@ ▶

A Guide to Presentations in LATEX-beamer with a detour to Geometric Analysis

Eduardo Balreira

Major Seminar, Fall 2008

Intro to a Presentation	Intro to MTEX	Intro to Beamer	Geometric Analysis	A Proof
Outline				

< □ > < □ > < □ > < □ > < □ > < □ >

4

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Outline				

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Outline				

- 1 Intro to a Presentation
- 2 Intro to LATEX
- 3 Intro to Beamer

2

@ ▶ ∢ ≣ ▶

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Outline				

- 1 Intro to a Presentation
- 2 Intro to LATEX
- 3 Intro to Beamer
- Geometric Analysis

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Outline				

- 1 Intro to a Presentation
- 2 Intro to LATEX
- 3 Intro to Beamer
- 4 Geometric Analysis

 In a slide presentation, you should not list too much information in a single slide. This causes the audience to spend too much time reading the slide and not paying any attention on what you are saying. You should never just read of the slide, otherwise why not just give a handout and leave? It is also nice to use "fancy" letters and fonts as well as clever coloring schemes but they can be hard to read. Also, make sure you turn yourself towards the audience. Generally, the first part is to be understood by everyone, then you can begin to be more specific. It is common to only have the attention of a few "experts" by the end of the presentation. This applies mostly to research talks, but also to Senior Project presentations.

回 と く ヨ と く ヨ と

• Standard Language to Write Mathematics

◆□ ▶ ◆ □ ▶ ◆ □ ▶

- Standard Language to Write Mathematics
- $(M^2,g) \leftrightarrow (M^2,g)$

・回 と く ヨ と く ヨ と

• Standard Language to Write Mathematics

•
$$(M^2,g) \leftrightarrow (M^2,g)$$

•
$$\Delta u - \mathcal{K}(x) - e^{2u} = 0 \leftrightarrow$$
Delta u - $\mathcal{K}(x) - e^{2u} = 0$

◆□ ▶ ◆ □ ▶ ◆ □ ▶

• Standard Language to Write Mathematics

•
$$(M^2,g) \leftrightarrow$$
 (M^2,g) \$

•
$$\Delta u - \mathcal{K}(x) - e^{2u} = 0 \leftrightarrow$$
 Delta u -K(x) - e^{2u} = 0

•
$$\inf_{n\in\mathbb{N}}\left\{\frac{1}{n}\right\}=0$$

 $\int n\left[n\right] = 0$

向下 イヨト イヨト

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
More Example	S			
without displaystyle				

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
More Examples without displaystyle				

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
More Example	S			
with displaystyle				

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
More Examples with displaystyle				

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

• $\lambda_{n=1}^{\frac{1}{n^2}=\frac{1}{6}$

||◆ 御 ▶ || ◆ 臣 ▶ || ◆ 臣 ▶

-2

Compare displaystyle

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 versus $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

・ロト ・回ト ・ヨト ・ヨト

4

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 versus $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

• $\sum_{n=1}^{\int \int n^2}=\frac{1}{n^2}$

and

 $\displaystyle \sum_{n=1}^{infty}\int n^2=\frac{pi^2}{6}$

< 同 > < 臣 > < 臣 >

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Common fund	ctions			

• $\cos x \rightarrow \cos x$

< 口 > < 回 > < 臣 > < 臣 > 、

= na@

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Common fund	ctions			

•
$$\cos x \rightarrow \cos x$$

• arctan
$$x \rightarrow$$
 arctan x\$

•
$$\cos x \rightarrow \cos x$$

•
$$\arctan x \rightarrow \x \ x$$

•
$$f(x) = \sqrt{x^2 + 1} \rightarrow f(x) = \operatorname{sqrt}\{x^2+1\}$$

<ロ> <同> <同> < 同> < 同> < 同> :

•
$$\cos x \rightarrow \cos x$$

•
$$\arctan x \rightarrow \x \ x$$

•
$$f(x) = \sqrt{x^2 + 1} \rightarrow f(x) = \operatorname{sqrt}\{x^2+1\}$$

•
$$f(x) = \sqrt[n]{x^2 + 1} \to f(x) = \operatorname{sqrt}[n] \{x^2 + 1\}$$

<ロ> <同> <同> < 同> < 同> < 同> :

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Theorems				

Theorem (Poincaré Inequality)

If $|\Omega| < \infty$, then

$$\lambda_1(\Omega) = \inf_{u \neq 0} \frac{|\nabla u|_2^2}{\|u\|^2} > 0$$

is achieved.

Theorems - code

Theorem (Poincaré Inequality)

If $|\Omega| < \infty$, then

$$\lambda_1(\Omega) = \inf_{u
eq 0} rac{|
abla u|_2^2}{\|u\|^2} > 0$$

is achieved.

```
\begin{thm}[Poincar\'{e} Inequality]
If $|\Omega| < \infty$, then</pre>
١Ľ
\lambda = 1(\Delta e^{-1})
\inf_{u \in 0} \frac{1}{2} > 0
\1
is achieved.
\end{thm}
```

- ∢ ≣ ▶

•
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}, & \text{in } \Omega \\ u \geq 0, & u \in H^1_0(\Omega) \end{cases}$$

•
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}, & \text{in } \Omega \\ u \geq 0, & u \in H^1_0(\Omega) \end{cases}$$

•
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}, & \text{in } \Omega \\ u \geq 0, & u \in H_0^1(\Omega) \end{cases}$$

•
$$\left\{ \begin{array}{rrr} -\Delta u + \lambda u &=& |u|^{p-2}, & \text{in } \Omega \\ u &\geq & 0, & u \in H_0^1(\Omega) \end{array} \right.$$

•
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}, & \text{in } \Omega \\ u \geq 0, & u \in H^1_0(\Omega) \end{cases}$$

•
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}, & \text{in } \Omega \\ u \geq 0, & u \in H^1_0(\Omega) \end{cases}$$

•
$$\varphi(u) = \int_{\Omega} \left[\frac{\|\nabla u\|^2}{2} + \lambda \frac{u^2}{2} - \frac{(u^+)^p}{p} \right] d\mu$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

•
$$\varphi(u) = \int_{\Omega} \left[\frac{\|\nabla u\|^2}{2} + \lambda \frac{u^2}{2} - \frac{(u^+)^p}{p} \right] d\mu$$

• \$\ds \varphi (u) = \int_{\Omega} \left[
 \dfrac{\|\nabla u\|^2}{2} +
 \lambda\dfrac{u^2}{2} \dfrac{(u^+)^p}{p} \right] d\mu \$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

2

•
$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A_{i}^{c}$$

(4回) (日) (日)

•
$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A_{i}^{c}$$

• \$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c = \bigcap_{i=1}^n A_i^c\$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

2

•
$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A_{i}^{c}$$

• \$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c = \bigcap_{i=1}^n A_i^c\$

•
$$A \times B = \{(a, b) | a \in A, b \in B\}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

2

•
$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A_{i}^{c}$$

\$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c = \bigcap_{i=1}^n A_i^c\$

•
$$A \times B = \{(a, b) | a \in A, b \in B\}$$

• \$A\times B = \set{(a,b)|a\in A, b\in B}\$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

• Consider the equation of Energy below.

$$E(u) = \int |\nabla u|^2 dx \tag{1}$$

イロト イヨト イヨト イヨト

2

This is how we refer to (1).

• Consider the equation of Energy below.

$$E(u) = \int |\nabla u|^2 dx \tag{1}$$

This is how we refer to (1).

• \begin{equation}\label{eq:energy}
 E(u) = \int |\nabla u|^2 dx
 \end{equation}

```
This is how we refer to \eqref{eq:energy}.
```


• Consider the equation without a number below.

$$E(u)=\int |\nabla u|^2 dx$$

イロン イヨン イヨン イヨン

-2

• Consider the equation without a number below.

$$E(u)=\int |\nabla u|^2 dx$$

 \begin{equation}\label{eq:energy}
 E(u) = \int |\nabla u|^2 dx \nonumber \end{equation}

向下 イヨト イヨト

• Consider the equation with a tag

$$E(u) = \int |\nabla u|^2 dx \tag{E}$$

▲ 御 ▶ ▲ 臣 ▶

< ∃⇒

2

If u is harmonic, (E) is preserved.

• Consider the equation with a tag

$$E(u) = \int |\nabla u|^2 dx \tag{E}$$

If u is harmonic, (E) is preserved.

\begin{equation}\label{eq:energytag}
 E(u) = \int |\nabla u|^2 dx \tag{E}
 \end{equation}

If \$u\$ is harmonic, \eqref{eq:energytag} is preserved.

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Equations				

Indeed,

$$\frac{d}{dt}E(u) = 2\int \langle \nabla u, \nabla u \rangle$$

= $-2\int \langle \Delta u, u \rangle = 0$ (2)

▲口> ▲圖> ▲理> ▲理>

æ

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Equations				

Indeed,

$$\frac{d}{dt}E(u) = 2\int \langle \nabla u, \nabla u \rangle$$

= $-2\int \langle \Delta u, u \rangle = 0$ (2)

・ロト ・回ト ・ヨト ・ヨト

4

• The "=" signs are aligned.

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Equations				

Indeed,

$$\frac{d}{dt}E(u) = 2\int \langle \nabla u, \nabla u \rangle$$

= $-2\int \langle \Delta u, u \rangle = 0$ (2)

・ロン ・回と ・ヨン・

• The "=" signs are aligned.

Use

\begin{split} ... \end{split}

・ロト ・回ト ・ヨト ・ヨト

4

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Equations				

• Consider the expression below

$$(a+b)^{2} = (a+b)(a+b) = a^{2} + 2ab + b^{2}$$
(3)

< □ > < □ > < □ > < □ > < □ > < □ >

4

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Equations				

• Consider the expression below

$$(a+b)^2 = (a+b)(a+b)$$

= $a^2 + 2ab + b^2$ (3)

A⊒ ▶ ∢ ∃

• \begin{equation}
 \begin{split}
 (a+b)^2 & = (a+b)(a+b) \\
 & = a^2 +2ab +b^2
 \end{split}
 \end{equation}

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Environments				

```
    \begin{...}
    .
    .
    .
    .
    \end{...}
```

・ロト ・回ト ・ヨト ・ヨト

æ

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Environments				

```
• \begin{...}
.
.
.
.
.
\end{...}
```

 $\bullet~\$~...\$$ \rightarrow for math symbols

・ロト ・回ト ・ヨト ・ヨト

-2

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Environments				

- $\bullet~\$~...\$ \rightarrow$ for math symbols
- \[... \] \rightarrow for centering expressions

回 と く ヨ と く ヨ と

- \begin{...}
 .
 .
 .
 .
 .
 .
 \end{...}
- $\bullet~\$~...\$ \rightarrow$ for math symbols
- \[... \] \rightarrow for centering expressions
- \left(... \right) \rightarrow match size of parentheses

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Environments delimiters				

•
$$(\int |\nabla u|^p d\mu)^p$$
 versus $\left(\int |\nabla u|^p d\mu\right)^p$

・ロト・(四ト・(川下・(日下・(日下)

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Environments delimiters				

•
$$(\int |\nabla u|^p d\mu)^p$$
 versus $\left(\int |\nabla u|^p d\mu\right)^p$

- $(\ u|^p d)^p$
- $\left| \frac{u^p d}{mu}\right)^p$

★御★ ★注★ ★注★

2

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Tables				

Consider the truth table:

ヘロン 人間と 人間と 人間と

4

```
\begin{tabular}{c c c | c}
$P$ & $Q$ & $\neg P$ & $\neg P\to (P \vee Q)$ \\ \hline
T & T & F & T \\
T & F & F & T \\
F & T & T & T \\
F & T & T & T \\
F & F & T & F
```

\end{tabular}

▲同 ▶ ▲ 臣 ▶

-1

・ロト ・回ト ・ヨト ・ヨト

2

\begin{center} \includegraphics{Mountain_Pass.eps} \end{center}

< 🗇 > < 🖃 >

∢ ≣⇒

イロト イヨト イヨト イヨト

æ

Inserting Pictures

Figure: Construction of Γ^n by revolving affine hyperplanes

. . .

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

A Final Remark on LaTeX Preamble

 \bullet Preamble \rightarrow "Stuff" on top of .tex file

%For an article using AMS template: \documentclass[12pt]{amsart} \usepackage{amsmath,amssymb,amsfonts,amsthm}

向下 イヨト イヨト

A Final Remark on LaTeX

 \bullet Preamble \rightarrow "Stuff" on top of .tex file

%For an article using AMS template: \documentclass[12pt]{amsart} \usepackage{amsmath,amssymb,amsfonts,amsthm}

• Don't worry about it!

A Final Remark on LaTeX Preamble

• Preamble \rightarrow "Stuff" on top of .tex file

%For an article using AMS template: \documentclass[12pt]{amsart} \usepackage{amsmath,amssymb,amsfonts,amsthm} ...

- Don't worry about it!
- With practice you can figure it out.

Intro to a Presentation

Intro to LATEX

Intro to Beamer

Geometric Analysis

イロト イヨト イヨト イヨト

-2

A Proof

How a Slide is done in Beamer my subtitle

This is a slide

- First Item
- Second Item

How a Slide is done in Beamer

The code should look like:

```
\begin{frame}
```

```
\frametitle{How a Slide is done in Beamer}
\framesubtitle{my subtitle} % optional
This is a slide
\begin{itemize}
    \item First Item
    \item Second Item
    \end{itemize}
```

 \end{frame}

The option [fragile] is added to use verbatim

```
\begin{verbatim}
Anything you type $\Delta u = |u|^{p-2}$
```

Appears as is in the code

```
end{verbatim}
```

Note: if you correctly type \ end{verbatim} it assumes verbatim environment ended.

```
Hence ''fragile''
```

個 と く ヨ と く ヨ と …

→ 御 → → 注 → → 注 →

2

How a Slide with pause is done in Beamer

This is a slide

First Item

(4回) (4回) (4回)

2

How a Slide with pause is done in Beamer

This is a slide

- First Item
- Second Item

How a Slide with pause is done in Beamer

The code should look like:

```
\begin{frame}
```

```
\frametitle{How a Slide with pause is done in Beamer}
This is a slide
  \begin{itemize}
    \item First Item
    \pause
    \item Second Item
  \end{itemize}
```

\end{frame}

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Overlay examp	ole			

• First item

• Fourth item

ヘロン 人間と 人間と 人間と

æ

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Overlay examp	ble			

- First item
- Second item

• Fourth item

・ロ・ ・ 日・ ・ 田・ ・ 田・

4

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Overlay examp	le			

- First item
- Second item
- Third item
- Fourth item

・ロト ・回ト ・モト ・モト

æ

```
The code should look like:
```

```
\begin{frame}[fragile]
  \frametitle{Overlay example}
```

```
\begin{itemize}
   \only<1->{\item First item}
   \uncover<2->{\item Second item}
   \uncover<3->{\item Third item}
   \only<1->{\item Fourth item}
\end{itemize}
```

\end{frame}

Taken from online Template.

• Using \only<1> to draw the first two Figures

2

∢ ≣⇒

₽ > < €
Taken from online Template.

- Using \only<1> to draw the first two Figures
- Using \only<2-> to draw the second two Figures

 ∢ ≣ ▶

Need a plain slide?

Add [plain] option to the slide.

A simple Idea to solve equations:

<回> < 回> < 回> < 回>

2

A simple Idea to solve equations:

- Solve f(x) = 0
- Suppose we know that F' = f.

▲ 御 ▶ ▲ 臣 ▶

-≣->

A simple Idea to solve equations:

- Solve f(x) = 0
- Suppose we know that F' = f.
- Critical points of F are solutions of f(x) = 0.

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
Variational	Calculus			

An idea from Calculus I:

・ロン ・回 と ・ ヨン ・ ヨン

æ

An idea from Calculus I:

Theorem (Rolle)

Let $f \in C^1([x_1, x_2]; \mathbb{R})$. If $f(x_1) = f(x_2)$, then there exists $x_3 \in (x_1, x_2)$ such that $f'(x_3) = 0$.

・日・ ・ ヨ ・ ・

An idea from Calculus I:

Theorem (Rolle)

Let $f \in C^1([x_1, x_2]; \mathbb{R})$. If $f(x_1) = f(x_2)$, then there exists $x_3 \in (x_1, x_2)$ such that $f'(x_3) = 0$.

$$\begin{thm}[Rolle] Let $f\in C^1([x_1,x_2];\mathbb{R})$. If $f(x_1)=f(x_2)$, then there exists $x_3\in(x_1,x_2)$ such that $f'(x_3) = 0$. \end{thm}$$

▲ 御 ▶ ▲ 臣 ▶ .

Rolle's Theorem has the following landscape.

(4回) (4回) (4回)

2

Rolle's Theorem has the following landscape.

Variational Calculus - Code

```
\begin{frame}
  \frametitle{Variational Calculus}
  \uncover<1->{
  Rolle's Theorem has the following landscape.
  }
  \uncover<2->{\begin{center}
  \includegraphics{rolle.eps}
  \end{center}
  }
}
```

\end{frame}

◆□ ▶ ◆ □ ▶ ◆ □ ▶

2

Variational Calculus - psfrags

Rolle's Theorem has the following landscape.

Variational Calculus - psfrags

Rolle's Theorem has the following landscape.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Variational Calculus - psfrags - Code

```
\begin{frame}
  \frametitle{Variational Calculus - psfrags}
  \uncover<1->{Rolle's Theorem has the following landscape
  \uncover<2->{\begin{figure}[h]
\begin{center}
\begin{psfrags}
psfrag{x1}{$x_1$}psfrag{x2}{$x_2$}
\psfrag{x3}{$x_3$}\psfrag{x3'}{$x_3'$}
psfrag{v=f(x)}{$v=f(x)$}
\includegraphics{rolle.eps}
\end{psfrags}
\end{center}
\end{figure}
  }
```

 \end{frame}

・ロト ・回ト ・ヨト ・ヨト

2

Mountain Pass Landscape

MPT - presentation Not a friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2 , characterized by

$$\varphi(x_3) = \inf_{\Sigma \in \Gamma} \max_{x \in \Sigma} \varphi(x)$$

where $\Gamma = \{\Sigma \subset \mathbb{R}^n; \Sigma \text{ is compact and connected and } x_1, x_2 \in \Sigma\}.$ Moreover, x_3 is not a relative minimizer, that it, in every neighborhood of x_3 there exists a point x such that $\varphi(x) < \varphi(x_3)$.

- 4 回 ト - 4 回 ト - 4 回 ト

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
MPT - in parts				

• When displaying large info do in steps.

2

Intro to a Presentation	Intro to LATEX	Intro to Beamer	Geometric Analysis	A Proof
MPT - in parts				

- When displaying large info do in steps.
- Avoid audience reading ahead and not paying attention.

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 .

<**□** > < ⊇ >

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2

< 🗇 > < 🖃 >

< 🗇 > < 🖃 >

MPT - presentation A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2 , characterized by

$$\varphi(x_3) = \inf_{\Sigma \in \Gamma} \max_{x \in \Sigma} \varphi(x)$$

▲ 同 ▶ ▲ 三 ▶ ▲

MPT - presentation A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2 , characterized by

$$\varphi(x_3) = \inf_{\Sigma \in \Gamma} \max_{x \in \Sigma} \varphi(x)$$

where $\Gamma = \{\Sigma \subset \mathbb{R}^n; \Sigma \text{ is compact and connected and } x_1, x_2 \in \Sigma\}.$

(ロ) (四) (三) (三)

MPT - presentation A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2 , characterized by

$$\varphi(x_3) = \inf_{\Sigma \in \Gamma} \max_{x \in \Sigma} \varphi(x)$$

where

 $\Gamma = \{\Sigma \subset \mathbb{R}^n; \Sigma \text{ is compact and connected and } x_1, x_2 \in \Sigma\}.$ Moreover, x_3 is not a relative minimizer, that it, in every neighborhood of x_3 there exists a point x such that $\varphi(x) < \varphi(x_3)$.

4

4

4

4

4

4

4

4

4

4

4

• Good practice to have a proof

- 4 回 2 - 4 □ 2 - 4 □

2

• Good practice to have a proof

• You only need the idea.

< □ > < □ > < □ >

2
• Good practice to have a proof

• You only need the idea.

• The actual proof will be in your final paper!

伺下 イヨト イヨト

▲□ ▶ ▲ 三 ▶ .

An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi : X \to Y$ be a C^1 function such that:

向 ト く ヨ ト

An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi : X \to Y$ be a C^1 function such that:

(i) $\varphi'(x)$ is invertible for all $x \in X$.

周▶ ★ 国▶ ★ 国▶

An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi : X \to Y$ be a C^1 function such that:

(i) $\varphi'(x)$ is invertible for all $x \in X$.

(ii) $\|\varphi(x)\| \to \infty$ as $\|x\| \to \infty$.

回 と く ヨ と く ヨ と

An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi : X \to Y$ be a C^1 function such that:

(i) $\varphi'(x)$ is invertible for all $x \in X$.

(ii) $\|\varphi(x)\| \to \infty$ as $\|x\| \to \infty$.

Then φ is a diffeomorphism of X onto Y.

An Application of MPT

```
\begin{thm}[Hadamard] Let $X$ and $Y$ be finite
dimensional Euclidean spaces, and let
$\varphi:X\to Y$ be a $C^1$ function such that:
```

```
\uncover<2->{\noindent \textbf{(i)} $\varphi'(x)$
              is invertible for all $x\in X$.
             }
\uncover<3->{\noindent \textbf{(ii)}
             $\norm{\varphi(x)}\to\infty$
             as \operatorname{x} \operatorname{x}\right.
             }
\uncover<4->{\noindent Then $\varphi$ is a
              diffeomorphism of $X$ onto $Y$.
              }
 \end{thm}
```

• Check that φ is onto.

・ロト ・回ト ・ヨト ・ヨト

-2

- Check that φ is onto.
- Prove injectivity by contradiction.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

2

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi(x_1) = \varphi(x_2) = y$, then define

$$f(x) = \frac{1}{2} \|\varphi(x) - y\|^2$$

・回・ ・ヨ・ ・ヨ・

-1

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi(x_1) = \varphi(x_2) = y$, then define

$$f(x) = \frac{1}{2} \|\varphi(x) - y\|^2$$

• Check the MPT geometry for f.

◆□ ▶ ◆ □ ▶ ◆ □ ▶

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi(x_1) = \varphi(x_2) = y$, then define

$$f(x) = \frac{1}{2} \|\varphi(x) - y\|^2$$

- Check the MPT geometry for f.
- $\exists x_3, f(x_3) > 0$ (i.e., $\|\varphi(x_3) y\| > 0$.)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

 \bullet Check that φ is onto.

Hadamard's Theorem - Idea of Proof

- Prove injectivity by contradiction.
- Suppose $\varphi(x_1) = \varphi(x_2) = y$, then define

$$f(x) = \frac{1}{2} \|\varphi(x) - y\|^2$$

- Check the MPT geometry for f.
- $\exists x_3, f(x_3) > 0$ (i.e., $\|\varphi(x_3) y\| > 0$.)
- $f'(x_3) = \nabla^T \varphi(x_3) \cdot (\varphi(x_3) y) = 0$

▲□▶ ▲ 国▶ ▲ 国▶