A Guide to Presentations in LaTEX-beamer with a detour to Geometric Analysis

Eduardo Balreira

Major Seminar, Fall 2008

▲ロト ▲圖ト ▲屋ト ▲屋ト

・ロト ・回ト ・ヨト ・ヨト

- 4 回 2 - 4 □ 2 - 4 □

(4回) (4回) (4回)

LaTeX is a mathematics typesetting program.

• Standard Language to Write Mathematics

◆□ ▶ ◆ □ ▶ ◆ □ ▶

LaTeX is a mathematics typesetting program.

- Standard Language to Write Mathematics
- $(M^2,g) \leftrightarrow (M^2,g)$

▲□→ ▲ 田 → ▲ 田 →

LaTeX is a mathematics typesetting program.

• Standard Language to Write Mathematics

•
$$(M^2,g) \leftrightarrow$$
 (M^2,g) \$

•
$$\Delta u - \mathcal{K}(x) - e^{2u} = 0 \leftrightarrow$$
Delta u - $\mathcal{K}(x) - e^{2u} = 0$

◆□ ▶ ◆ □ ▶ ◆ □ ▶

LaTeX is a mathematics typesetting program.

• Standard Language to Write Mathematics

•
$$(M^2,g) \leftrightarrow$$
 (M^2,g)

•
$$\Delta u - \mathcal{K}(x) - e^{2u} = 0 \leftrightarrow$$
 Delta u -K(x) - e^{2u} = 0

•
$$\inf_{n\in\mathbb{N}}\left\{\frac{1}{n}\right\}=0$$

 $\int n\left[n\right] = 0$

向下 イヨト イヨト

Compare displaystyle

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 versus $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

Compare displaystyle

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 versus $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

• $\sum_{n=1}^{\int \int n^2}=\frac{1}{n^2}$

and

 $\displaystyle \sum_{n=1}^{infty}\int n^2=\frac{pi^2}{6}$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Geometric Analysis

Common functions

• $\cos x \rightarrow \ x$

・ロン ・回 と ・ ヨ と ・ ヨ と

Geometric Analysis

Common functions

•
$$\cos x \rightarrow \cos x$$

• $\arctan x \rightarrow \x \ x$

Common functions

•
$$\cos x \rightarrow \cos x$$

•
$$\arctan x \rightarrow \x \ x$$

•
$$f(x) = \sqrt{x^2 + 1} \rightarrow f(x) = \operatorname{sqrt}{x^2+1}$$

Common functions

•
$$\cos x \rightarrow \cos x$$

•
$$\arctan x \rightarrow \x x$$

•
$$f(x) = \sqrt{x^2 + 1} \rightarrow f(x) = \operatorname{sqrt}\{x^2+1\}$$

•
$$f(x) = \sqrt[n]{x^2 + 1} \to f(x) = \operatorname{sqrt}[n] \{x^2 + 1\}$$

Theorems - code

Theorem (Poincaré Inequality)

If $|\Omega| < \infty$, then

$$\lambda_1(\Omega) = \inf_{u
eq 0} rac{|
abla u|_2^2}{\|u\|^2} > 0$$

is achieved.

```
\begin{thm}[Poincar\'{e} Inequality]
If $|\Omega| < \infty$, then
\[
    \lambda_1(\Omega) =
    \inf_{u\neq 0} \dfrac{|\nabla u|^2_2}{\|u\|^2} > 0
\]
is achieved.
\end{thm}
```

▲冊▶ ▲ 臣▶ ▲ 臣▶

Intro	to	ΑT	EX
-------	----	----	----

Intro to Beamer

Geometric Analysis

Example - Arrays

•
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}, & \text{in } \Omega \\ u \geq 0, & u \in H^1_0(\Omega) \end{cases}$$

・ロ・ ・ 日・ ・ ヨ・

Intro to AT	FΧ
-------------	----

Geometric Analysis

Example - Arrays Change centering

•
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}, & \text{in } \Omega \\ u \ge 0, & u \in H_0^1(\Omega) \end{cases}$$

More Examples

•
$$\varphi(u) = \int_{\Omega} \left[\frac{\|\nabla u\|^2}{2} + \lambda \frac{u^2}{2} - \frac{(u^+)^p}{p} \right] d\mu$$

More Examples

•
$$\varphi(u) = \int_{\Omega} \left[\frac{\|\nabla u\|^2}{2} + \lambda \frac{u^2}{2} - \frac{(u^+)^p}{p} \right] d\mu$$

• \$\ds \varphi (u) = \int_{\Omega} \left[
 \dfrac{\|\nabla u\|^2}{2} +
 \lambda\dfrac{u^2}{2} \dfrac{(u^+)^p}{p} \right] d\mu \$

▲御▶ ▲臣▶ ▲臣▶

De Morgan's Law

•
$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A_{i}^{c}$$

・ロト ・回ト ・ヨト ・ヨト

De Morgan's Law

•
$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A_{i}^{c}$$

• \$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c = \bigcap_{i=1}^n A_i^c\$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

De Morgan's Law

•
$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A_{i}^{c}$$

• \$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c = \bigcap_{i=1}^n A_i^c\$

•
$$A \times B = \{(a, b) | a \in A, b \in B\}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

De Morgan's Law

•
$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A_{i}^{c}$$

• \$\ds \left(\bigcup_{i=1}^{n} A_i\right)^c = \bigcap_{i=1}^n A_i^c\$

•
$$A \times B = \{(a, b) | a \in A, b \in B\}$$

• \$A\times B = \set{(a,b)|a\in A, b\in B}\$

<回> < 回> < 回> < 回> -

• Consider the equation of Energy below.

$$E(u) = \int |\nabla u|^2 dx \tag{1}$$

イロト イヨト イヨト イヨト

-2

This is how we refer to (1).

Intro	to	lat ^e x
-------	----	--------------------

• Consider the equation of Energy below.

$$E(u) = \int |\nabla u|^2 dx \tag{1}$$

This is how we refer to (1).

\begin{equation}\label{eq:energy}
 E(u) = \int |\nabla u|^2 dx
 \end{equation}

```
This is how we refer to \eqref{eq:energy}.
```

• Consider the equation without a number below.

$$E(u)=\int |\nabla u|^2 dx$$

イロン イヨン イヨン イヨン

• Consider the equation without a number below.

$$E(u)=\int |\nabla u|^2 dx$$

 \begin{equation}\label{eq:energy}
 E(u) = \int |\nabla u|^2 dx \nonumber \end{equation}

< 同 > < 臣 > < 臣 >

Intro to	ATEX
----------	-------------

Equations Tag an equation

• Consider the equation with a tag

$$E(u) = \int |\nabla u|^2 dx \tag{E}$$

(4日) (日)

2

_∢ ≣ ≯

If u is harmonic, (E) is preserved.

Equations Tag an equation

• Consider the equation with a tag

$$E(u) = \int |\nabla u|^2 dx \tag{E}$$

同 ト イヨ ト イヨト

If u is harmonic, (E) is preserved.

• \begin{equation}\label{eq:energytag}
 E(u) = \int |\nabla u|^2 dx \tag{E}
 \end{equation}

If \$u\$ is harmonic, \eqref{eq:energytag} is preserved.

Equations a small proof

・ロ・ ・ 日・ ・ 日・ ・ 日・

Intro	to	ΑT	EX
-------	----	----	----

Intro to Beamer

Geometric Analysis

Equations in an array

• Consider the expression below

$$(a+b)^2 = (a+b)(a+b)$$

= $a^2 + 2ab + b^2$ (2)

・ロト ・回ト ・ヨト ・ヨト

Equations in an array

• Consider the expression below

$$(a+b)^2 = (a+b)(a+b)$$

= $a^2 + 2ab + b^2$ (2)

・ロト ・回ト ・ヨト ・ヨト

Environments

In LaTeX, environments must match:

```
    \begin{...}
    .
    .
    .
    .
    .
    \end{...}
```

イロン イヨン イヨン イヨン

Environments

In LaTeX, environments must match:

```
    \begin{...}
    .
    .
    .
    .
    \end{...}
```

 $\bullet~\$~...\$ \rightarrow$ for math symbols

(4回) (4回) (日)

Environments

In LaTeX, environments must match:

- \begin{...}
 .
 .
 .
 .
 .
 \end{...}
- $\bullet~\$~...\$ \rightarrow$ for math symbols
- \[... \] \rightarrow for centering expressions

★御★ ★注★ ★注★
Environments

In LaTeX, environments must match:

- \begin{...}
 .
 .
 .
 .
 .
 lend{...}
- $\bullet~\$~...\$$ \rightarrow for math symbols
- \[... \] \rightarrow for centering expressions
- <code>\left(... \right)</code> \rightarrow match size of parentheses

・回 と く ヨ と く ヨ と

Intro to ATEX	
---------------	--

Intro to Beamer

Geometric Analysis

Environments delimiters

•
$$(\int |\nabla u|^p d\mu)^p$$
 versus $\left(\int |\nabla u|^p d\mu\right)^p$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Intro to ATEX	
---------------	--

Intro to Beamer

Geometric Analysis

Environments delimiters

•
$$(\int |\nabla u|^p d\mu)^p$$
 versus $\left(\int |\nabla u|^p d\mu\right)^p$

- $(\ u|^p d)^p$
- $\left(\frac{u}{p d}\right)^{p}$

▲冊▶ ▲臣▶ ▲臣▶

Consider the truth table:

・ロト ・回ト ・ヨト ・ヨト

Tables - code

```
\begin{tabular}{c c c | c}
$P$ & $Q$ & $\neg P$ & $\neg P\to (P \vee Q)$ \\ \hline
T & T & F & T \\
T & F & F & T \\
F & T & T & T \\
F & T & T & T \\
F & F & T & F
```

\end{tabular}

/⊒ ► < ≣ ►

Inserting Pictures - code

\begin{center} \includegraphics{Mountain_Pass.eps} \end{center}

▲ 御 ▶ ▲ 臣 ▶

2

_∢≣≯

Inserting Pictures - code - psfrags - Code

```
\begin{frame}
  \frametitle{Variational Calculus - psfrags}
  \uncover<1->{Rolle's Theorem has the following landscape
  \uncover<2->{\begin{figure}[h]
\begin{center}
\begin{psfrags}
psfrag{x1}{$x_1$}psfrag{x2}{$x_2$}
\psfrag{x3}{$x_3$}\psfrag{x3'}{$x_3'$}
psfrag{v=f(x)}{$v=f(x)$}
\includegraphics{rolle.eps}
\end{psfrags}
\end{center}
\end{figure}
  }
```

 \end{frame}

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Intro to LATEX

Intro to Beamer

Geometric Analysis

A Proof

How a Slide is done in Beamer my subtitle

This is a slide

- First Item
- Second Item

イロト イヨト イヨト イヨト

æ

How a Slide is done in Beamer

The code should look like:

```
\begin{frame}
```

```
\frametitle{How a Slide is done in Beamer}
\framesubtitle{my subtitle} % optional
This is a slide
\begin{itemize}
    \item First Item
    \item Second Item
    \end{itemize}
```

 \end{frame}

Intro to LATEX

Intro to Beamer

Geometric Analysis

A Proof

How a Slide with pause is done in Beamer

This is a slide

First Item

イロト イヨト イヨト イヨト

-2

Intro to LATEX

Intro to Beamer

Geometric Analysis

A Proof

How a Slide with pause is done in Beamer

This is a slide

- First Item
- Second Item

- 4 回 2 - 4 □ 2 - 4 □

How a Slide with pause is done in Beamer

The code should look like:

```
\begin{frame}
```

```
\frametitle{How a Slide with pause is done in Beamer}
This is a slide
  \begin{itemize}
    \item First Item
    \pause
    \item Second Item
  \end{itemize}
```

\end{frame}

• First item

• Fourth item

ヘロア 人間 アメヨアメヨア

- First item
- Second item

• Fourth item

・ロト ・回ト ・ヨト ・ヨト

- First item
- Second item
- Third item
- Fourth item

・ロト ・回ト ・ヨト ・ヨト

The code should look like:

```
\begin{frame}[fragile]
  \frametitle{Overlay example}
```

```
\begin{itemize}
   \only<1->{\item First item}
   \uncover<2->{\item Second item}
   \uncover<3->{\item Third item}
   \only<1->{\item Fourth item}
\end{itemize}
```

 \end{frame}

Need a plain slide?

Add [plain] option to the slide.

A simple Idea to solve equations:

| 4 回 2 4 U = 2 4 U =

æ

A simple Idea to solve equations:

- Solve f(x) = 0
- Suppose we know that F' = f.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

A simple Idea to solve equations:

- Solve *f*(*x*) = 0
- Suppose we know that F' = f.
- Critical points of F are solutions of f(x) = 0.

伺 ト イヨト イヨト

An idea from Calculus I:

Theorem (Rolle)

Let $f \in C^1([x_1, x_2]; \mathbb{R})$. If $f(x_1) = f(x_2)$, then there exists $x_3 \in (x_1, x_2)$ such that $f'(x_3) = 0$.

$$\begin{thm}[Rolle] \\ Let $f\in C^1([x_1,x_2];\mathbb{R})$. If $f(x_1)=f(x_2)$, \\ then there exists $x_3\in(x_1,x_2)$ \\ such that $f'(x_3) = 0$. \\ \end{thm} \end{thm} \end{thm} \end{thm} \end{thm}$$

| 4 回 2 4 U = 2 4 U =

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 .

▲ □ ► < □ ►</p>

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2

< 🗇 > < 🖃 >

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2 , characterized by

$$\varphi(x_3) = \inf_{\Sigma \in \Gamma} \max_{x \in \Sigma} \varphi(x)$$

< 🗇 > < 🖃 >

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2 , characterized by

$$\varphi(x_3) = \inf_{\Sigma \in \Gamma} \max_{x \in \Sigma} \varphi(x)$$

where $\Gamma = \{\Sigma \subset \mathbb{R}^n; \Sigma \text{ is compact and connected and } x_1, x_2 \in \Sigma\}.$

▲ 同 ▶ ▲ 三 ▶ ▲

Theorem (Finite Dimensional MPT, Courant)

Suppose that $\varphi \in C^1(\mathbb{R}^n, \mathbb{R})$ is coercive and possesses two distinct strict relative minima x_1 and x_2 . Then φ possesses a third critical point x_3 distinct from x_1 and x_2 , characterized by

$$\varphi(x_3) = \inf_{\Sigma \in \Gamma} \max_{x \in \Sigma} \varphi(x)$$

where

 $\Gamma = \{\Sigma \subset \mathbb{R}^n; \Sigma \text{ is compact and connected and } x_1, x_2 \in \Sigma\}.$ Moreover, x_3 is not a relative minimizer, that it, in every neighborhood of x_3 there exists a point x such that $\varphi(x) < \varphi(x_3)$.

イロン イヨン イヨン イヨン

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi : X \to Y$ be a C^1 function such that:

< □ > < □ > < □ >

-1

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi : X \to Y$ be a C^1 function such that:

(i) $\varphi'(x)$ is invertible for all $x \in X$.

伺 とく ヨ とく

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi : X \to Y$ be a C^1 function such that:

(i) $\varphi'(x)$ is invertible for all $x \in X$.

(ii) $\|\varphi(x)\| \to \infty$ as $\|x\| \to \infty$.

回 と く ヨ と く ヨ と

Theorem (Hadamard)

Let X and Y be finite dimensional Euclidean spaces, and let $\varphi : X \to Y$ be a C^1 function such that:

(i) $\varphi'(x)$ is invertible for all $x \in X$.

(ii) $\|\varphi(x)\| \to \infty$ as $\|x\| \to \infty$.

Then φ is a diffeomorphism of X onto Y.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Geometric Analysis

An Application of MPT Hadamard's Theorem - Idea of Proof

• Check that φ is onto.

・ロト ・回ト ・ヨト ・ヨト

æ

- Check that φ is onto.
- Prove injectivity by contradiction.

- 4 回 2 - 4 □ 2 - 4 □

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi(x_1) = \varphi(x_2) = y$, then define

$$f(x) = \frac{1}{2} \|\varphi(x) - y\|^2$$

・ 回 ト ・ ヨ ト ・ ヨ ト

-2

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi(x_1) = \varphi(x_2) = y$, then define

$$f(x) = \frac{1}{2} \|\varphi(x) - y\|^2$$

• Check the MPT geometry for f.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi(x_1) = \varphi(x_2) = y$, then define

$$f(x) = \frac{1}{2} \|\varphi(x) - y\|^2$$

- Check the MPT geometry for f.
- $\exists x_3, f(x_3) > 0$ (i.e., $\|\varphi(x_3) y\| > 0$.)

・ 回 と ・ ヨ と ・ ヨ と …

- Check that φ is onto.
- Prove injectivity by contradiction.
- Suppose $\varphi(x_1) = \varphi(x_2) = y$, then define

$$f(x) = \frac{1}{2} \|\varphi(x) - y\|^2$$

- Check the MPT geometry for f.
- $\exists x_3, f(x_3) > 0$ (i.e., $\|\varphi(x_3) y\| > 0$.)
- $f'(x_3) = \nabla^T \varphi(x_3) \cdot (\varphi(x_3) y) = 0$

▲撮♪ ▲屋♪ ★屋♪