
Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

A Guide to Presentations in LATEX-beamer

with a detour to Geometric Analysis

Eduardo Balreira

Trinity University
Mathematics Department

Major Seminar, Fall 2008

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Outline

1 Intro to a Presentation

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Outline

1 Intro to a Presentation

2 Intro to LATEX

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Outline

1 Intro to a Presentation

2 Intro to LATEX

3 Intro to Beamer

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Outline

1 Intro to a Presentation

2 Intro to LATEX

3 Intro to Beamer

4 Geometric Analysis

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Outline

1 Intro to a Presentation

2 Intro to LATEX

3 Intro to Beamer

4 Geometric Analysis

5 A Proof

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Slide Presentations
What you should not do...

In a slide presentation, you should not list too much
information in a single slide. This causes the audience to
spend too much time reading the slide and not paying any
attention on what you are saying. You should never just read
of the slide, otherwise why not just give a handout and leave?
It is also nice to use “fancy” letters and fonts as well as

clever coloring schemes but they can be hard to read. Also,
make sure you turn yourself towards the audience. Generally,
the first part is to be understood by everyone, then you can
begin to be more specific. It is common to only have the
attention of a few “experts”by the end of the presentation.
This applies mostly to research talks, but also to Senior
Project presentations.

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Some Symbols

LaTeX is a mathematics typesetting program.

Standard Language to Write Mathematics
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Some Symbols

LaTeX is a mathematics typesetting program.

Standard Language to Write Mathematics

(M2, g) ↔ $(M^2,g)$
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Some Symbols

LaTeX is a mathematics typesetting program.

Standard Language to Write Mathematics

(M2, g) ↔ $(M^2,g)$

∆u − K (x) − e2u = 0 ↔ $\Delta u -K(x) - e^{2u} = 0$

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Some Symbols

LaTeX is a mathematics typesetting program.

Standard Language to Write Mathematics

(M2, g) ↔ $(M^2,g)$

∆u − K (x) − e2u = 0 ↔ $\Delta u -K(x) - e^{2u} = 0$

inf
n∈N

{

1

n

}

= 0

$\ds\inf_{n\in\mathbb{N}}\set{\dfrac{1}{n}}=0$
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More Examples
without displaystyle

∑∞
n=1

1
n2 =

π2

6
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More Examples
without displaystyle

∑∞
n=1

1
n2 =

π2

6

$\sum_{n=1}^{\infty}\frac{1}{n^2} =

\dfrac{\pi^2}{6}$
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More Examples
with displaystyle

∞
∑

n=1

1

n2
=

π2

6
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More Examples
with displaystyle

∞
∑

n=1

1

n2
=

π2

6

$\ds\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$
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Compare displaystyle

∑∞
n=1

1
n2 =

π2

6
versus

∞
∑

n=1

1

n2
=

π2

6
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Compare displaystyle

∑∞
n=1

1
n2 =

π2

6
versus

∞
∑

n=1

1

n2
=

π2

6

$\sum_{n=1}^{\infty}\frac{1}{n^2}=\dfrac{\pi^2}{6}$

and

$\ds\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$
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Common functions

cos x → $\cos x$
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Common functions

cos x → $\cos x$

arctan x → $\arctan x$
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Common functions

cos x → $\cos x$

arctan x → $\arctan x$

f (x) =
√

x2 + 1 → $f(x) = \sqrt{x^2+1}$
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Common functions

cos x → $\cos x$

arctan x → $\arctan x$

f (x) =
√

x2 + 1 → $f(x) = \sqrt{x^2+1}$

f (x) = n
√

x2 + 1 → $f(x) = \sqrt[n]{x^2+1}$
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Theorems

Theorem (Poincaré Inequality)

If |Ω| < ∞, then

λ1(Ω) = inf
u 6=0

|∇u|22
‖u‖2

> 0

is achieved.
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Theorems - code

Theorem (Poincaré Inequality)

If |Ω| < ∞, then

λ1(Ω) = inf
u 6=0

|∇u|22
‖u‖2

> 0

is achieved.

\begin{thm}[Poincar\’{e} Inequality]

If $|\Omega| < \infty$, then

\[

\lambda_1(\Omega) =

\inf_{u\neq 0} \dfrac{|\nabla u|^2_2}{\|u\|^2} > 0

\]

is achieved.

\end{thm}
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Example - Arrays

{

−∆u + λu = |u|p−2, in Ω
u ≥ 0, u ∈ H1

0 (Ω)
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Example - Arrays

{

−∆u + λu = |u|p−2, in Ω
u ≥ 0, u ∈ H1

0 (Ω)

$\left\{

\begin{array}{cccc}

-\Delta u +\lambda u &= & |u|^{p-2}, &\textrm{ in }

\Omega \\

u &\geq & 0, & u\in H_0^1(\Omega)

\end{array}

\right.$
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Example - Arrays
Change centering

{

−∆u + λu = |u|p−2, in Ω
u ≥ 0, u ∈ H1

0 (Ω)
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Example - Arrays
Change centering

{

−∆u + λu = |u|p−2, in Ω
u ≥ 0, u ∈ H1

0 (Ω)

$\left\{

\begin{array}{lcrr}

-\Delta u +\lambda u &= & |u|^{p-2}, &\textrm{ in }

\Omega \\

u &\geq & 0, & u\in H_0^1(\Omega)

\end{array}

\right.$
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Example - Arrays
Change centering

{

−∆u + λu = |u|p−2, in Ω
u ≥ 0, u ∈ H1

0 (Ω)
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Example - Arrays
Change centering

{

−∆u + λu = |u|p−2, in Ω
u ≥ 0, u ∈ H1

0 (Ω)

$\left\{

\begin{array}{rcll}

-\Delta u +\lambda u &= & |u|^{p-2}, &\textrm{ in }

\Omega \\

u &\geq & 0, & u\in H_0^1(\Omega)

\end{array}

\right.$
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More Examples

ϕ(u) =

∫

Ω

[‖∇u‖2

2
+ λ

u2

2
− (u+)p

p

]

dµ
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More Examples

ϕ(u) =

∫

Ω

[‖∇u‖2

2
+ λ

u2

2
− (u+)p

p

]

dµ

$\ds \varphi (u) = \int_{\Omega} \left[

\dfrac{\|\nabla u\|^2}{2} +

\lambda\dfrac{u^2}{2} -

\dfrac{(u^+)^p}{p} \right] d\mu $
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Even More Examples

De Morgan’s Law
(

n
⋃

i=1

Ai

)c

=
n
⋂

i=1

Ac
i
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Even More Examples

De Morgan’s Law
(

n
⋃

i=1

Ai

)c

=
n
⋂

i=1

Ac
i

$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c =

\bigcap_{i=1}^n A_i^c$
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Even More Examples

De Morgan’s Law
(

n
⋃

i=1

Ai

)c

=
n
⋂

i=1

Ac
i

$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c =

\bigcap_{i=1}^n A_i^c$

A × B = {(a, b)|a ∈ A, b ∈ B}
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Even More Examples

De Morgan’s Law
(

n
⋃

i=1

Ai

)c

=
n
⋂

i=1

Ac
i

$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c =

\bigcap_{i=1}^n A_i^c$

A × B = {(a, b)|a ∈ A, b ∈ B}

$A\times B = \set{(a,b)|a\in A, b\in B}$
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Equations

Consider the equation of Energy below.

E (u) =

∫

|∇u|2dx (1)

This is how we refer to (1).
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Equations

Consider the equation of Energy below.

E (u) =

∫

|∇u|2dx (1)

This is how we refer to (1).

\begin{equation}\label{eq:energy}

E(u) = \int |\nabla u|^2 dx

\end{equation}

This is how we refer to \eqref{eq:energy}.
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Equations

Consider the equation without a number below.

E (u) =

∫

|∇u|2dx
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Equations

Consider the equation without a number below.

E (u) =

∫

|∇u|2dx

\begin{equation}\label{eq:energy}

E(u) = \int |\nabla u|^2 dx \nonumber

\end{equation}
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Equations
Tag an equation

Consider the equation with a tag

E (u) =

∫

|∇u|2dx (E)

If u is harmonic, (E) is preserved.
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Equations
Tag an equation

Consider the equation with a tag

E (u) =

∫

|∇u|2dx (E)

If u is harmonic, (E) is preserved.

\begin{equation}\label{eq:energytag}

E(u) = \int |\nabla u|^2 dx \tag{E}

\end{equation}

If $u$ is harmonic, \eqref{eq:energytag} is preserved.
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Equations
a small proof

Indeed,

d

dt
E (u) = 2

∫

〈∇u,∇u〉

= −2

∫

〈∆u, u〉 = 0

(2)
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Equations
a small proof

Indeed,

d

dt
E (u) = 2

∫

〈∇u,∇u〉

= −2

∫

〈∆u, u〉 = 0

(2)

The “=” signs are aligned.
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Equations
a small proof

Indeed,

d

dt
E (u) = 2

∫

〈∇u,∇u〉

= −2

∫

〈∆u, u〉 = 0

(2)

The “=” signs are aligned.

Use

\begin{split} ... \end{split}

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Equations
a small proof

\begin{equation}

\begin{split}

\dfrac{d}{dt} E(u) & = 2 \int \langle\nabla u,

\nabla u\rangle\\

& = -2 \int\langle\Delta u,u\rangle = 0

\end{split}

\end{equation}
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Equations
in an array

Consider the expression below

(a + b)2 = (a + b)(a + b)

= a2 + 2ab + b2
(3)
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Equations
in an array

Consider the expression below

(a + b)2 = (a + b)(a + b)

= a2 + 2ab + b2
(3)

\begin{equation}

\begin{split}

(a+b)^2 & = (a+b)(a+b) \\

& = a^2 +2ab +b^2

\end{split}

\end{equation}
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Environments

In LaTeX, environments must match:

\begin{...}

.

.

.

\end{...}
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Environments

In LaTeX, environments must match:

\begin{...}

.

.

.

\end{...}

$ ...$ → for math symbols
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Environments

In LaTeX, environments must match:

\begin{...}

.

.

.

\end{...}

$ ...$ → for math symbols

\[ ... \] → for centering expressions
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Environments

In LaTeX, environments must match:

\begin{...}

.

.

.

\end{...}

$ ...$ → for math symbols

\[ ... \] → for centering expressions

\left( ... \right) → match size of parentheses
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Environments
delimiters

(

∫

|∇u|pdµ)p versus

(
∫

|∇u|pdµ

)p

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Environments
delimiters

(

∫

|∇u|pdµ)p versus

(
∫

|∇u|pdµ

)p

$(\ds\int|\nabla u|^p d\mu)^p$

$\left(\ds\int|\nabla u|^p d\mu\right)^p$
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Tables

Consider the truth table:

P Q ¬P ¬P → (P ∨ Q)

T T F T
T F F T
F T T T
F F T F
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Tables - code

\begin{tabular}{c c c | c}

$P$ & $Q$ & $\neg P$ & $\neg P\to (P \vee Q)$ \\ \hline

T & T & F & T \\

T & F & F & T \\

F & T & T & T \\

F & F & T & F

\end{tabular}
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Inserting Pictures
Mountain Pass Landscape

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Inserting Pictures - code

\begin{center}

\includegraphics{Mountain_Pass.eps}

\end{center}
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Inserting Pictures

p

v

q0q0q0

q1q1

u0u0

u1u1

U0

U1

H

f −1(H)

ℓ

Γn−1

V

f −1(ℓ)

Figure: Construction of Γn by revolving affine hyperplanes
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A Final Remark on LaTeX
Preamble

Preamble → “Stuff” on top of .tex file

%For an article using AMS template:

\documentclass[12pt]{amsart}

\usepackage{amsmath,amssymb,amsfonts,amsthm}

...
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A Final Remark on LaTeX
Preamble

Preamble → “Stuff” on top of .tex file

%For an article using AMS template:

\documentclass[12pt]{amsart}

\usepackage{amsmath,amssymb,amsfonts,amsthm}

...

Don’t worry about it!
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A Final Remark on LaTeX
Preamble

Preamble → “Stuff” on top of .tex file

%For an article using AMS template:

\documentclass[12pt]{amsart}

\usepackage{amsmath,amssymb,amsfonts,amsthm}

...

Don’t worry about it!

With practice you can figure it out.
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How a Slide is done in Beamer
my subtitle

This is a slide

First Item

Second Item
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How a Slide is done in Beamer
my subtitle

The code should look like:

\begin{frame}

\frametitle{How a Slide is done in Beamer}

\framesubtitle{my subtitle} % optional

This is a slide

\begin{itemize}

\item First Item

\item Second Item

\end{itemize}

\end{frame}
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How a Slide is done in Beamer
In this document...

The option [fragile] is added to use verbatim

\begin{verbatim}

Anything you type $\Delta u = |u|^{p-2}$

Appears as is in the code

end{verbatim}

Note: if you correctly type \ end{verbatim} it assumes

verbatim environment ended.

Hence ‘‘fragile’’
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How a Slide with pause is done in Beamer

This is a slide

First Item
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How a Slide with pause is done in Beamer

This is a slide

First Item

Second Item
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How a Slide with pause is done in Beamer

The code should look like:

\begin{frame}

\frametitle{How a Slide with pause is done in Beamer}

This is a slide

\begin{itemize}

\item First Item

\pause

\item Second Item

\end{itemize}

\end{frame}
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Overlay example

First item

Fourth item
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Overlay example

First item

Second item

Fourth item
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Overlay example

First item

Second item

Third item

Fourth item
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Overlay example

The code should look like:

\begin{frame}[fragile]

\frametitle{Overlay example}

\begin{itemize}

\only<1->{\item First item}

\uncover<2->{\item Second item}

\uncover<3->{\item Third item}

\only<1->{\item Fourth item}

\end{itemize}

\end{frame}
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Example of Figures

Taken from online Template.

Using \only<1> to draw the first two Figures

−6 −5 −4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

re

im
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Example of Figures

Taken from online Template.

Using \only<1> to draw the first two Figures

Using \only<2-> to draw the second two Figures

−6 −5 −4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

ρ
ρ

2

ρ=1.99, ρ
2
=1.76, ρ

3
=1.87, tt

6
=0.0022, tt

7
=0.000293

re

im
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Add [plain] option to the slide.
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Variational Calculus

A simple Idea to solve equations:

Solve f (x) = 0

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Variational Calculus

A simple Idea to solve equations:

Solve f (x) = 0

Suppose we know that F ′ = f .
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Variational Calculus

A simple Idea to solve equations:

Solve f (x) = 0

Suppose we know that F ′ = f .

Critical points of F are solutions of f (x) = 0.
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Variational Calculus

An idea from Calculus I:
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Variational Calculus

An idea from Calculus I:

Theorem (Rolle)

Let f ∈ C 1([x1, x2]; R). If f (x1) = f (x2), then there exists

x3 ∈ (x1, x2) such that f ′(x3) = 0.
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Variational Calculus

An idea from Calculus I:

Theorem (Rolle)

Let f ∈ C 1([x1, x2]; R). If f (x1) = f (x2), then there exists

x3 ∈ (x1, x2) such that f ′(x3) = 0.

\begin{thm}[Rolle]

Let $f\in C^1([x_1,x_2];\mathbb{R})$. If $f(x_1)=f(x_2)$,

then there exists $x_3\in(x_1,x_2)$

such that $f’(x_3) = 0$.

\end{thm}
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Variational Calculus

Rolle’s Theorem has the following landscape.
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Variational Calculus

Rolle’s Theorem has the following landscape.

x1 x3’ x2x3

y=f(x)
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Variational Calculus - Code

\begin{frame}

\frametitle{Variational Calculus}

\uncover<1->{

Rolle’s Theorem has the following landscape.

}

\uncover<2->{\begin{center}

\includegraphics{rolle.eps}

\end{center}

}

\end{frame}
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Variational Calculus - psfrags

Rolle’s Theorem has the following landscape.

Balreira Presentations in LATEX



Intro to a Presentation Intro to LATEX Intro to Beamer Geometric Analysis A Proof

Variational Calculus - psfrags

Rolle’s Theorem has the following landscape.

x1 x2x3x ′
3

y = f (x)
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Variational Calculus - psfrags - Code

\begin{frame}

\frametitle{Variational Calculus - psfrags}

\uncover<1->{Rolle’s Theorem has the following landscape.}

\uncover<2->{\begin{figure}[h]

\begin{center}

\begin{psfrags}

\psfrag{x1}{$x_1$}\psfrag{x2}{$x_2$}

\psfrag{x3}{$x_3$}\psfrag{x3’}{$x_3’$}

\psfrag{y=f(x)}{$y=f(x)$}

\includegraphics{rolle.eps}

\end{psfrags}

\end{center}

\end{figure}

}

\end{frame}
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Mountain Pass Landscape
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MPT - presentation
Not a friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that ϕ ∈ C 1(Rn, R) is coercive and possesses two distinct

strict relative minima x1 and x2. Then ϕ possesses a third critical

point x3 distinct from x1 and x2, characterized by

ϕ(x3) = inf
Σ∈Γ

max
x∈Σ

ϕ(x)

where Γ = {Σ ⊂ R
n; Σ is compact and connected and x1, x2 ∈ Σ}.

Moreover, x3 is not a relative minimizer, that it, in every

neighborhood of x3 there exists a point x such that ϕ(x) < ϕ(x3).
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When displaying large info do in steps.
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MPT - in parts

When displaying large info do in steps.

Avoid audience reading ahead and not paying attention.
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MPT - presentation
A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that ϕ ∈ C 1(Rn, R) is coercive and possesses two distinct

strict relative minima x1 and x2.
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Theorem (Finite Dimensional MPT, Courant)

Suppose that ϕ ∈ C 1(Rn, R) is coercive and possesses two distinct

strict relative minima x1 and x2. Then ϕ possesses a third critical

point x3 distinct from x1 and x2, characterized by

ϕ(x3) = inf
Σ∈Γ

max
x∈Σ

ϕ(x)
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A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that ϕ ∈ C 1(Rn, R) is coercive and possesses two distinct

strict relative minima x1 and x2. Then ϕ possesses a third critical

point x3 distinct from x1 and x2, characterized by

ϕ(x3) = inf
Σ∈Γ

max
x∈Σ

ϕ(x)

where

Γ = {Σ ⊂ R
n; Σ is compact and connected and x1, x2 ∈ Σ}.
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MPT - presentation
A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that ϕ ∈ C 1(Rn, R) is coercive and possesses two distinct

strict relative minima x1 and x2. Then ϕ possesses a third critical

point x3 distinct from x1 and x2, characterized by

ϕ(x3) = inf
Σ∈Γ

max
x∈Σ

ϕ(x)

where

Γ = {Σ ⊂ R
n; Σ is compact and connected and x1, x2 ∈ Σ}.

Moreover, x3 is not a relative minimizer, that it, in every

neighborhood of x3 there exists a point x such that ϕ(x) < ϕ(x3).
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Geometry of MPT
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Geometry of MPT
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An Application of MPT

Good practice to have a proof
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An Application of MPT

Good practice to have a proof

You only need the idea.
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An Application of MPT

Good practice to have a proof

You only need the idea.

The actual proof will be in your final paper!
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An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let

ϕ : X → Y be a C 1 function such that:
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An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let

ϕ : X → Y be a C 1 function such that:

(i) ϕ′(x) is invertible for all x ∈ X.
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An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let

ϕ : X → Y be a C 1 function such that:

(i) ϕ′(x) is invertible for all x ∈ X.

(ii) ‖ϕ(x)‖ → ∞ as ‖x‖ → ∞.
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An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let

ϕ : X → Y be a C 1 function such that:

(i) ϕ′(x) is invertible for all x ∈ X.

(ii) ‖ϕ(x)‖ → ∞ as ‖x‖ → ∞.

Then ϕ is a diffeomorphism of X onto Y .
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An Application of MPT

\begin{thm}[Hadamard] Let $X$ and $Y$ be finite

dimensional Euclidean spaces, and let

$\varphi:X\to Y$ be a $C^1$ function such that:

\uncover<2->{\noindent \textbf{(i)} $\varphi’(x)$

is invertible for all $x\in X$.

}

\uncover<3->{\noindent \textbf{(ii)}

$\norm{\varphi(x)}\to\infty$

as $\norm{x}\to\infty$.

}

\uncover<4->{\noindent Then $\varphi$ is a

diffeomorphism of $X$ onto $Y$.

}

\end{thm}
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An Application of MPT
Hadamard’s Theorem - Idea of Proof

Check that ϕ is onto.
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An Application of MPT
Hadamard’s Theorem - Idea of Proof

Check that ϕ is onto.

Prove injectivity by contradiction.
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An Application of MPT
Hadamard’s Theorem - Idea of Proof

Check that ϕ is onto.

Prove injectivity by contradiction.

Suppose ϕ(x1) = ϕ(x2) = y , then define

f (x) =
1

2
‖ϕ(x) − y‖2
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An Application of MPT
Hadamard’s Theorem - Idea of Proof

Check that ϕ is onto.

Prove injectivity by contradiction.

Suppose ϕ(x1) = ϕ(x2) = y , then define

f (x) =
1

2
‖ϕ(x) − y‖2

Check the MPT geometry for f .
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An Application of MPT
Hadamard’s Theorem - Idea of Proof

Check that ϕ is onto.

Prove injectivity by contradiction.

Suppose ϕ(x1) = ϕ(x2) = y , then define

f (x) =
1

2
‖ϕ(x) − y‖2

Check the MPT geometry for f .

∃x3, f (x3) > 0 (i.e., ‖ϕ(x3) − y‖ > 0.)
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An Application of MPT
Hadamard’s Theorem - Idea of Proof

Check that ϕ is onto.

Prove injectivity by contradiction.

Suppose ϕ(x1) = ϕ(x2) = y , then define

f (x) =
1

2
‖ϕ(x) − y‖2

Check the MPT geometry for f .

∃x3, f (x3) > 0 (i.e., ‖ϕ(x3) − y‖ > 0.)

f ′(x3) = ∇Tϕ(x3) · (ϕ(x3) − y) = 0
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