogonal convex hull
(and hence the convex hull) of a jump system J ⊆ Z2. The worst-case running
time is O(n), while the best-case running time is approximately O(

√
n). Here

n = |J |.

Proof. The algorithm is merely an iterative search with each query determined
exactly by Axiom 1.4. The worst-case running time is seen when all points of
the jump system are contained in the convex hull. The best-case running time
is achieved when the values |a1−b1| and |c2−d2| for a, b, c, d ∈ J are maximized
with respect to |J | = n.

1. Determine x1 = max{y1 : y ∈ J}. Select a point x0 = (x1, x2) ∈ J . Let
x = x0.

2. Check if x′ = (x1, x2 + 1) ∈ J.

• x′ ∈ J ⇒ Set x = x′. Repeat Step 2

• x′ /∈ J ⇒ Check if x′′ = (x1, x2 + 2) ∈ J .

– x′′ ∈ J ⇒ Set x = x′′. Repeat Step 2.
– x′′ /∈ J ⇒ Go to Step 3.

3. Check if x′′′ = (x1 − 1, x2 + 1) ∈ J.

• x′′′ ∈ J ⇒ Set x = x′′′. Repeat Step 3.

• x′′′ /∈ J ⇒ Go to Step 4.

4. Check if x′ = (x1 − 1, x2) ∈ J.

• x′ ∈ J ⇒ Set x = x′. Repeat Step 4

• x′ /∈ J ⇒ Check if x′′ = (x1 − 2, x2) ∈ J .

– x′′ ∈ J ⇒ Set x = x′′. Repeat Step 4.
– x′′ /∈ J ⇒ Go to Step 5.

5. Check if x′′′ = (x1 − 1, x2 − 1) ∈ J.
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• x′′′ ∈ J ⇒ Set x = x′′′. Repeat Step 5.
• x′′′ /∈ J ⇒ Go to Step 6.

6. Check if x′ = (x1, x2 − 1) ∈ J.

• x′ ∈ J ⇒ Set x = x′. Repeat Step 6
• x′ /∈ J ⇒ Check if x′′ = (x1, x2 − 2) ∈ J .

– x′′ ∈ J ⇒ Set x = x′′. Repeat Step 6.
– x′′ /∈ J ⇒ Go to Step 7.

7. Check if x′′′ = (x1 + 1, x2 − 1) ∈ J.

• x′′′ ∈ J ⇒ Set x = x′′′. Repeat Step 7.
• x′′′ /∈ J ⇒ Go to Step 8.

8. Check if x′ = (x1 + 1, x2) ∈ J.

• x′ ∈ J ⇒ Set x = x′. Repeat Step 8
• x′ /∈ J ⇒ Check if x′′ = (x1 + 2, x2) ∈ J .

– x′′ ∈ J ⇒ Set x = x′′. Repeat Step 2.
– x′′ /∈ J ⇒ Go to Step 9.

9. Check if x′′′ = (x1 + 1, x2 + 1) ∈ J.

• x′′′ ∈ J ⇒ Set x = x′′′. Repeat Step 9.
• x′′′ /∈ J ⇒ Check if x = x0.

– x = x0 ⇒ Exit: Algorithm completed.
– x 6= x0 ⇒ Set x = x′. Go to Step 10.

10. Check if x′ = (x1, x2 + 1) ∈ J.

• x′ ∈ J ⇒ Check if x′ = x0.
– x′ = x0 ⇒ Exit: Algorithm completed.
– x′ 6= x0 ⇒ Set x = x′. Repeat Step 10.

• x′ /∈ J ⇒ Check if x′′ = (x1, x2 + 2) ∈ J .
– x′′ = x0 ⇒ Exit: Algorithm completed.
– x′′ 6= x0 ⇒ Set x = x′′. Repeat Step 10.
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