A Guide to Presentations in ATEX-beamer with a detour to Geometric Analysis

Eduardo Balreira

Mathematics Department

Major Seminar, Fall 2008

Outline

(1) Intro to a Presentation

Balreira

Outline

(1) Intro to a Presentation
(2) Intro to $A A T_{E} X$

Outline

(1) Intro to a Presentation
(2) Intro to $A A T_{E} X$
(3) Intro to Beamer

Outline

(1) Intro to a Presentation
(2) Intro to $A A T_{E} X$
(3) Intro to Beamer
(4) Geometric Analysis

Outline

(1) Intro to a Presentation
(2) Intro to $A A T_{E} X$
(3) Intro to Beamer
(4) Geometric Analysis
(5) A Proof

Slide Presentations

What you should not do...

- In a slide presentation, you should not list too much information in a single slide. This causes the audience to spend too much time reading the slide and not paying any attention on what you are saying. You should never just read of the slide, otherwise why not just give a handout and leave? It is also nice to use "fancy" letters and fonts as well as clever coloring schemes but they can be hard toad. Also, make sure you turn yourself towards the audience. Generally, the first part is to be understood by everyone, then you can begin to be more specific. It is common to only have the attention of a few "experts" by the end of the presentation. This applies mostly to research talks, but also to Senior Project presentations.

Some Symbols

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics

Some Symbols

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics
- $\left(M^{2}, g\right) \leftrightarrow \$\left(M^{\wedge} 2, g\right) \$$

Some Symbols

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics
- $\left(M^{2}, g\right) \leftrightarrow \$\left(M^{\wedge} 2, g\right) \$$
- $\Delta u-K(x)-e^{2 u}=0 \leftrightarrow \$ \backslash \operatorname{Delta} u-K(x)-e^{\wedge}\{2 \mathrm{u}\}=0 \$$

Some Symbols

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics
- $\left(M^{2}, g\right) \leftrightarrow \$\left(M^{\wedge} 2, g\right) \$$
- $\Delta u-K(x)-e^{2 u}=0 \leftrightarrow \$ \backslash$ Delta $u-K(x)-e^{\wedge\{2 u\}}=0 \$$
- $\inf _{n \in \mathbb{N}}\left\{\frac{1}{n}\right\}=0$
$\$ \backslash d s \backslash i n f _\{n \backslash i n \backslash m a t h b b\{N\}\} \backslash \operatorname{set}\{\backslash d f r a c\{1\}\{n\}\}=0 \$$

More Examples

without displaystyle
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$

Balreira Presentations in $4 T_{E} X$

More Examples

without displaystyle

- $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
- \$\sum_\{n=1\}^\{\infty\} ${ }^{\text {(frac }\{1\}\left\{n^{\wedge} 2\right\}=}$ \dfrac\{\pi^2\}\{6\}\$

More Examples

with displaystyle

- $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$

Balreira Presentations in LTEX $_{2}$

More Examples

with displaystyle

- $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
- \$\ds\sum_\{n=1\}^\{\infty\}\frac\{1\}\{n^2\}=\frac\{\pi^2\}\{6\}\$

Compare displaystyle

- $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ versus $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$

Balreira Presentations in $4 T_{E} \mathrm{X}$

Compare displaystyle

- $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ versus $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$

and
$\$ \backslash d s \backslash s u m_{-}\{n=1\}^{\wedge}\{\backslash i n f t y\} \backslash f r a c\{1\}\left\{n^{\wedge} 2\right\}=\backslash f r a c\{\backslash p i \wedge 2\}\{6\} \$$

Common functions

- $\cos x \rightarrow \$ \backslash \cos x \$$

Balreira

Common functions

- $\cos x \rightarrow \$ \backslash \cos x \$$
- $\arctan x \rightarrow \$$ arctan $\mathrm{x} \$$

Balreira Presentations in $4 T_{E} \mathrm{X}$

Common functions

- $\cos x \rightarrow \$ \backslash \cos x \$$
- $\arctan x \rightarrow \$$ arctan $\mathrm{x} \$$
- $f(x)=\sqrt{x^{2}+1} \rightarrow \$ \mathrm{f}(\mathrm{x})=\backslash \operatorname{sqrt}\left\{\mathrm{x}^{\wedge} 2+1\right\} \$$

Common functions

- $\cos x \rightarrow \$ \backslash \cos x \$$
- $\arctan x \rightarrow \$$ arctan $\mathrm{x} \$$
- $f(x)=\sqrt{x^{2}+1} \rightarrow \$ \mathrm{f}(\mathrm{x})=\backslash \operatorname{sqrt}\left\{\mathrm{x}^{\wedge} 2+1\right\} \$$
- $f(x)=\sqrt[n]{x^{2}+1} \rightarrow \$ f(x)=\backslash$ sqrt $[n]\left\{x^{\wedge} 2+1\right\} \$$

Theorems

Theorem (Poincaré Inequality)

If $|\Omega|<\infty$, then

$$
\lambda_{1}(\Omega)=\inf _{u \neq 0} \frac{|\nabla u|_{2}^{2}}{\|u\|^{2}}>0
$$

is achieved.

Theorems - code

Theorem (Poincaré Inequality)

If $|\Omega|<\infty$, then

$$
\lambda_{1}(\Omega)=\inf _{u \neq 0} \frac{|\nabla u|_{2}^{2}}{\|u\|^{2}}>0
$$

is achieved.
\begin\{thm\}[Poincar\'\{e\} Inequality] }
If \$|\Omegal < \infty\$, then

$$
\lambda_1(\Omega) =
\inf_\{u\neq 0\} \dfrac\{|\nabla u|^2_2\}\{\|u\|^2\} > 0
$$

is achieved.
\end\{thm\} }

Example - Arrays

$$
\text { - }\left\{\begin{array}{ccc}
-\Delta u+\lambda u & =|u|^{p-2}, & \operatorname{in} \Omega \\
u & \geq & 0,
\end{array} u \in H_{0}^{1}(\Omega)\right.
$$

Example - Arrays

- $\left\{\begin{array}{cccc}-\Delta u+\lambda u & =|u|^{p-2}, & \text { in } \Omega \\ u & \geq & 0, \quad u \in H_{0}^{1}(\Omega)\end{array}\right.$
- \$ $\backslash \mathrm{left}$
{ }
\begin\{array\}\{cccc\} }
$-\backslash$ Delta u + \lambda u \& $=\&|u|^{\wedge}\{p-2\}$, \& \backslash textrm\{ in $\}$ \Omega

u \& \backslash geq \& 0, \& u\in H_O^1(\Omega)
\end\{array\} }
\right.\$

Example - Arrays

Change centering

$$
\bullet\left\{\begin{array}{llrr}
-\Delta u+\lambda u & = & |u|^{p-2}, & \operatorname{in} \Omega \\
u & \geq & 0, & u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Example - Arrays

Change centering

- $\left\{\begin{array}{llrr}-\Delta u+\lambda u & = & |u|^{p-2}, & \text { in } \Omega \\ u & \geq & 0, \quad u \in H_{0}^{1}(\Omega)\end{array}\right.$
- \$ $\backslash 1$ eft $\backslash\{$
\begin\{array\}\{lcrr\} }
$-\backslash D e l t a ~ u ~+\backslash l a m b d a ~ u ~ \&=~ \& ~|u| `\{p-2\}, ~ \& ~ \ t e x t r m\{~ i n ~\} ~$
\Omega

u \& \backslash geq \& 0 , \& $u \backslash i n ~ H _0 \wedge 1(\backslash O m e g a) ~$
\end\{array\} }
\right. $\$$

Example - Arrays

Change centering

$$
0\left\{\begin{aligned}
-\Delta u+\lambda u & =|u|^{p-2}, & & \text { in } \Omega \\
u & \geq 0, & & u \in H_{0}^{1}(\Omega)
\end{aligned}\right.
$$

Example - Arrays

Change centering

$\cdot\left\{\begin{array}{rlrl}-\Delta u+\lambda u & =|u|^{p-2}, & & \text { in } \Omega \\ u & \geq 0, & u \in H_{0}^{1}(\Omega)\end{array}\right.$

- \$ $\backslash 1$ eft $\backslash\{$
\begin\{array\}\{rcll\} }
$-\backslash D e l t a ~ u ~+\backslash l a m b d a ~ u ~ \&=~ \& ~|u| `\{p-2\}, ~ \& ~ \ t e x t r m\{~ i n ~\} ~$
\Omega

u \& \backslash geq \& 0 , \& $u \backslash i n ~ H _0 \wedge 1(\backslash O m e g a) ~$
\end\{array\} }
\right. $\$$

More Examples

- $\varphi(u)=\int_{\Omega}\left[\frac{\|\nabla u\|^{2}}{2}+\lambda \frac{u^{2}}{2}-\frac{\left(u^{+}\right)^{p}}{p}\right] d \mu$

More Examples

- $\varphi(u)=\int_{\Omega}\left[\frac{\|\nabla u\|^{2}}{2}+\lambda \frac{u^{2}}{2}-\frac{\left(u^{+}\right)^{p}}{p}\right] d \mu$
- \$ \backslash ds \backslash varphi (u) $=$ \int_\{\Omega $\}$ left[\dfrac\{
\nabla u\|^2\}\{2\} + \lambda\dfrac\{u^2\}\{2\} \dfrac\{(u^+)^p\}\{p\} \right] $d \backslash m u$ \$

Even More Examples

De Morgan's Law

$$
\cdot\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}
$$

Even More Examples

De Morgan's Law
$\cdot\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}$

- \$ ${ }^{\text {ds }}$ \left(\bigcup_\{i=1\}^\{n\} A_i\right)^c = \bigcap_\{i=1\}^n A_i^c\$

Even More Examples

De Morgan's Law
$\cdot\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}$

- \$ ${ }^{\text {ds }}$ \left(\bigcup_\{i=1\}^\{n\} A_i\right)^c = \bigcap_\{i=1\}^n A_i^c\$
- $A \times B=\{(a, b) \mid a \in A, b \in B\}$

Even More Examples

De Morgan's Law
$\cdot\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}$

- \$\ds \left(\bigcup_\{i=1\}^\{n\} A_i\right) ${ }^{\text {c }}$ = \bigcap_\{i=1\}^n A_i^c\$
- $A \times B=\{(a, b) \mid a \in A, b \in B\}$
- \$A\times $B=\backslash \operatorname{set}\{(a, b) \mid a \backslash i n A, b \backslash i n ~ B\} \$$

Equations

- Consider the equation of Energy below.

$$
\begin{equation*}
E(u)=\int|\nabla u|^{2} d x \tag{1}
\end{equation*}
$$

This is how we refer to (1).

Equations

- Consider the equation of Energy below.

$$
\begin{equation*}
E(u)=\int|\nabla u|^{2} d x \tag{1}
\end{equation*}
$$

This is how we refer to (1).

- \begin\{equation\}\label\{eq:energy\} }

$$
E(u)=\backslash i n t|\backslash n a b l a u| \wedge 2 d x
$$

\end\{equation\} }

This is how we refer to \eqref\{eq:energy\}.

Equations

- Consider the equation without a number below.

$$
E(u)=\int|\nabla u|^{2} d x
$$

Balreira Presentations in $4 T_{E} \mathrm{X}$

Equations

- Consider the equation without a number below.

$$
E(u)=\int|\nabla u|^{2} d x
$$

- \begin\{equation\}\label\{eq:energy\} }

$$
\mathrm{E}(\mathrm{u})=\text { int } \mid \backslash \text { nabla }\left.u\right|^{\wedge} 2 \mathrm{dx} \text { \nonumber }
$$

\end\{equation\} }

Equations

Tag an equation

- Consider the equation with a tag

$$
\begin{equation*}
E(u)=\int|\nabla u|^{2} d x \tag{E}
\end{equation*}
$$

If u is harmonic, (E) is preserved.

Equations

Tag an equation

- Consider the equation with a tag

$$
\begin{equation*}
E(u)=\int|\nabla u|^{2} d x \tag{E}
\end{equation*}
$$

If u is harmonic, (E) is preserved.

- \begin\{equation\}\label\{eq:energytag\} }

$$
\mathrm{E}(\mathrm{u})=\text { int } \mid \backslash \text { nabla }\left.u\right|^{\wedge} 2 \mathrm{dx} \backslash \operatorname{tag}\{E\}
$$

\end\{equation\} }
If $\$ u \$$ is harmonic, \eqref\{eq:energytag\} is preserved.

Equations

- Indeed,

$$
\begin{align*}
\frac{d}{d t} E(u) & =2 \int\langle\nabla u, \nabla u\rangle \tag{2}\\
& =-2 \int\langle\Delta u, u\rangle=0
\end{align*}
$$

Equations

- Indeed,

$$
\begin{align*}
\frac{d}{d t} E(u) & =2 \int\langle\nabla u, \nabla u\rangle \tag{2}\\
& =-2 \int\langle\Delta u, u\rangle=0
\end{align*}
$$

- The " $=$ " signs are aligned.

Equations

- Indeed,

$$
\begin{align*}
\frac{d}{d t} E(u) & =2 \int\langle\nabla u, \nabla u\rangle \tag{2}\\
& =-2 \int\langle\Delta u, u\rangle=0
\end{align*}
$$

- The " $=$ " signs are aligned.
- Use
\begin\{split\} ... \end\{split\} }

Equations

- \begin\{equation\} }
\begin\{split\} }
\dfrac\{d\}\{dt\} E(u) \& = 2 \int \langle\nabla u, \nabla u\rangle

\& = -2 \int\langle\Delta $u, u \backslash r a n g l e=0$
\end\{split\} }
\end\{equation\} }

Equations

- Consider the expression below

$$
\begin{align*}
(a+b)^{2} & =(a+b)(a+b) \tag{3}\\
& =a^{2}+2 a b+b^{2}
\end{align*}
$$

Equations

- Consider the expression below

$$
\begin{align*}
(a+b)^{2} & =(a+b)(a+b) \\
& =a^{2}+2 a b+b^{2} \tag{3}
\end{align*}
$$

- \begin\{equation\} }
\begin\{split\} }

$$
\begin{aligned}
(\mathrm{a}+\mathrm{b}) \wedge 2 \& & =(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b}) \backslash \backslash \\
\& & =\mathrm{a}^{\wedge} 2+2 \mathrm{ab}+\mathrm{b} \wedge 2
\end{aligned}
$$

\end\{split\} }
\end\{equation\} }

Environments

In LaTeX, environments must match:

- \begin\{...\} }
\end\{...\} }

Environments

In LaTeX, environments must match:

- \begin\{...\} }
\end\{...\} }
- \$... \$ \rightarrow for math symbols

Environments

In LaTeX, environments must match:

- \begin\{...\} }
\end\{...\} }
- \$... \$ \rightarrow for math symbols
- $$
. .
$$ \rightarrow for centering expressions

Environments

In LaTeX, environments must match:

- \begin\{...\} }
\end\{...\} }
- \$... \$ \rightarrow for math symbols
- $$
. .
$$ \rightarrow for centering expressions
- \left(. . \right) \rightarrow match size of parentheses

Environments

delimiters

- $\left(\int|\nabla u|^{p} d \mu\right)^{p}$ versus $\left(\int|\nabla u|^{p} d \mu\right)^{p}$

Environments

delimiters

- $\left(\int|\nabla u|^{p} d \mu\right)^{p}$ versus $\left(\int|\nabla u|^{p} d \mu\right)^{p}$
- \$(\ds\int|\nabla u|^p d\mu)^p\$
- \$\left(\ds\int|\nabla ul^p d\mu\right)^p\$

Tables

Consider the truth table:

P	Q	$\neg P$	$\neg P \rightarrow(P \vee Q)$
T	T	F	T
T	F	F	T
F	T	T	T
F	F	T	F

Tables - code

```
    \begin{tabular}{c c c | c}
$P$ & $Q$ & $\neg P$ & $\neg P\to (P \vee Q)$ \\ \hline
T & T & F & T \\
T & F & F & T \\
F & T & T & T \\
F & F & T & F
\end\{tabular\} }
```


Inserting Pictures

Mountain Pass Landscape

Inserting Pictures - code

\begin\{center\}

 \end\{center\} }
}

Inserting Pictures

Figure: Construction of Γ^{n} by revolving affine hyperplanes

A Final Remark on LaTeX

Preamble

- Preamble (\rightarrow\)"Stuff"ontopof.texfile\%ForanarticleusingAMStemplate:\documentclass[12pt]\{amsart\}\usepackage\{amsmath,amssymb,amsfonts,amsthm\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

A Final Remark on LaTeX

Preamble

- Preamble (\rightarrow\)"Stuff"ontopof.texfile\%ForanarticleusingAMStemplate:\documentclass[12pt]\{amsart\}\usepackage\{amsmath,amssymb,amsfonts,amsthm\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined
- Don't worry about it!

A Final Remark on LaTeX

Preamble

- Preamble (\rightarrow\)"Stuff"ontopof.texfile\%ForanarticleusingAMStemplate:\documentclass[12pt]\{amsart\}\usepackage\{amsmath,amssymb,amsfonts,amsthm\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined
- Don't worry about it!
- With practice you can figure it out.

How a Slide is done in Beamer

 my subtitleThis is a slide

- First Item
- Second Item

How a Slide is done in Beamer

The code should look like:
\begin\{frame\} }
\frametitle\{How a Slide is done in Beamer\}
\framesubtitle\{my subtitle\} \% optional
This is a slide
\begin\{itemize\} }
- First Item
- Second Item
\end\{itemize\} }
\end\{frame\} }

How a Slide is done in Beamer

In this document...
The option [fragile] is added to use verbatim
\begin\{verbatim\} }
Anything you type $\$ \backslash \operatorname{Delta} u=|u| へ\{p-2\} \$$

Appears as is in the code
end\{verbatim\}

Note: if you correctly type \ end\{verbatim\} it assumes verbatim environment ended.

Hence 'fragile')

How a Slide with pause is done in Beamer

This is a slide

- First Item

How a Slide with pause is done in Beamer

This is a slide

- First Item
- Second Item

How a Slide with pause is done in Beamer

The code should look like:
\begin\{frame\} }
\frametitle\{How a Slide with pause is done in Beamer\}
This is a slide
\begin\{itemize\} }
- First Item
\(\backslash\) pause
- Second Item
\end\{itemize\} }
\end\{frame\} }

Overlay example

- First item
- Fourth item

Balreira

Overlay example

- First item
- Second item
- Fourth item

Overlay example

- First item
- Second item
- Third item
- Fourth item

Overlay example

The code should look like:
\begin\{frame\}[fragile] }
\frametitle\{Overlay example\}
\begin\{itemize\} }
\only<1->\{- First item\}
\uncover<2->\{
- Second item\}
\uncover<3->\{
- Third item\}
\only<1->\{
- Fourth item\}
\end\{itemize\} }
\end\{frame\} }

Example of Figures

Taken from online Template.

- Using \only<1> to draw the first two Figures

Example of Figures

Taken from online Template.

- Using \only<1> to draw the first two Figures
- Using \only<2-> to draw the second two Figures

Need a plain slide?

Add [plain] option to the slide.

Variational Calculus

A simple Idea to solve equations:

- Solve $f(x)=0$

Variational Calculus

A simple Idea to solve equations:

- Solve $f(x)=0$
- Suppose we know that $F^{\prime}=f$.

Variational Calculus

A simple Idea to solve equations:

- Solve $f(x)=0$
- Suppose we know that $F^{\prime}=f$.
- Critical points of F are solutions of $f(x)=0$.

Variational Calculus

An idea from Calculus I:

Variational Calculus

An idea from Calculus I:

Theorem (Rolle)
 Let $f \in C^{1}\left(\left[x_{1}, x_{2}\right] ; \mathbb{R}\right)$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then there exists $x_{3} \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}\left(x_{3}\right)=0$.

Variational Calculus

An idea from Calculus I:

Theorem (Rolle)

Let $f \in C^{1}\left(\left[x_{1}, x_{2}\right] ; \mathbb{R}\right)$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then there exists $x_{3} \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}\left(x_{3}\right)=0$.
\begin\{thm\}[Rolle] }
 then there exists \$x_3\in(x_1,x_2)\$ such that $\$ f^{\prime}\left(x _3\right)=0 \$$.
\end\{thm\} }

Variational Calculus

Rolle's Theorem has the following landscape.

Variational Calculus

Rolle's Theorem has the following landscape.

Variational Calculus - Code

\begin\{frame\} }
\frametitle\{Variational Calculus\}
\uncover<1->\{
Rolle's Theorem has the following landscape. \}
\uncover<2->\{\begin\{center\} }

\end\{center\} }
\}
\end\{frame\} }

Variational Calculus - psfrags

Rolle's Theorem has the following landscape.

Variational Calculus - psfrags

Rolle's Theorem has the following landscape.

Variational Calculus - psfrags - Code

```
\begin{frame}
    \frametitle{Variational Calculus - psfrags}
    \uncover<1->{Rolle's Theorem has the following landscape
    \uncover<2->{\begin{figure}[h]
\begin{center}
\begin{psfrags}
\psfrag{x1}{$x_1$}\psfrag{x2}{$x_2$}
\psfrag{x3}{$x_3$}\psfrag{x3'}{$x_3'$}
\psfrag{y=f(x)}{$y=f(x)$}
\includegraphics{rolle.eps}
\end{psfrags}
\end{center}
\end{figure}
    }
\end{frame}
```


Mountain Pass Landscape

MPT - presentation

Not a friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima x_{1} and x_{2}. Then φ possesses a third critical point x_{3} distinct from x_{1} and x_{2}, characterized by

$$
\varphi\left(x_{3}\right)=\inf _{\Sigma \in \Gamma} \max _{x \in \Sigma} \varphi(x)
$$

where $\Gamma=\left\{\Sigma \subset \mathbb{R}^{n} ; \Sigma\right.$ is compact and connected and $\left.x_{1}, x_{2} \in \Sigma\right\}$.
Moreover, x_{3} is not a relative minimizer, that it, in every neighborhood of x_{3} there exists a point x such that $\varphi(x)<\varphi\left(x_{3}\right)$.

MPT - in parts

- When displaying large info do in steps.

Balreira

MPT - in parts

- When displaying large info do in steps.
- Avoid audience reading ahead and not paying attention.

MPT - presentation

A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima x_{1} and x_{2}.

MPT - presentation

A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima x_{1} and x_{2}. Then φ possesses a third critical point x_{3} distinct from x_{1} and x_{2}

MPT - presentation

A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima x_{1} and x_{2}. Then φ possesses a third critical point x_{3} distinct from x_{1} and x_{2}, characterized by

$$
\varphi\left(x_{3}\right)=\inf _{\Sigma \in \Gamma} \max _{x \in \Sigma} \varphi(x)
$$

MPT - presentation

A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima x_{1} and x_{2}. Then φ possesses a third critical point x_{3} distinct from x_{1} and x_{2}, characterized by

$$
\varphi\left(x_{3}\right)=\inf _{\Sigma \in \Gamma} \max _{x \in \Sigma} \varphi(x)
$$

where
$\Gamma=\left\{\Sigma \subset \mathbb{R}^{n} ; \Sigma\right.$ is compact and connected and $\left.x_{1}, x_{2} \in \Sigma\right\}$.

MPT - presentation

A friendly introduction

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima x_{1} and x_{2}. Then φ possesses a third critical point x_{3} distinct from x_{1} and x_{2}, characterized by

$$
\varphi\left(x_{3}\right)=\inf _{\Sigma \in \Gamma} \max _{x \in \Sigma} \varphi(x)
$$

where
$\Gamma=\left\{\Sigma \subset \mathbb{R}^{n} ; \Sigma\right.$ is compact and connected and $\left.x_{1}, x_{2} \in \Sigma\right\}$.
Moreover, x_{3} is not a relative minimizer, that it, in every neighborhood of x_{3} there exists a point x such that $\varphi(x)<\varphi\left(x_{3}\right)$.

Geometry of MPT

An Application of MPT

- Good practice to have a proof

An Application of MPT

- Good practice to have a proof
- You only need the idea.

An Application of MPT

- Good practice to have a proof
- You only need the idea.
- The actual proof will be in your final paper!

An Application of MPT

Theorem (Hadamard)
Let X and Y be finite dimensional Euclidean spaces, and let $\varphi: X \rightarrow Y$ be a C^{1} function such that:

An Application of MPT

Theorem (Hadamard)
Let X and Y be finite dimensional Euclidean spaces, and let $\varphi: X \rightarrow Y$ be a C^{1} function such that:
(i) $\varphi^{\prime}(x)$ is invertible for all $x \in X$.

An Application of MPT

Theorem (Hadamard)
Let X and Y be finite dimensional Euclidean spaces, and let $\varphi: X \rightarrow Y$ be a C^{1} function such that:
(i) $\varphi^{\prime}(x)$ is invertible for all $x \in X$.
(ii) $\|\varphi(x)\| \rightarrow \infty$ as $\|x\| \rightarrow \infty$.

An Application of MPT

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi: X \rightarrow Y$ be a C^{1} function such that:
(i) $\varphi^{\prime}(x)$ is invertible for all $x \in X$.
(ii) $\|\varphi(x)\| \rightarrow \infty$ as $\|x\| \rightarrow \infty$.

Then φ is a diffeomorphism of X onto Y.

An Application of MPT

\begin\{thm\}[Hadamard] Let \$X\$ and \$Y\$ be finite } dimensional Euclidean spaces, and let \$\varphi: X\to $\mathrm{Y} \$$ be a $\$ \mathrm{C}^{\wedge} 1 \$$ function such that:
\uncover<2->\{\noindent \textbf\{(i)\} \$\varphi'(x)\$ is invertible for all \$x\in X\$. \}
\uncover<3->\{\noindent \textbf\{(ii)\} $\$ \backslash$ norm $\{\backslash \operatorname{varphi}(x)\} \backslash$ to ${ }^{\text {infty }}$ (as $\$ \backslash$ norm $\{x\} \backslash t o \backslash i n f t y \$. ~$ \}
\uncover<4->\{\noindent Then \$\varphi\$ is a diffeomorphism of \$X\$ onto \$Y\$. \}
\end\{thm\} }

An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that φ is onto.

An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that φ is onto.
- Prove injectivity by contradiction.

An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=y$, then define

$$
f(x)=\frac{1}{2}\|\varphi(x)-y\|^{2}
$$

An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=y$, then define

$$
f(x)=\frac{1}{2}\|\varphi(x)-y\|^{2}
$$

- Check the MPT geometry for f.

An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=y$, then define

$$
f(x)=\frac{1}{2}\|\varphi(x)-y\|^{2}
$$

- Check the MPT geometry for f.
- $\exists x_{3}, f\left(x_{3}\right)>0$ (i.e., $\left\|\varphi\left(x_{3}\right)-y\right\|>0$.)

An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=y$, then define

$$
f(x)=\frac{1}{2}\|\varphi(x)-y\|^{2}
$$

- Check the MPT geometry for f.
- $\exists x_{3}, f\left(x_{3}\right)>0$ (i.e., $\left\|\varphi\left(x_{3}\right)-y\right\|>0$.)
- $f^{\prime}\left(x_{3}\right)=\nabla^{T} \varphi\left(x_{3}\right) \cdot\left(\varphi\left(x_{3}\right)-y\right)=0$

