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A Fundamental Problem

Given two objects, how to tell them apart?

When are two surfaces homeomorphic?

?
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?

(Balreira - Trinity University) Knot Theory Major Seminar 3 / 31



A Fundamental Problem
Main Research Area

Injectivity via Geometric and Topological Methods

Foliation Theory
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A Fundamental Problem
Main Research Area

Injectivity via Geometric and Topological Methods

Foliation Theory

Spectral Theory

Variational Calculus

Global Embedding of Submanifolds
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Sample Topics

Project Problem (Foliation Theory)

Discuss Fibrations versus Foliations, e.g., characterize the foliations of the
Euclidean Plane, that is, R

2.

(Balreira - Trinity University) Knot Theory Major Seminar 5 / 31



Sample Topics

Project Problem (Foliation Theory)

Discuss Fibrations versus Foliations, e.g., characterize the foliations of the
Euclidean Plane, that is, R

2.

Project Problem (Spectral Theory)

Discuss the eigenvalues of the Laplacian on a bounded region of R
n, e.g.,

Rayleigh and Min-Max Methods.
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Sample Topics

Project Problem (Variational Calculus)

Discuss any result in the Geometric Analysis report, e.g., understand the
MPT and its proof.
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Sample Topics

Project Problem (Variational Calculus)

Discuss any result in the Geometric Analysis report, e.g., understand the
MPT and its proof.

Project Problem (Geometry)

Learn about Classification of Surfaces via the Euler Characteristic and/or
understand the Gauss-Bonnet formula∫

M

K dA = 2πχ(M)
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Knot Theory
When can tell the difference between Knots?

Are the knots below the same?
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Knot Theory
When can tell the difference between Knots?

How about these?
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Knot Theory
Some Formalism

A knot is an injective map h : S1 → R
3

Picture in the plane (or slide) - Diagram with crossing
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Knot Theory
Some Formalism

A knot is an injective map h : S1 → R
3

Picture in the plane (or slide) - Diagram with crossing

Tame Knots
◮ Finite Number of arcs

◮ Only two strands at a crossing

◮ “nice”

Invariant Property: K1 ∼ K2 if,

There is a homeomorphism ϕ : R
3 → R

3 such that

ϕ(K1) = K2
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Knot Theory
Isotopy Problem

The map ϕ itself must be “nice” ←→ Isotopic to the Identity

No situations such as:
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Knot Theory - Diagrams

Two Knots with similar Diagram must be the same.

Braided TrefoilTrefoil
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Knot Theory - Diagrams

Even if not exactly the diagram same, they could be the same...

(Balreira - Trinity University) Knot Theory Major Seminar 12 / 31



Moves that preserve the Knot

Reidemeister Moves

Type I: Put or Take out a kink.
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Type I
Put or Take out a kink.
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Type II
Slide a strand over/under to creat/remove two crossings.
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Type III
Slide a strand across a crossing
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Unknotting a Knot
Using Reidemeister moves
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Knot Theory
A Possible classification?
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Knot Theory
A Possible classification?

Theorem (Reidemeister, 1932)

Two Knot diagrams of the same knot can be deformed into each other by
a finite number of moves of Type I, II, and III.
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Knot Theory
A Possible classification?

Theorem (Reidemeister, 1932)

Two Knot diagrams of the same knot can be deformed into each other by
a finite number of moves of Type I, II, and III.

Project Problem

Discuss the result above, its proof, and its significance in other areas. For
instance, Physics - the structure of the atom and Chemistry - the structure
of the DNA replication.
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Invariants

Colorability
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Sample Problems in Knot Theory
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Sample Problems in Knot Theory

Project Problem (Colorability)

Understand the definition and application as well as generalizations for
mod p colorability. This project has a Topological and Number Theoretical
flavor.
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Sample Problems in Knot Theory

Project Problem (Colorability)

Understand the definition and application as well as generalizations for
mod p colorability. This project has a Topological and Number Theoretical
flavor.

Project Problem (Unknotting number)

Discuss classical result and classification of knots via crossing and
unknotting numbers, e.g., minimal diagrams and prime knots.
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More Sample Problems in Knot Theory
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More Sample Problems in Knot Theory

Project Problem (Genus of a knot)

Learn surface theory in order to understand Seifert surfaces. Show that the

genus of a knot,
−χ(M) + 1

2
is a knot invariant.
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Even More Sample Problems in Knot Theory

Project Problem (Knot Group)

Learn to compute the knot group and discuss group presentations and
possibly learn about representation theory.

(Balreira - Trinity University) Knot Theory Major Seminar 22 / 31



Even More Sample Problems in Knot Theory

Project Problem (Knot Group)

Learn to compute the knot group and discuss group presentations and
possibly learn about representation theory.

π1(R
3 − T ) = 〈a, b| aba = bab〉 = 〈x , y | x2 = y3〉

Can we make sense of the expressions above?
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One More Sample Problem in Knot Theory

Project Problem (Polynomial Invariants)

Understand and learn to compute a polynomial invariant of a knot, e.g.,
Bracket, Kauffman, Jones, Homfly, and Alexander Polynomials.

All rules come from the topology of the knots (i.e., crossing types)
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One More Sample Problem in Knot Theory

Project Problem (Polynomial Invariants)

Understand and learn to compute a polynomial invariant of a knot, e.g.,
Bracket, Kauffman, Jones, Homfly, and Alexander Polynomials.

All rules come from the topology of the knots (i.e., crossing types)

Some are formal Algebraic Computations.

Others are Geometric in nature.
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Invariants
Colorability

K is colorable ↔ each arc has one of 3 colors

At least two of the colors are used

At crossing, either all different or all the same color.
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Colorability
The Unknot and Trefoil are different!

Tricolorable Not tricolorable
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An Algebraic Invariant

Topologically, every knot is equivalent to S1. DONE?
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An Algebraic Invariant

Topologically, every knot is equivalent to S1. DONE?

Knots are different via their embedding in R
3.

Better question: K1 ∼ K2 if ∃ ϕ : R
3 → R

3 with

ϕ(K1) = K2

Consider ϕ
���
R3

−K1

: R
3 − K1 → R

3 − K2

Thus
π1(R

3 − K1) ≃ π1(R
3 − K2)

Same Fundamental Group
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The Knot Group
An Algebraic Invariant

π1(M) is the Fundamental Group of M
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The Knot Group
An Algebraic Invariant

π1(M) is the Fundamental Group of M

For a knot K , π1(R
3 − K1) is the Knot Group of K

MATH 4365 - Topology (New Course! Fall 09)
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The Knot Group
An Algebraic Invariant

π1(M) is the Fundamental Group of M

For a knot K , π1(R
3 − K1) is the Knot Group of K

MATH 4365 - Topology (New Course! Fall 09)

Some Algebra background would be very nice...
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An Algebraic Invariant
Types of Crossings

+ -Crossing Crossing
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Computing the Knot group

Label each arc with a letter.
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Computing the Knot group

Label each arc with a letter.

At a crossing: the emerging arc labeled by the conjugate as follows:

aa

bb

cc

c = bab−1 c = b−1ab
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Computing the Knot group
The Trefoil Group

T

Thus, b = aba−1aab−1a−1 or bab = aba
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Computing the Knot group
The Trefoil Group
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Computing the Knot group
The Trefoil Group

The computations above show:
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Computing the Knot group
The Trefoil Group

The computations above show:

π1(R
3 − T ) = 〈a, b| aba = bab〉

Fact: π1(R
3 − T ) is not Abelian

Fact: K is the unknot, π1(R
3 − K ) = Z

Unknot 6= Trefoil!
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