A brief Incursion into Knot Theory

Eduardo Balreira

Major Seminar, Fall 2008

A Fundamental Problem

- A Fundamental Problem
- 2 Knot Theory

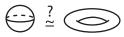
- A Fundamental Problem
- 2 Knot Theory
- Reidemeister Moves

- A Fundamental Problem
- 2 Knot Theory
- Reidemeister Moves
- 4 Invariants
 - Colorability
 - The Knot Group

A Fundamental Problem

Given two objects, how to tell them apart?

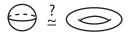
• When are two surfaces homeomorphic?



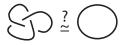
A Fundamental Problem

Given two objects, how to tell them apart?

• When are two surfaces homeomorphic?



• When are two knots equivalent?



Injectivity via Geometric and Topological Methods

Foliation Theory

Injectivity via Geometric and Topological Methods

- Foliation Theory
- Spectral Theory

Injectivity via Geometric and Topological Methods

- Foliation Theory
- Spectral Theory
- Variational Calculus

Injectivity via Geometric and Topological Methods

- Foliation Theory
- Spectral Theory
- Variational Calculus
- Global Embedding of Submanifolds

Project Problem (Foliation Theory)

Discuss Fibrations versus Foliations, e.g., characterize the foliations of the Euclidean Plane, that is, \mathbb{R}^2 .

Project Problem (Foliation Theory)

Discuss Fibrations versus Foliations, e.g., characterize the foliations of the Euclidean Plane, that is, \mathbb{R}^2 .

Project Problem (Spectral Theory)

Discuss the eigenvalues of the Laplacian on a bounded region of \mathbb{R}^n , e.g., Rayleigh and Min-Max Methods.

Project Problem (Variational Calculus)

Discuss any result in the Geometric Analysis report, e.g., understand the MPT and its proof.

Project Problem (Variational Calculus)

Discuss any result in the Geometric Analysis report, e.g., understand the MPT and its proof.

Project Problem (Geometry)

Learn about Classification of Surfaces via the Euler Characteristic and/or understand the Gauss-Bonnet formula

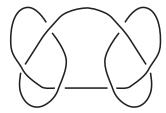
$$\int_{M} K \ dA = 2\pi \chi(M)$$

Knot Theory

When can tell the difference between Knots?

Are the knots below the same?

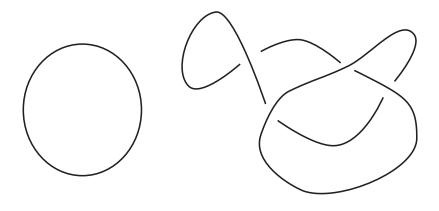




Knot Theory

When can tell the difference between Knots?

How about these?



A knot is an injective map $h:S^1 o\mathbb{R}^3$

• Picture in the plane (or slide) - Diagram with crossing

- Picture in the plane (or slide) Diagram with crossing
- Tame Knots

- Picture in the plane (or slide) Diagram with crossing
- Tame Knots
 - ► Finite Number of arcs

- Picture in the plane (or slide) Diagram with crossing
- Tame Knots
 - Finite Number of arcs
 - Only two strands at a crossing

- Picture in the plane (or slide) Diagram with crossing
- Tame Knots
 - ► Finite Number of arcs
 - Only two strands at a crossing
 - "nice"

- Picture in the plane (or slide) Diagram with crossing
- Tame Knots
 - ► Finite Number of arcs
 - Only two strands at a crossing
 - ▶ "nice"
- Invariant Property: $K_1 \sim K_2$ if,

A knot is an injective map $h:S^1 o\mathbb{R}^3$

- Picture in the plane (or slide) Diagram with crossing
- Tame Knots
 - ► Finite Number of arcs
 - Only two strands at a crossing
 - ▶ "nice"
- Invariant Property: $K_1 \sim K_2$ if,

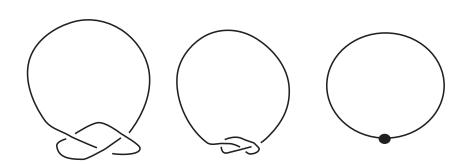
There is a homeomorphism $\varphi:\mathbb{R}^3 \to \mathbb{R}^3$ such that

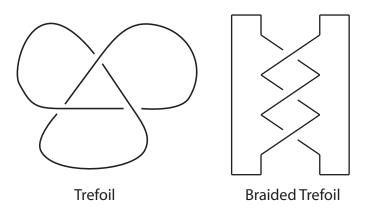
$$\varphi(K_1) = K_2$$

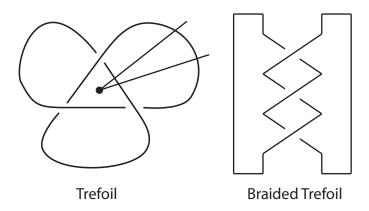
Knot Theory Isotopy Problem

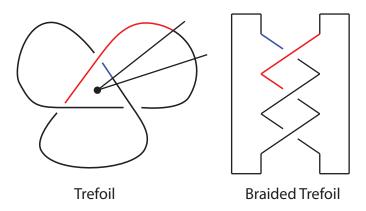
The map φ itself must be "nice" \longleftrightarrow Isotopic to the Identity

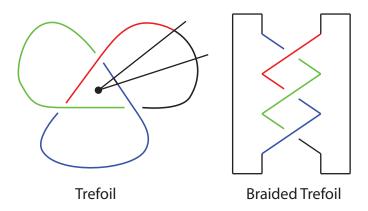
No situations such as:

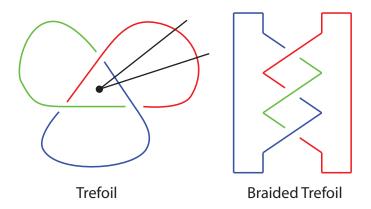




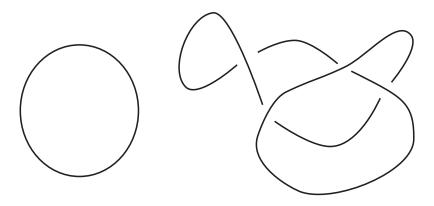








Even if not exactly the diagram same, they could be the same...



Moves that preserve the Knot

Reidemeister Moves

• Type I: Put or Take out a kink.

Moves that preserve the Knot

Reidemeister Moves

Type I: Put or Take out a kink.

• Type II: Slide a strand over/under to creat/remove two crossings.

Moves that preserve the Knot

Reidemeister Moves

Type I: Put or Take out a kink.

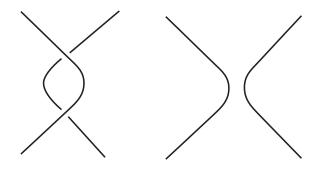
• Type II: Slide a strand over/under to creat/remove two crossings.

Type III: Slide a strand across a crossing.

Type I Put or Take out a kink.

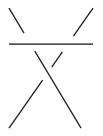
Type II

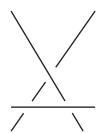
Slide a strand over/under to creat/remove two crossings.



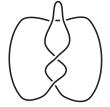
Type III

Slide a strand across a crossing

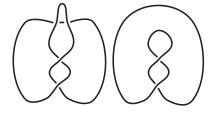




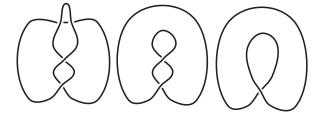
Unknotting a Knot Using Reidemeister moves



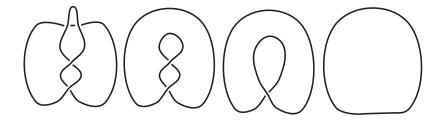
Unknotting a Knot Using Reidemeister moves



Unknotting a Knot Using Reidemeister moves



Unknotting a Knot Using Reidemeister moves



Knot Theory A Possible classification?

Knot Theory A Possible classification?

Theorem (Reidemeister, 1932)

Two Knot diagrams of the same knot can be deformed into each other by a finite number of moves of Type I, II, and III.

Knot Theory A Possible classification?

Theorem (Reidemeister, 1932)

Two Knot diagrams of the same knot can be deformed into each other by a finite number of moves of Type I, II, and III.

Project Problem

Discuss the result above, its proof, and its significance in other areas. For instance, Physics - the structure of the atom and Chemistry - the structure of the DNA replication.

Colorability

Colorability

Unknotting number

- Colorability
- Unknotting number
- Genus of a knot

- Colorability
- Unknotting number
- Genus of a knot
- Knot Group

- Colorability
- Unknotting number
- Genus of a knot
- Knot Group
- Polynomial Invariants

Sample Problems in Knot Theory

Sample Problems in Knot Theory

Project Problem (Colorability)

Understand the definition and application as well as generalizations for mod p colorability. This project has a Topological and Number Theoretical flavor.

Sample Problems in Knot Theory

Project Problem (Colorability)

Understand the definition and application as well as generalizations for mod p colorability. This project has a Topological and Number Theoretical flavor.

Project Problem (Unknotting number)

Discuss classical result and classification of knots via crossing and unknotting numbers, e.g., minimal diagrams and prime knots.

More Sample Problems in Knot Theory

More Sample Problems in Knot Theory

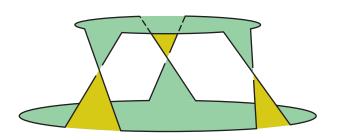
Project Problem (Genus of a knot)

Learn surface theory in order to understand Seifert surfaces. Show that the genus of a knot, $\frac{-\chi(M)+1}{2}$ is a knot invariant.

More Sample Problems in Knot Theory

Project Problem (Genus of a knot)

Learn surface theory in order to understand Seifert surfaces. Show that the genus of a knot, $\frac{-\chi(M)+1}{2}$ is a knot invariant.



Even More Sample Problems in Knot Theory

Project Problem (Knot Group)

Learn to compute the knot group and discuss group presentations and possibly learn about representation theory.

Even More Sample Problems in Knot Theory

Project Problem (Knot Group)

Learn to compute the knot group and discuss group presentations and possibly learn about representation theory.

$$\pi_1(\mathbb{R}^3 - T) = \langle a, b | aba = bab \rangle = \langle x, y | x^2 = y^3 \rangle$$

Can we make sense of the expressions above?

One More Sample Problem in Knot Theory

Project Problem (Polynomial Invariants)

Understand and learn to compute a polynomial invariant of a knot, e.g., Bracket, Kauffman, Jones, Homfly, and Alexander Polynomials.

All rules come from the topology of the knots (i.e., crossing types)

One More Sample Problem in Knot Theory

Project Problem (Polynomial Invariants)

Understand and learn to compute a polynomial invariant of a knot, e.g., Bracket, Kauffman, Jones, Homfly, and Alexander Polynomials.

- All rules come from the topology of the knots (i.e., crossing types)
- Some are formal Algebraic Computations.

One More Sample Problem in Knot Theory

Project Problem (Polynomial Invariants)

Understand and learn to compute a polynomial invariant of a knot, e.g., Bracket, Kauffman, Jones, Homfly, and Alexander Polynomials.

- All rules come from the topology of the knots (i.e., crossing types)
- Some are formal Algebraic Computations.
- Others are Geometric in nature.

Invariants Colorability

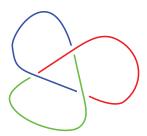
K is colorable \leftrightarrow each arc has one of 3 colors

- At least two of the colors are used
- At crossing, either all different or all the same color.

Invariants Colorability

K is colorable \leftrightarrow each arc has one of 3 colors

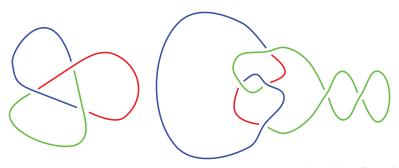
- At least two of the colors are used
- At crossing, either all different or all the same color.



Invariants Colorability

K is colorable \leftrightarrow each arc has one of 3 colors

- At least two of the colors are used
- At crossing, either all different or all the same color.



The Unknot and Trefoil are different!

Not tricolorable

Topologically, every knot is equivalent to S^1 . DONE?

Topologically, every knot is equivalent to S^1 . DONE?

• Knots are different via their embedding in \mathbb{R}^3 .

Topologically, every knot is equivalent to S^1 . DONE?

- Knots are different via their embedding in \mathbb{R}^3 .
- Better question: $K_1 \sim K_2$ if $\exists \ \varphi : \mathbb{R}^3 \to \mathbb{R}^3$ with

$$\varphi(K_1) = K_2$$

Topologically, every knot is equivalent to S^1 . DONE?

- Knots are different via their embedding in \mathbb{R}^3 .
- ullet Better question: $K_1 \sim K_2$ if $\exists \ arphi : \mathbb{R}^3
 ightarrow \mathbb{R}^3$ with

$$\varphi(K_1)=K_2$$

• Consider $\varphi_{|_{\mathbb{R}^3-K_1}}: \mathbb{R}^3 - K_1 \to \mathbb{R}^3 - K_2$

Topologically, every knot is equivalent to S^1 . DONE?

- Knots are different via their embedding in \mathbb{R}^3 .
- ullet Better question: $K_1 \sim K_2$ if $\exists \ arphi : \mathbb{R}^3
 ightarrow \mathbb{R}^3$ with

$$\varphi(K_1)=K_2$$

- ullet Consider $arphi_{ig|_{\mathbb{R}^3-\mathit{K}_1}}:\mathbb{R}^3-\mathit{K}_1 o\mathbb{R}^3-\mathit{K}_2$
- Thus

$$\pi_1(\mathbb{R}^3 - K_1) \simeq \pi_1(\mathbb{R}^3 - K_2)$$

Topologically, every knot is equivalent to S^1 . DONE?

- Knots are different via their embedding in \mathbb{R}^3 .
- Better question: $K_1 \sim K_2$ if $\exists \varphi : \mathbb{R}^3 \to \mathbb{R}^3$ with

$$\varphi(K_1)=K_2$$

- ullet Consider $arphi_{ig|_{\mathbb{R}^3-\mathcal{K}_1}}:\mathbb{R}^3-\mathcal{K}_1 o\mathbb{R}^3-\mathcal{K}_2$
- Thus

$$\pi_1(\mathbb{R}^3-K_1)\simeq\pi_1(\mathbb{R}^3-K_2)$$

Same Fundamental Group

• $\pi_1(M)$ is the Fundamental Group of M

• $\pi_1(M)$ is the Fundamental Group of M

• For a knot K, $\pi_1(\mathbb{R}^3 - K_1)$ is the **Knot Group** of K

• $\pi_1(M)$ is the Fundamental Group of M

• For a knot K, $\pi_1(\mathbb{R}^3 - K_1)$ is the **Knot Group** of K

MATH 4365 - Topology (New Course! Fall 09)

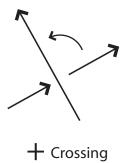
• $\pi_1(M)$ is the Fundamental Group of M

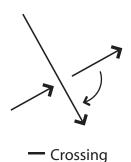
• For a knot K, $\pi_1(\mathbb{R}^3 - K_1)$ is the **Knot Group** of K

MATH 4365 - Topology (New Course! Fall 09)

Some Algebra background would be very nice...

An Algebraic Invariant Types of Crossings



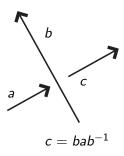


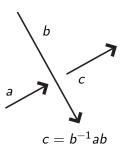
Computing the Knot group

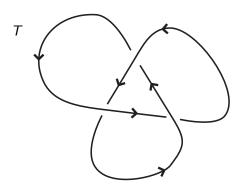
• Label each arc with a letter.

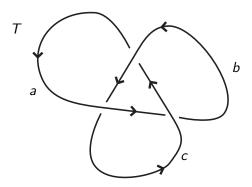
Computing the Knot group

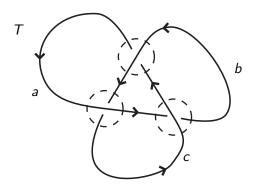
- Label each arc with a letter.
- At a crossing: the emerging arc labeled by the conjugate as follows:

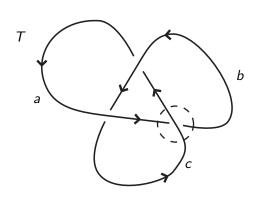




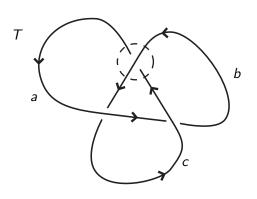




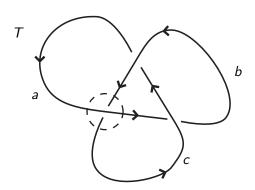




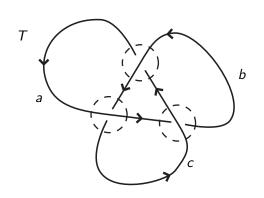
$$b = cac^{-1}$$



$$a = bcb^{-1}$$



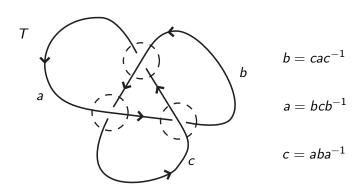
$$c = aba^{-1}$$



$$b = cac^{-1}$$

$$a = bcb^{-1}$$

$$c=aba^{-1}$$



Thus, $b = aba^{-1}aab^{-1}a^{-1}$ or bab = aba

•
$$\pi_1(\mathbb{R}^3 - T) = \langle a, b | aba = bab \rangle$$

The computations above show:

•
$$\pi_1(\mathbb{R}^3 - T) = \langle a, b | aba = bab \rangle$$

• Fact: $\pi_1(\mathbb{R}^3 - T)$ is **not** Abelian

•
$$\pi_1(\mathbb{R}^3 - T) = \langle a, b | aba = bab \rangle$$

- Fact: $\pi_1(\mathbb{R}^3 T)$ is **not** Abelian
- Fact: K is the unknot, $\pi_1(\mathbb{R}^3 K) = \mathbb{Z}$

•
$$\pi_1(\mathbb{R}^3 - T) = \langle a, b | aba = bab \rangle$$

- Fact: $\pi_1(\mathbb{R}^3 T)$ is **not** Abelian
- Fact: K is the unknot, $\pi_1(\mathbb{R}^3 K) = \mathbb{Z}$
 - Unknot \neq Trefoil!