
GEOMETRIC ANALYSIS AND THE MOUNTAIN PASS THEOREM

EDUARDO BALREIRA

Abstract. These notes are designed to serve as a template of a LaTeX article. In
the process we will describe some notions of Geometric Analysis pertaining to the
Mountain Pass Theorem. Little attempt was made to be a publishable set of notes,
but instead to provide examples of commonly used commands, environments, and
symbols in LaTeX.

Introduction

The subject of Geometric Analysis is motivated by viewing analytical problems
via an understanding the Geometric properties of the functionals associated with
these problems. As an illustration of this type of analysis consider the solution for
the following linear system

a11x1 + a12x2 + · · ·+ a1nxn =b1

a21x1 + a22x2 + · · ·+ a2nxn =b2

.

.

.

am1x1 + am2x2 + · · ·+ amnxn =bm

(0.1)

For instance, each individual equation in (0.1) can be viewed geometrically as
an affine hyperplane, thus the analytical problem of finding solutions is now shifted
to a geometric problem of intersections of hypersurfaces.

As an illustration, consider the following:

2x1 + 3x2 + 4x3 =0(0.2)

4x1 + 6x2 + 8x3 =1(0.3)

Then, subtracting (0.3) from (0.2) we have

2x1 + 3x2 + 4x3 = 1

Which contradicts the initial set of equations, hence there cannot be a solution.
Alternatively, each equation (0.2) and (0.3) gives an affine hyperplane with normal
〈2, 3, 4〉, therefore they are parallel. Since the distance to the origin (given by bi) is
different, they cannot intersect, hence a solution does not exist.

This simple idea of viewing the interplay between Analysis and Geometry is
a very influential and classical area of Mathematics, some famous problems are as
follows.
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1. Variational Calculus
“Find a solution of f(x) = 0 by finding Critical Points of the antiderivative

F (x)”
2. Yamabe Problem - Uniformization Theorem for Surfaces (M2, g)

“Can we find a metric conformal to g with constant scalar curvature?” That
is, solve

∆u − K(x) − e2u = 0.

3. Minimal Surface Theory and Bubbles “ Given a simple wire frame in R
3, can

you find a smooth surface with the given frame as its boundary with least
area?” That is, minimize the energy associated to the frame and show that
the minimizer corresponds to a (classical) smooth surface.

In these notes we will focus on ideas from Variational Calculus, in particular,
Critical Point Theory and discuss the celebrated Mountain Pass Theorem of Am-
brosetti and Rabinowitz [1]. The approach here follows the presentation in the book
of Jabri [3].

1. Geometric Analysis

Variational and topological methods have proved to be powerful tools in the
solution of concrete nonlinear boundary value problems appearing in many disciplines
where classical methods have failed. The ideas to be presented here use the analysis
inspired in the geometry of a mountain pass.

The abstract process in modern critical point theory has its roots in the Dirichlet
principle which he postulated at Göttingen. Given an open bounded set Ω in the plane
and a continuous function h : ∂Ω → R, the boundary value problem

(1.1)

{

−∆u = 0 , in Ω
u = h , in ∂Ω

admits a smooth solution u that minimizes the functional

(1.2) Φ(u) =

∫

Ω

2
∑

i=1

(Dih(x))2 dx

in the set of smooth functions defined on Ω that are equal to h on ∂Ω. The Euler
equation corresponding to (1.2) is the equation (1.1). Euler established the principle
above by showing that any smooth minimizer of (1.2), such that u = h on ∂Ω, is a
solution of (1.1).

Weierstrass pointed out in 1870 that the existence of the minimum is not assured
in spite of the fact that the functional Φ may be bounded from below. The subtle
difference between minimum and infimum, not yet perceived in those these early
times, was made. He proved that the functional

(1.3) Ψ(u) =

∫ 1

−1

(xu′(x))2dx

possesses an infimum but does not admit any minimum in the set
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C =
{

u ∈ C1[−1, 1]; u(−1) = 0, u(1) = 1
}

.

Indeed, if we consider the sequence

un =
1

2
+

arctan( x
n
)

2 arctan( 1
n
)
,

then, un ∈ C and Ψ(un) → 0. If some u was a minimum, then xu′(x) = 0 on [−1, 1].
Therefore, u = constant, in contradiction with u(−1) = 0 and u(1) = 1.

Major contributions looking for absolute minimizers of functionals bounded from
below were also made by pioneers like Lagrange, Legendre, Jacobi, Hamilton, Poincaré,
etc. This was revisited by Birkhoff in 1917 who succeeded to obtain a minimax prin-
ciple were critical points u are such that Φ(u) = infA∈A supx∈A Φ(x) and A is a family
of particular sets. The remaining ingredient for the modern theory of minimax the-
orems was a notion of compactness introduced in the 1960s by Palais, Smale, and
Rothe as we will see in the sequel.

2. First Steps Towards the Mountains

We begin by defining what is meant by the Palais-Smale condition, denoted by
(PS) which is the analogue for compactness in Variational Calculus.

Definition 2.1. Let X be a Banach space and Φ : X → R a C1-functional. We say
that Φ satisfies the Palais-Smale condition, denoted by (PS), if any sequence (un) in
X such that

(PS) Φ(un) is bounded and Φ′(un) → 0,

admits a convergent subsequence.

Any sequence satisfying (PS) is called a Palais-Smale sequence.

Definition 2.2. Let X and Φ be as in the former definition, and c ∈ R. The functional
Φ is said to satisfy the (local) Palais-Smale condition at the level c, denoted by (PS)c,
if any sequence (un) in X such that

Φ(un) →c(2.1)

Φ′(un) →0,(2.2)

admits a convergent subsequence.

Remark 2.3. The condition (PS)c is a compactness condition on the functional Φ, in

the sense that the set Kc of critical points of Φ at the level c,

Kc = {u ∈ X; Φ(u) = c, Φ′(u) = 0} ,

is compact.

We should point out the following classical results about the size of critical values
for smooth maps.
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Theorem 2.1 (Morse Theorem). If Φ → R
N is of class CN on the open set U of

R
N , then the set of critical values of Φ has measure zero.

Theorem 2.2 (Sard Theorem). If Φ : U ⊂ R
N → R

M is of class Cr on the open set
U of R

N , the the set of critical values of Φ has measure zero provided r ≥ N −M +1.

2.1. The Finite Dimensional Mountain Pass Theorem. Ideas for the Mountain
Pass Theorem (MTP) can be found as early as Calculus I, for instance, consider the
following well-know resutl.

Theorem 2.3 (Rolle). Let f ∈ C1([x1, x2], R). If f(x1) = f(x2), then there exists
x3 ∈ (x1, x2) such that f ′(x3) = 0

This type of results, when generalized to higher dimensions, provide the land-
scape in Fig. 2.1.

Figure 2.1. The MPT landscape.

Theorem 2.4 (Finite Dimensional MPT, Courant). Suppose that ϕ ∈ C1(Rn, R) is
coercive and possesses two distinct strict relative minima x1 and x2. Then ϕ possesses
a third critical point x3 distinct from x1 and x2, characterized by

ϕ(x3) = inf
Σ∈Γ

max
x∈Σ

ϕ(x)

where Γ = {Σ ⊂ R
n; Σ is compact and connected and x1, x2 ∈ Σ}.

Moreover, x3 is not a relative minimizer, that is, in every neighborhood of x3 there
exists a point x such that ϕ(x) < ϕ(x3).

For a proof, see [5].

2.2. The Topological Mountain Pass Theorem. It turns out that the MPT is a
topological result, in the sense that no differential structure on X is needed or used.
First some definitions.

Definition 2.4. A topological space is compactly connected if for each x1, x2 in X
there exists a compact connected set containing both x1 and x2.
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Definition 2.5. Let f : X → R be a functional. A pointx ∈ X is called a mountain
pass point if for every neighborhood N of x, the set defined by

N ∩ {y ∈ X; f(y) < f(x)}

is disconnected.

Definition 2.6. A functional f : X → R is said to be increasing at infinity if for all
x ∈ X, there is a compact subset K ⊂ X such that

f(z) > f(x), for all z /∈ K

The main result is as follows.

Theorem 2.5 (Katriel, [4]). Let X be a topological space locally connected, compactly
connected, and admitting a continuous functional ϕ that is increasing at infinity. Let
S ⊂ X be a set that separates x1 and x2 and suppose that

max {ϕ(x1), ϕ(x2)} < inf
x∈S

ϕ(x) = p.

Then, there is a third point x3 which is either a local minimum or a mountain pass
point of ϕ with ϕ(x3) = c ≥ p > max {ϕ(x1), ϕ(x2)}. Moreover, the value of c is
characterized by the minimax argument

c = inf
Σ∈Γ

max
x∈Σ

ϕ(x)

where Γ = {Σ ⊂ X; Σ is compact and connected and x1, x2 ∈ Σ}.

the proof is, of course, topological in nature and needs the following

Lemma 2.6. Let X be a compactly connected, locally connected, and locally compact,
and let U be and open connected subset of X. Then, U is compactly connected.

3. The Mountain Pass Theorem

The mountain pass theorem of Ambrosetti and Rabinowitz is a result of great
intuitive appeal as well as practical importance in the determination of critical points
of functionals, particularly those which occur in the theory of ordinary differential
equations. The celebrated result in [1] is as follows.

Theorem 3.1 (Ambrosetti-Rabinowitz, [1]). Let X be a Banach space and Φ : X →
R a C1-functional satisfying (PS). Suppose that there is e ∈ X, ‖e‖ > r > 0 and

α = max {γ(0), γ(e)} < inf
u∈S(0,ρ)

Φ(u) = β.

Then, Φ possess a critical value c ≥ β characterized by

c = inf
γ∈Γ

max
u∈γ([0,1])

Φ(u)

where

Γ = {γ ∈ C([0, 1]; X); γ(0) = 0, γ(1) = e} .
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4. Applications

As a very simple application of the MPT, we report a proof of a global home-
omorphism theorem. A priori, we must assume that the map is locally invertible,
but that does not ensure global invertibility. For instance, think of the real valued
function arctan in the real line.

Theorem 4.1 (Hadamard). Let X and Y be finite dimensional Euclidean spaces,
and let Φ : X → Y be a C1 function such that:

i. Φ′(x) is invertible for all x ∈ X,
ii. ‖Φ(x)‖ → ∞ as ‖x‖ → ∞.

Then Φ is a diffeomorphism of X onto Y .

Proof. By i and the inverse function theorem, Φ is an open mapping, then the range of
Φ is open in Y . Using ii and the fact that a bounded closed set in a finite dimensional
space is compact, we verify easily that Φ(X) is closed. Indeed, let Φ(xn) be a conver-
gent sequence in Y . Then it is bounded in Y and hence {xn} is bounded in X. Thus,
it admits a convergent subsequence converging to some x ∈ X and Φ(xn) → Φ(x).

It remains to show that Φ is injective to show it is a global diffeomorphism. By
contradiction, suppose that Φ(x1) = Φ(x2) = y for two points x1 and x2 in X, and
consider the C1 function f : X → R defined by

f(x) =
1

2
‖Φ(x) − y‖.

By ii, f(x) → ∞ as ‖x‖ → ∞. It is easy to see that x1 and x2 are global
minima of f by the inverse function theorem Φ(x) 6= Φ(xi) in a neighborhood of xi

(for i = 1, 2), which implies that x1 and x2 are strict local minima.
Therefore, by the finite dimensional MPT, there exists a third critical point x3

for f with f(x3) > 0. So ‖Φ(x3) − y‖ > 0, and thus Φ(x3 6= x3. But the fact that x3

is a critical point of f means that

Φ′∗(x3) (Φ(x3) − y) = 0

which contradicts the invertibility of Φ′(x3) expressed in i.
�

Next, consider the application to semilinear elliptic Dirichlet problem

(4.1)

{

−∆u(x) = f(x, u(x)) in Ω,
u(x) = 0 on ∂Ω,

where Ω is a bounded smooth domain of R
N . The function f : R

2 → R is supposed
to be a Carathéodory function satisfying the growth condition

(4.2) |f(x, s)| ≤ a(x) + b|s|p−1,

where a(x) ∈ Lq(Ω) with 1
p

+ 1
q

= 1 and 1 ≤ p ≤ 2N
N−2

, in N ≥ 3, and 1 ≤ p < ∞ if
N = 2.

The energy functional Φ associated to (4.1), defined by
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Φ(u) =
1

2

∫

Ω

|∇u(x)|2dx −

∫

Ω

F (x, u(x))dx,

is well-defined on H1
0(Ω) and is of class C1. The critical points of Φ are weak solutions

of (4.1).

Proposition 4.2. Suppose f satisfies:

(1) f(x, s) = o(|s|) at s = 0 uniformly in x ∈ Ω.
(2) There are constants µ > 2 and r > 0 such that for |s| ≥ r,

0 < µF (x, s) ≤ sf(x, s).

Then, (4.1) possesses a nontrivial solution.

Proof. We show that Φ has the right geometry and then that is satisfies (PS) condi-
tion. A simple application of MPT ensures the nontrivial solution. Finally, an appli-
cation of regularity theory shows that the weak solutions are strong solutions. �
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