# A Guide to Presentations in LTTEX-beamer with a detour to Geometric Analysis 

Eduardo Balreira


Mathematics Department

Major Seminar, Fall 2008

## Outline

(1) Intro to ${ }^{A} T_{E X} \mathrm{X}$

## Outline

(1) Intro to ${ }^{A} T_{E X} \mathrm{X}$
(2) Intro to Beamer

## Balreira Presentations in $4 T_{E} \mathrm{X}$

## Outline

(1) Intro to $A T_{E X}$
(2) Intro to Beamer
(3) Geometric Analysis

## Balreira

## Outline

(1) Intro to $A T_{E X}$
(2) Intro to Beamer
(3) Geometric Analysis
(4) A Proof

## Some Symbols

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics


## Some Symbols

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics
- $\left(M^{2}, g\right) \leftrightarrow \$\left(M^{\wedge} 2, g\right) \$$


## Some Symbols

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics
- $\left(M^{2}, g\right) \leftrightarrow \$\left(M^{\wedge} 2, g\right) \$$
- $\Delta u-K(x)-e^{2 u}=0 \leftrightarrow \$ \backslash \operatorname{Delta} u-K(x)-e^{\wedge}\{2 \mathrm{u}\}=0 \$$


## Some Symbols

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics
- $\left(M^{2}, g\right) \leftrightarrow \$\left(M^{\wedge} 2, g\right) \$$
- $\Delta u-K(x)-e^{2 u}=0 \leftrightarrow \$ \backslash$ Delta $u-K(x)-e^{\wedge\{2 u\}}=0 \$$
- $\inf _{n \in \mathbb{N}}\left\{\frac{1}{n}\right\}=0$
$\$ \backslash d s \backslash i n f \_\{n \backslash i n \backslash m a t h b b\{N\}\} \backslash \operatorname{set}\{\backslash d f r a c\{1\}\{n\}\}=0 \$$


## Compare displaystyle

- $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ versus $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$


## Balreira Presentations in LTEX $_{2}$

## Compare displaystyle

- $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ versus $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$

and
$\$ \backslash d s \backslash s u m_{-}\{n=1\}^{\wedge}\{\backslash i n f t y\} \backslash f r a c\{1\}\left\{n^{\wedge} 2\right\}=\backslash f r a c\{\backslash p i \wedge 2\}\{6\} \$$


## Common functions

- $\cos x \rightarrow \$ \backslash \cos x \$$


## Common functions

- $\cos x \rightarrow \$ \backslash \cos x \$$
- $\arctan x \rightarrow \$ \backslash \arctan \mathrm{x} \$$


## Balreira Presentations in $4 T_{E} \mathrm{X}$

## Common functions

- $\cos x \rightarrow \$ \backslash \cos \mathrm{x} \$$
- $\arctan x \rightarrow \$ \backslash \arctan \mathrm{x} \$$
- $f(x)=\sqrt{x^{2}+1} \rightarrow \$ f(x)=\backslash \operatorname{sqrt}\left\{x^{\wedge} 2+1\right\} \$$


## Common functions

- $\cos x \rightarrow \$ \backslash \cos x \$$
- $\arctan x \rightarrow \$ \backslash \arctan \mathrm{x} \$$
- $f(x)=\sqrt{x^{2}+1} \rightarrow \$ f(x)=\backslash \operatorname{sqrt}\left\{x^{\wedge} 2+1\right\} \$$
- $f(x)=\sqrt[n]{x^{2}+1} \rightarrow \$ f(x)=\backslash$ sqrt $[n]\left\{x^{\wedge} 2+1\right\} \$$


## Theorems - code

## Theorem (Poincaré Inequality)

If $|\Omega|<\infty$, then

$$
\lambda_{1}(\Omega)=\inf _{u \neq 0} \frac{|\nabla u|_{2}^{2}}{\|u\|^{2}}>0
$$

is achieved.
\begin\{thm\}[Poincar\'\{e\} Inequality] }
If \$|\Omegal < \infty\$, then

$$
\lambda_1(\Omega) =
\inf_\{u\neq 0\} \dfrac\{|\nabla u|^2_2\}\{\|u\|^2\} > 0
$$

is achieved.
\end\{thm\} }

## Example - Arrays

## Change centering

$$
0\left\{\begin{aligned}
-\Delta u+\lambda u & =|u|^{p-2}, & & \text { in } \Omega \\
u & \geq 0, & & u \in H_{0}^{1}(\Omega)
\end{aligned}\right.
$$

## Example - Arrays

## Change centering

- $\left\{\begin{array}{rlrl}-\Delta u+\lambda u & =|u|^{p-2}, & & \text { in } \Omega \\ u & \geq 0, & u \in H_{0}^{1}(\Omega)\end{array}\right.$
- \$ $\backslash 1$ eft $\backslash\{$
\begin\{array\}\{rcll\} }
$-\backslash D e l t a \mathrm{u}+\backslash l a m b d a \mathrm{u} \&=\&|u|^{\wedge}\{p-2\}, \& \backslash$ textrm\{ in $\}$
\Omega <br>
u \& geq \& 0, \& u\in H_0^1(\Omega)
\end\{array\} }
\right. $\$$


## More Examples

$$
\text { - } \varphi(u)=\int_{\Omega}\left[\frac{\|\nabla u\|^{2}}{2}+\lambda \frac{u^{2}}{2}-\frac{\left(u^{+}\right)^{p}}{p}\right] d \mu
$$

## More Examples

- $\varphi(u)=\int_{\Omega}\left[\frac{\|\nabla u\|^{2}}{2}+\lambda \frac{u^{2}}{2}-\frac{\left(u^{+}\right)^{p}}{p}\right] d \mu$
- \$ $\backslash$ ds $\backslash$ varphi (u) $=$ \int_\{\Omega $\}$ left[ \dfrac\{\|\nabla u\|^2\}\{2\} + \lambda\dfrac\{u^2\}\{2\} $\left.\backslash d f r a c\left\{\left(u^{\wedge}+\right)^{\wedge} p\right\}\{p\} \backslash r i g h t\right] d \backslash m u \$$


## Even More Examples

De Morgan's Law

$$
\bullet\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}
$$

## Even More Examples

De Morgan's Law
$\cdot\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}$

- \$ ${ }^{\text {ds }}$ \left(\bigcup_\{i=1\}^\{n\} A_i\right) ${ }^{\wedge} c=$ \bigcap_\{i=1\}^n A_i^c\$


## Even More Examples

De Morgan's Law
$\cdot\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}$

- \$ ${ }^{\text {ds }}$ \left(\bigcup_\{i=1\}^\{n\} A_i\right)^c = \bigcap_\{i=1\}^n A_i^c\$
- $A \times B=\{(a, b) \mid a \in A, b \in B\}$


## Even More Examples

De Morgan's Law

- $\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}$
- \$ ${ }^{\text {ds }}$ \left(\bigcup_\{i=1\}^\{n\} A_i\right)^c = \bigcap_\{i=1\}^n A_i^c\$
- $A \times B=\{(a, b) \mid a \in A, b \in B\}$
- \$A\times $B=\backslash \operatorname{set}\{(a, b) \mid a \backslash i n A, b \backslash i n ~ B\} \$$


## Equations

- Consider the equation of Energy below.

$$
\begin{equation*}
E(u)=\int|\nabla u|^{2} d x \tag{1}
\end{equation*}
$$

This is how we refer to (1).

## Equations

- Consider the equation of Energy below.

$$
\begin{equation*}
E(u)=\int|\nabla u|^{2} d x \tag{1}
\end{equation*}
$$

This is how we refer to (1).

- \begin\{equation\}\label\{eq:energy\} }

$$
E(u)=\backslash i n t|\backslash n a b l a u| \wedge 2 d x
$$

\end\{equation\} }

This is how we refer to \eqref\{eq:energy\}.

## Equations

- Consider the equation without a number below.

$$
E(u)=\int|\nabla u|^{2} d x
$$

## Balreira Presentations in $4 T_{E} \mathrm{X}$

## Equations

- Consider the equation without a number below.

$$
E(u)=\int|\nabla u|^{2} d x
$$

- \begin\{equation\}\label\{eq:energy\} }

$$
\mathrm{E}(\mathrm{u})=\text { int } \mid \backslash \text { nabla }\left.u\right|^{\wedge} 2 \mathrm{dx} \text { \nonumber }
$$

\end\{equation\} }

## Equations

## Tag an equation

- Consider the equation with a tag

$$
\begin{equation*}
E(u)=\int|\nabla u|^{2} d x \tag{E}
\end{equation*}
$$

If $u$ is harmonic, (E) is preserved.

## Equations

## Tag an equation

- Consider the equation with a tag

$$
\begin{equation*}
E(u)=\int|\nabla u|^{2} d x \tag{E}
\end{equation*}
$$

If $u$ is harmonic, (E) is preserved.

- \begin\{equation\}\label\{eq:energytag\} }

$$
\mathrm{E}(\mathrm{u})=\text { int } \mid \backslash \text { nabla }\left.u\right|^{\wedge} 2 \mathrm{dx} \backslash \operatorname{tag}\{E\}
$$

\end\{equation\} }
If $\$ u \$$ is harmonic, \eqref\{eq:energytag\} is preserved.

## Equations

- \begin\{equation\} }
\begin\{split\} }
\dfrac\{d\}\{dt\} E(u) \& = 2 \int \langle\nabla u, \nabla u\rangle<br>
\& = -2 \int $\backslash$ langle $\backslash$ Delta $u, u \backslash$ rangle $=0$
\end\{split\} }
\end\{equation\} }


## Equations

- Consider the expression below

$$
\begin{align*}
(a+b)^{2} & =(a+b)(a+b)  \tag{2}\\
& =a^{2}+2 a b+b^{2}
\end{align*}
$$

## Equations

- Consider the expression below

$$
\begin{align*}
(a+b)^{2} & =(a+b)(a+b) \\
& =a^{2}+2 a b+b^{2} \tag{2}
\end{align*}
$$

- \begin\{equation\} }
\begin\{split\} }

$$
\begin{aligned}
(\mathrm{a}+\mathrm{b}) \wedge 2 \& & =(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b}) \backslash \backslash \\
\& & =\mathrm{a}^{\wedge} 2+2 \mathrm{ab}+\mathrm{b}^{\wedge} 2
\end{aligned}
$$

\end\{split\} }
\end\{equation\} }

## Environments

In LaTeX, environments must match:

- \begin\{...\} }
\end\{...\} }


## Environments

In LaTeX, environments must match:

- \begin\{...\} }
\end\{...\} }
- \$ ... \$ $\rightarrow$ for math symbols


## Environments

In LaTeX, environments must match:

- \begin\{...\} }
\end\{...\} }
- \$ ... \$ $\rightarrow$ for math symbols
- $$
. .
$$ $\rightarrow$ for centering expressions


## Environments

In LaTeX, environments must match:

- \begin\{...\} }
\end\{...\} }
- \$ ... \$ $\rightarrow$ for math symbols
- $$
. .
$$ $\rightarrow$ for centering expressions
- \left( . . \right) $\rightarrow$ match size of parentheses


## Environments

## delimiters

- $\left(\int|\nabla u|^{p} d \mu\right)^{p}$ versus $\left(\int|\nabla u|^{p} d \mu\right)^{p}$


## Environments

## delimiters

- $\left(\int|\nabla u|^{p} d \mu\right)^{p}$ versus $\left(\int|\nabla u|^{p} d \mu\right)^{p}$
- \$(\ds\int|\nabla u|^p d\mu)^p\$
- \$\left(\ds\int|\nabla ul^p d\mu\right)^p\$


## Tables

Consider the truth table:

| $P$ | $Q$ | $\neg P$ | $\neg P \rightarrow(P \vee Q)$ |
| :---: | :---: | :---: | :---: |
| T | T | F | T |
| T | F | F | T |
| F | T | T | T |
| F | F | T | F |

## Tables - code

```
    \begin{tabular}{c c c | c}
$P$ & $Q$ & $\neg P$ & $\neg P\to (P \vee Q)$ \\ \hline
T & T & F & T \\
T & F & F & T \\
F & T & T & T \\
F & F & T & F
\end\{tabular\} }
```


## Inserting Pictures - code

\begin\{center\} <br>  <br> \end\{center\} }
}

## Inserting Pictures - code - psfrags - Code

\begin\{frame\} }
\frametitle\{Variational Calculus - psfrags\}
\uncover<1->\{Rolle's Theorem has the following landscape \uncover<2->\{\begin\{figure\}[h] }
$\backslash$ begin\{center\}
\begin\{psfrags\} }
\psfrag\{x1\}\{\$x_1\$\}\psfrag\{x2\}\{\$x_2\$\}
\psfrag\{x3\}\{\$x_3\$\}\psfrag\{x3'\}\{\$x_3'\$\}
\psfrag\{y=f(x)\}\{\$y=f(x)\$\}

\end\{psfrags\} }
\end\{center\} }
\end\{figure\} }
\}
\end\{frame\} }

## How a Slide is done in Beamer

 my subtitleThis is a slide

- First Item
- Second Item


## How a Slide is done in Beamer

The code should look like:
\begin\{frame\} }
\frametitle\{How a Slide is done in Beamer\}
\framesubtitle\{my subtitle\} \% optional
This is a slide
\begin\{itemize\} }
- First Item
- Second Item
\end\{itemize\} }
\end\{frame\} }


## How a Slide with pause is done in Beamer

This is a slide

- First Item


## How a Slide with pause is done in Beamer

This is a slide

- First Item
- Second Item


## How a Slide with pause is done in Beamer

The code should look like:
\begin\{frame\} }
\frametitle\{How a Slide with pause is done in Beamer\}
This is a slide
\begin\{itemize\} }
- First Item
\(\backslash\) pause
- Second Item
\end\{itemize\} }
\end\{frame\} }


## Overlay example

- First item
- Fourth item


## Balreira

## Overlay example

- First item
- Second item
- Fourth item


## Overlay example

- First item
- Second item
- Third item
- Fourth item


## Overlay example

The code should look like:
\begin\{frame\}[fragile] }
\frametitle\{Overlay example\}
\begin\{itemize\} }
\only<1->\{- First item\}
\uncover<2->\{
- Second item\}
\uncover<3->\{
- Third item\}
\only<1->\{
- Fourth item\}
\end\{itemize\} }
\end\{frame\} }


Need a plain slide?

Add [plain] option to the slide.

## Variational Calculus

A simple Idea to solve equations:

- Solve $f(x)=0$


## Variational Calculus

A simple Idea to solve equations:

- Solve $f(x)=0$
- Suppose we know that $F^{\prime}=f$.


## Variational Calculus

A simple Idea to solve equations:

- Solve $f(x)=0$
- Suppose we know that $F^{\prime}=f$.
- Critical points of $F$ are solutions of $f(x)=0$.


## Variational Calculus

An idea from Calculus I:

## Theorem (Rolle)

Let $f \in C^{1}\left(\left[x_{1}, x_{2}\right] ; \mathbb{R}\right)$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then there exists $x_{3} \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}\left(x_{3}\right)=0$.
\begin\{thm\}[Rolle] }
 then there exists \$x_3\in(x_1, x_2)\$ such that $\$ \mathrm{f}{ }^{\prime}\left(\mathrm{x}_{-} 3\right)=0 \$$.
\end\{thm\} }

## MPT - presentation

A friendly introduction

## Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima $x_{1}$ and $x_{2}$.

## MPT - presentation

A friendly introduction

## Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima $x_{1}$ and $x_{2}$. Then $\varphi$ possesses a third critical point $x_{3}$ distinct from $x_{1}$ and $x_{2}$

## MPT - presentation

A friendly introduction

## Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima $x_{1}$ and $x_{2}$. Then $\varphi$ possesses a third critical point $x_{3}$ distinct from $x_{1}$ and $x_{2}$, characterized by

$$
\varphi\left(x_{3}\right)=\inf _{\Sigma \in \Gamma} \max _{x \in \Sigma} \varphi(x)
$$

## MPT - presentation

A friendly introduction

## Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima $x_{1}$ and $x_{2}$. Then $\varphi$ possesses a third critical point $x_{3}$ distinct from $x_{1}$ and $x_{2}$, characterized by

$$
\varphi\left(x_{3}\right)=\inf _{\Sigma \in \Gamma} \max _{x \in \Sigma} \varphi(x)
$$

where
$\Gamma=\left\{\Sigma \subset \mathbb{R}^{n} ; \Sigma\right.$ is compact and connected and $\left.x_{1}, x_{2} \in \Sigma\right\}$.

## MPT - presentation

A friendly introduction

## Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is coercive and possesses two distinct strict relative minima $x_{1}$ and $x_{2}$. Then $\varphi$ possesses a third critical point $x_{3}$ distinct from $x_{1}$ and $x_{2}$, characterized by

$$
\varphi\left(x_{3}\right)=\inf _{\Sigma \in \Gamma} \max _{x \in \Sigma} \varphi(x)
$$

where
$\Gamma=\left\{\Sigma \subset \mathbb{R}^{n} ; \Sigma\right.$ is compact and connected and $\left.x_{1}, x_{2} \in \Sigma\right\}$.
Moreover, $x_{3}$ is not a relative minimizer, that it, in every neighborhood of $x_{3}$ there exists a point $x$ such that $\varphi(x)<\varphi\left(x_{3}\right)$.

## An Application of MPT

Theorem (Hadamard)
Let $X$ and $Y$ be finite dimensional Euclidean spaces, and let $\varphi: X \rightarrow Y$ be a $C^{1}$ function such that:

## An Application of MPT

Theorem (Hadamard)
Let $X$ and $Y$ be finite dimensional Euclidean spaces, and let $\varphi: X \rightarrow Y$ be a $C^{1}$ function such that:
(i) $\varphi^{\prime}(x)$ is invertible for all $x \in X$.

## An Application of MPT

## Theorem (Hadamard)

Let $X$ and $Y$ be finite dimensional Euclidean spaces, and let $\varphi: X \rightarrow Y$ be a $C^{1}$ function such that:
(i) $\varphi^{\prime}(x)$ is invertible for all $x \in X$.
(ii) $\|\varphi(x)\| \rightarrow \infty$ as $\|x\| \rightarrow \infty$.

## An Application of MPT

## Theorem (Hadamard)

Let $X$ and $Y$ be finite dimensional Euclidean spaces, and let $\varphi: X \rightarrow Y$ be a $C^{1}$ function such that:
(i) $\varphi^{\prime}(x)$ is invertible for all $x \in X$.
(ii) $\|\varphi(x)\| \rightarrow \infty$ as $\|x\| \rightarrow \infty$.

Then $\varphi$ is a diffeomorphism of $X$ onto $Y$.

## An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that $\varphi$ is onto.


## An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that $\varphi$ is onto.
- Prove injectivity by contradiction.


## An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that $\varphi$ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=y$, then define

$$
f(x)=\frac{1}{2}\|\varphi(x)-y\|^{2}
$$

## An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that $\varphi$ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=y$, then define

$$
f(x)=\frac{1}{2}\|\varphi(x)-y\|^{2}
$$

- Check the MPT geometry for $f$.


## An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that $\varphi$ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=y$, then define

$$
f(x)=\frac{1}{2}\|\varphi(x)-y\|^{2}
$$

- Check the MPT geometry for $f$.
- $\exists x_{3}, f\left(x_{3}\right)>0$ (i.e., $\left\|\varphi\left(x_{3}\right)-y\right\|>0$.)


## An Application of MPT

Hadamard's Theorem - Idea of Proof

- Check that $\varphi$ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=y$, then define

$$
f(x)=\frac{1}{2}\|\varphi(x)-y\|^{2}
$$

- Check the MPT geometry for $f$.
- $\exists x_{3}, f\left(x_{3}\right)>0$ (i.e., $\left\|\varphi\left(x_{3}\right)-y\right\|>0$.)
- $f^{\prime}\left(x_{3}\right)=\nabla^{T} \varphi\left(x_{3}\right) \cdot\left(\varphi\left(x_{3}\right)-y\right)=0$

