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1 Introduction
As a math major planning to continue to get my Masters in the Art of
Teaching, I decided to pick a project that combined my two worlds of math
and education. Education reform in high schools is a hot topic all across
the world, and the mathematics classroom is de�nitely not exempt from that
discussion. In fact, there are debates constantly about how to implement the
research on math education reform in the classrooms. Based on the research
available, one of the focuses is taking students beyond the basic algebra-
geometry-algebra-calculus track and providing them authentic, challenging,
and thought-provoking questions. I combined this knowledge with my strong
interest and appreciation for combinatorics, and thus I chose to focus on
how combinatorics �ts e�ectively into the current math education reform.
Therefore, this paper will explore current math education reform and how
combinatorics �ts into the reform as well as provide example combinatorial
problem sets which can be used in the classroom.

2 Current State of High School Math and Sug-
gested Reform

Traditionally, math is an endless memorization task for students over facts
and procedures, which they most often quickly forget. Essentially, how the
common math classrooms have been run is as follows: the teacher shows
students examples of how to solve certain types of problems, and then stu-
dents practice the method with class work and homework. This method has
been called "mindless mimicry mathematics" where students are not neces-
sarily understanding, but rather they are just copying the technique (Battista
1999). Scienti�c studies have shown that traditional methods for high school
math instruction are ine�ective and do not foster the growth of math reason-
ing or problem solving skills. Poor education in high school math classrooms
has many consequences. Students are not moving forward to undergraduate
study and the workforce prepared for the higher level math that exists in
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both environments. Additionally, math anxiety is widespread across many
generations; people readily admit they are not good at math or just do not
understand it. If people had better high school math experiences, maybe
they would not be so quick to jump on the "I hate math" bandwagon. No-
tice, however, that although so many people cannot read, admitting this is
not nearly as acceptable. This demonstrates the stigma that this country
su�ers from that deems math boring and hard. Still more disheartening is
the fact that even the "bright" students in today's classrooms are struggling
to grasp the the deeper understanding of math as they are guided to focus
their learning on the formulas alone not the justi�cation behind the formulas
(Battista 1999). Battista provides an example of such a student. A female
eighth grade student about to �nish a geometry class, meaning that she is
ahead of the classic math schedule, is shown a box and rectangular packages
formed from two cubes. She is given a picture showing how many packages
can �t along the length, width and height of the box and in which direction,
and she is then asked to �nd how many of the packages it takes to completely
�ll the rectangular box. The student immediately reverts to the formula for
volume, V = lwh, and simply multiplies together what she was given. She
fails to take into account, however, which direction the boxes are positioned
to see if they would actually �ll the box. In fact her answer is incorrect.
So, we see that she knows formulas and procedures yet her knowledge and
understanding of what they represent and what they calculate is quite super-
�cial; she knew how to calculate volume, but she does not truly know what
it is. These �ndings in advanced students are quite frustrating as these stu-
dents have the capability to understand math but they are not being given
a quality opportunity with the current mathematics instruction. Another
good example of this super�cial knowledge in all ability levels of students is
dividing fractions. If asked to divide 5

2
by 1

4
, many students can revert to

their "invert and multiply rule" and tell you that the answer is (5
2
)(4

1
) = 10

(Battista, 1999). Conceptually, though, most students would not know how
to represent this, in a picture for example, or �gure it out without their
go-to rule. The learning of symbolic manipulations should never become
disconnected from the underlying mathematical reasoning (Battista, 1999).

Far too often, citizens, lawmakers, and those who make education decisions
are swayed by arguments supporting traditional math curricula, and they
adopt policies that do not take into account recommendations from profes-
sionals, scholars and scientists on the issue of mathematics teaching (Battista
1999). However, in 1989, the National Council of Teachers of Mathematics
(NCTM) released a set of recommendations and standards for school math-
ematics; since then, the main focus of the movement to reform math edu-
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cation has been on implementing these standards and the recommendations
of other education and math professionals. The NCTM standards set many
goals encompassing not just the material that should be taught, but how
that material should be taught. One of the goals set forth is that high school
math classrooms should produce students who are mathematically literate in
the current technological world, the world where math is constantly growing
and being applied to more diverse �elds. The standards also call for new
content like probability, statistics, and discrete math to be included in the
curriculum as well as new approaches to the existing curriculum (Ross 1995).
The hope is that students will acquire the ability to be mathematical prob-
lem solvers, and in order to do this, NCTM envisions that students will have
the opportunity to solve complex and authentic problems. These problems
provide the chance for students to draw their own conclusions using demon-
strations, drawings and real life objects in addition to formal math and logic
arguments (Battista 1999). Currently, when students are learning through
the routine and repetition model employed by most math classrooms, they
learn just those routines. They forfeit the ability to understand the math
that surrounds them. Additionally, these students struggle when they reach
undergraduate math classes since they have forgotten most of the math they
have learned between elementary school and college because it was so discon-
nected from their thought processes and intuitions. Essentially, the current
high school math system produces students that memorize and forget, thus
explaining the lack of interest in continuing mathematics in students' under-
graduate years and beyond (Battista 1999). Therefore, the need to implement
the reform suggested by NCTM and other professionals to the high school
math curriculum is clear.

One successful new math program that takes into account many of NCTM's
standards and goals as well as other suggested reform demonstrates that it
is possible to implement these new ideas in a positive manner: The Inter-
active Math Program (IMP). It has a very innovative style and completely
changes the way that high school math is approached. IMP is a compre-
hensive four year math program of problem based mathematics that adds
important topics such as statistics and probability to the existing material of
algebra, geometry, and trigonometry. IMP presents di�erent topics through-
out the four years using a thematic approach so that many di�erent types
of material are taught simultaneously allowing the focus to be much broader
than just on one type of math as traditional curriculum dictates. Studies
show that after going through the IMP problem based curriculum, students
were more con�dent in math, more likely to view math as meeting the needs
of society, and more likely to see math in everyday activities (The Research
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Base of IMP). IMP is successful due to the attention it gives to how students
learn math most e�ectively and how much the current curriculum needs to
be revamped. One main focus of the program is that curriculum should
allow students to see math as a useful tool to facilitate learning. Topics
and ideas should be introduced concretely so that the math is immediately
accessible to the students instead of starting with abstract ideas and show-
ing their concrete applications. As applied to combinatorics, this means that
combinatorial problems should start with tangible, hands-on problems rather
than starting with combinatorial coe�cients that have little or no context.
"Studying mathematics in the contexts of problems motivates students to
think mathematically and to make connections between skills and di�erent
mathematical topics" (The Research Base of IMP, p11). Essentially, putting
math into real life problems that build on general experiences not only puts
math in a context students understand but also motivates students. IMP is
a perfect example of how capturing students' attention and connecting math
to their world can really improve their math experience.

3 Combinatorics and Its Place Within Math
Reform

As stated before, curriculum in the majority of math classrooms today is
dominated by the traditional algebra-geometry-pre-calculus-calculus sequence.
Incorporating combinatorics into the high school curriculum provides vari-
ation from this sequence as well as opportunities to ful�ll the math reform
goals and standards. Kapur (1970) is quoted as supporting combinatorics
in a high school classroom for many reasons. The independence of combina-
torics from calculus facilitates the tailoring of suitable problems for di�erent
grades, and usually, very challenging problems can be discussed with stu-
dents so that they discover the need for more sophisticated mathematics to
be created. Kapur also asserts that combinatorics has many applications in
many di�erent �elds, and it can be used to train students in "enumeration,
making conjectures, generalization, and systematic thinking" (Batanera et
all 1997, p181).

Combinatorics, in a basic sense, is the math involved in counting. Essentially,
combinatorics focuses on the numbers of di�erent combinations or groupings
of numbers. As far as combinatorics in high school math curriculum, the
main goal is to understand how to enumerate the possible permutations or
combinations of a �nite set. Permutations are the groupings of distinct ob-
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jects in which order is important. One way to introduce permutations to
students is to suppose that there are n people that show up at a movie the-
ater, but inside the theater there is only room for r people to line up between
the ticket counter and the door (Nom). The number of di�erent lines that
can be formed of r people is then found by calculating how many choices for
each spot there are:

n(n− 1)(n− 2)...(n− r + 1).

Thus the number of permutations of n distinct objects taken r at a time can
be written as

nPr =
n!

(n− r)!
.

Combinations, on the other hand, are the ways to choose a subset of objects
from a main set. In combinations, order is not important, just the number
of ways you can choose the objects. Going back to the example of a line at
a movie theater, when n people show up at the door, you pick k people that
can �t inside the door (Nom); this is nCk =

(
n
k

)
. The formula is given by

(
n

k

)
=

n!

r!(n− r)!
.

According to studies, combinatorial thinking is part of Piaget's formal oper-
ational stage of cognitive development (Janackova, 2006). Combinations are
actually operations on operations so they are, in fact, very characteristic of
the formal operational stage. This stage of cognitive development normally
is reached during adolescence, but may not be reached until adulthood if it
is reached at all. Piaget and Fischbein describe the di�erent approaches stu-
dents have to combinatorial problems and how these approaches demonstrate
their di�erent levels of cognitive development. During Stage I, students use
random listing that lacks any form of systematic strategy, and during Stage
II, students will start to use trial and error while starting to discover practical
procedures to organize the elements (Batanero, 1997). Once at the formal op-
erational stage, students can discover systematic procedures of combinatorial
constructions. It has been shown though that combinatorial thinking may
not come automatically; in fact, Fischbein (1970) found that even at the
formal operational level, combinatorial problem solving capacity may only
be reached through instruction (Batanero, 1997). Since this is not a type
of thinking that comes naturally, the teacher holds a very important role in
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guiding students to achieve this type of thinking. Though this might be chal-
lenging, Fischbein and Gazit (1988) found that with proper instruction, even
ten year olds can learn some combinatorial ideas (Batanero, 1997). Such a
study implies that if middle school students can grasp some of these topics,
high school students can grasp them as well, and they should be challenged
to do so.

Batanera, Navarro-Pelayo, and Godino conducted research on the e�ect of
instruction on basic combinatorial reasoning ability in 14-15 year old stu-
dents. Essentially, the research was to support the claim above that with
instruction, students can master combinatorial ideas. Quoted in the study
is Dubois (1984) who determined that simple combinatorial questions can
be classi�ed into three models. The �rst is selections which represent the
concept of sampling; there are m objects from which n objects are drawn.
The di�erent possibilities for the selection model depend on whether or not
replacement is allowed and whether or not the order of the objects is im-
portant. The next model is the distribution or mapping model : n objects
are distributed into m cells. In this model, the di�erent possibilities and
structures depend on the following: whether the objects are identical or not,
whether the containers are identical or not, how many objects can be placed
in each cell, and whether the order the objects are placed into the contain-
ers is important or not. The last model de�ned is the partitions model in
which sets are partitioned into subsets: splitting a set of n objects into m
subsets. According to Dubois, however, there is a bijective correspondence
between the models of partition and distribution even though this might not
be evident to students. While these models may use the same combinatorial
operation, it cannot be assumed that the di�erent types of questions have
the same level of di�culty.

The study included a thirteen item questionnaire that was developed to al-
low a balanced, representative sample of problems from all three models.
There were 720 students between the ages of 14 and 15, and 352 students
had received combinatorial instruction while 348 had not. The questionnaire
showed no di�erence in performance based on sex or order of the questions,
so the di�erence in results could legitimately be attributed to whether or not
the students received instruction. The experiment showed that there was a
signi�cant di�erence after instruction which greatly increased students' com-
binatorial capacity for solving problems. The average number of errors was
10.59 for students without instruction and 7.01 for students with instruc-
tion. Many students struggled with seeing that two problems with di�erent
combinatorial models were the same even when the solution to both answers
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used the same combinatorial operations. The results of the study conclude
that when organizing teaching over basic combinatorial models, the empha-
sis should be placed upon translating combinatorial problems to the di�erent
models and the recursive reasoning and systematic listing, rather than just
algorithmic aspects and de�nitions. "Understanding a concept (e.g. combi-
nations) cannot be reduced to simply being able to reproduce its de�nition.
Concepts emerge from the system of practices carried out to solve problem
situations" (Batanera et all 1997, p196). This experiment serves as a great
example of the fact that students can be guided through proper instruction
to understand combinatorial problems. Additionally, it reinforces the notion
that mathematics instruction needs to focus deeper on the why and how
instead of just regurgitating formulas.

Additionally, combinatorics o�ers an opportunity to enhance the high school
math curriculum while implementing the new standards and suggested re-
forms. There are many combinatorial problems that are examples of "real
life" situations, so students have an easier time conceptualizing the prob-
lems and coming up with ways to approach them. With all the di�erent
approaches, combinatorial questions also provide challenging experiences for
learners of all academic levels. Bharath Sriraman conducted a study in 2004
when faced with the discovery by studies that mathematically gifted students
have already mastered about sixty percent of the content in high school math-
ematics (Sriraman 2004). Sriraman thought the answer to how educators can
keep students interested and exercising their mathematical capabilities was
to have more emphasis on enumerative and discrete math due to its indepen-
dence from calculus. In the study he conducted, students had to maintain
a journal where they worked on combinatorial and number theory problems
with clues to guide them. His pedagogical goal was to "pose problem situa-
tions that had an underlying structure or principle which could be potentially
discovered by the gifted students, but simple enough for all students to have
the opportunity to create representations, think abstractly, and create gen-
eralizations at varying levels" (Sriraman 2004, p35). In his �rst experiment,
he assigned eight problems over three months and half of them used a com-
binatorial structure titled the Steiner Triple Model. The �ve gifted students
in the class were able to uncover the sequence and began to understand the
Steiner Triple Model. They devised an e�cient strategy for counting triples
and then were given the opportunity to apply their �ndings to more general
questions; for example, in an arrangement of n objects in triples, how many
ways can each pair of objects appear once and only once? The second experi-
ment spanned three months and included �ve sequentially assigned questions
representing diverse situations all based on the Pigeonhole Principle. Four
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out of nine gifted students discovered the Pigeonhole Principle by looking at
the structural similarities of the assigned questions.

Sriraman found that choosing problems which involve self discovery of a
combinatorial problem or structure along with the use of journals ultimately
led to positive results. This innovative technique of approaching math explo-
ration really takes into account the research on making math meaningful and
understandable. The study led to "the positive outcomes of gifted students
abstracting structural similarities, conceptually linking related problems, uti-
lizing their creativity pursuing general solutions and creating theoretical gen-
eralizations" (Sriraman 2004, p37). In addition to just the gifted students
though, the problems were easy to understand and grasp so they were acces-
sible to the weaker students as well. These students were able to model the
problems through trial and error which, by itself, is a bene�cial strategy of
problem solving and systematic thinking. Thus, students of all ability lev-
els gained valuable advancements in their mathematical education through
combinatorial problems which fostered students' independent thinking and
encouraged them to work at their personal level. Additionally, since combi-
natorial problems have many di�erent approaches, these questions provided
students the opportunity to share ideas as they worked through the di�erent
contexts and representations. Essentially, Sriraman's study is a thorough ex-
ample of how bene�cial combinatorial problems are in the high school math
classroom (Sriraman 2004).

4 Framework for Combinatorial Problem Sets
I have developed some combinatorial problem sets that could be used in a
high school math classroom. These problem sets are meant to enhance the
very basic combinatorial ideas that students are currently introduced to in
the high school curriculum by presenting real life problems that can be ap-
proached with combinatorics. The examples are structured so that a teacher
would present them after the basic combination/permutation lesson so that
students would already have a basic knowledge of when to do which operation
and how to calculate each one. Students will hopefully reach some general-
izations and deeper understanding of the concept after working through these
two problem sets as they are geared to provide authentic applications of their
knowledge. The questions in the problem set are unique as they demonstrate
that there are many di�erent ways to look at and approach the same ques-
tions; these questions do not just represent a straightforward application of
a given formula. They are really geared to helping students see and under-
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stand what they are doing. The chronology of the problem set mirrors how
a teacher would work through the set in the classroom to guide her students.

The �rst problem set I structured is one that focuses on a deck of cards
and �ve card poker hands. Using di�erent poker scenarios, this problem set
demonstrates that there are di�erent methods to get to the same answer, i.e.
not everyone has to be able to think the same way. These questions also lend
themselves to many di�erent di�culty levels as a result of this characteristic.
Classic combinatorial poker problems get very di�cult very quickly, so this
problem set helps students understand the inherent complexities of math.
The second problem set uses two strings of problems. The �rst one focuses
on the number of paths to get from pointA to pointB and the second one looks
at the number of partial scores that can possibly lead to a �nal score. This
problem set shows how combinatorial problems are very often isomorphic to
each other, and it challenges students to think on a new plane of trying to
make generalizations about the di�erent questions to see that they are asking
the same thing. Math as a whole is isomorphic as well, so this is a great skill
to teach students.

5 Problem Set 1 - Cards
This problem, set focused on cards and poker hands, is a great way to expand
on combinatorics for students. A deck of playing cards is very familiar to
students, so it provides an example of where math comes into play in the
real world. This problem set also allows students to look at the questions
in more ways than one, and thus, more students will hopefully be able to
visualize and understand the problems and concepts that they might not
have otherwise grasped. If students are having issues with the concepts
behind the questions and the math involved, the teacher could scale down
the problems and work with a 10 card deck and physically show the students
how the ideas connect. Finally, this problem set demonstrates how quickly
the problems get complicated and complex, so these basic and intermediate
questions are a doorway to higher level combinatorial thinking.

Question 1: How many di�erent �ve card hands are possible?

The �rst method for approaching this question is simply to notice that this
is a combination since order does not matter. So there are 52 cards total and
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we want to know how many ways there are to choose 5 of them. So, we have
(

52

5

)
=

52!

5!(52− 5)!
=

52!

(5!)(47!)
= 2, 598, 960

possible �ve card hands. For students who do not immediately make a con-
nection that this is a combination, the teacher can guide them through with
a step by step method. Notice that there are 52 choices for the �rst card in
the hand, then once a card is dealt to the hand, there are only 51 choices
left. Similarly there are then 50, 49, and 48 choices for the next three cards
respectively: 52 ∗ 51 ∗ 50 ∗ 49 ∗ 48. However, it is necessary to account for
the fact that order is not a de�ning factor in a hand so we must divide the
product by 5! to get rid of the implication that order matters. Thus the total
number of �ve card hands is

52 ∗ 51 ∗ 50 ∗ 49 ∗ 48

5!
= 2, 598, 960.

As the students will hopefully then see, these answers are exactly the same,
how they want to work the problem is completely dependent on how they
mentally visualize the problem.

Question 2: How many di�erent ways are there to get a pair, two
cards with the same numerical value, on the �rst two cards dealt?

Although students' �rst inclination might be that the answer to this question
is

(
52

2

)
, it is actually a little more di�cult that that. First, you must decide

which number value you are going to make a pair with. Since there are 13
values, or ranks, in a deck (A, 2, 3, · · · , 10, J,Q, K), choosing one is given by

(
13

1

)
=

13!

1!(13− 1)!
=

13!

12!
= 13.

Once the number has been chosen, there are four of each rank (one of each
suit) and you must choose which two of those will be in the pair. This is
represented as (

4

2

)
=

4!

2!(4− 2)!
=

4!

(2!)(2!)
= 6.

Then, we multiply to �nd out how many times these both happen at the
same time, and we are left with the number of possible ways to get a two of
a kind on the �rst two cards dealt is(

13

1

)
∗

(
4

2

)
= 13 ∗ 6 = 78.
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The thought process of working through this problem without using com-
binations is as follows. You can be dealt any of the 52 cards for your �rst
card. Once that card is dealt, the next card must match it in rank in order
to produce a pair, so there are 3 possible cards to be dealt next. Again we
must compensate for the order of the hand not being important, so we must
divide out by 2!. Therefore, the number of ways to get a pair on your �rst
two cards of the hand is

(52)(3)

2!
= 78.

Again it is clear that it does not matter which method is used because both
produce the same, correct answer.

Question 3: How many di�erent ways are there to get a �ush (all
cards the same suit) in a �ve card poker hand?

In order to solve this question using combinations, it is necessary to again use
two di�erent combinations. First, we must take into account that there are
four di�erent suits with which a �ush can be accomplished: hearts, diamonds,
spades, and clubs. Choosing one suit is represented by

(
4

1

)
=

4!

1!(4− 1)!
=

4!

3!
= 4.

After choosing a suit, there are 13 cards in the suit and we need �ve of those
to complete our �ush, so we have

(
13

5

)
=

13!

5!(13− 5)!
=

13!

(5!)(8!)
= 1, 287.

Thus to complete the calculation, we need to multiply the two conditions
giving us that the number of possible ways to get a �ush is

(
4

1

)
∗

(
13

5

)
= 4 ∗ 1, 287 = 5, 148.

This problem can also be looked at on a card-by-card basis since not all stu-
dents are comfortable enough with the concept to resort to formulas. There
are 52 possible cards to receive on the �rst card dealt. Once that card is
dealt, however, the suit has been chosen for the �ush. Therefore, there are
now 12 options for the second card, 11 for the third, 10 for the fourth and 9
for the last card. So we have, 52 ∗ 12 ∗ 11 ∗ 10 ∗ 9. We are not done though as
it is not important which order the cards were dealt; the same hand results
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no matter what. Therefore, we must divide the product by 5! to account for
the di�erent orderings all producing the same hand. So, we end up with

52 ∗ 12 ∗ 11 ∗ 10 ∗ 9

5!
= 5, 148

ways to get a �ush. At this point the teacher should reemphasize that the
answer is again the same as the �rst method.

If teachers have extra time or a fast moving class, this problem set could be
expanded upon by combining it with a probability lesson by looking at the
likelihood that someone will actually get a �ush or a pair. Essentially though,
this problem set is intended to concretely demonstrate how combinatorics
comes into play. Poker hands will catch high school students' attention and
interest because it is something that is a part of their lives. This is a really
important aspect when trying to keep students engaged in math while trying
to challenge them to expand their math reasoning skills. This problem set
also shows the transition from very basic combinatorial problems to more
intermediate problems. For example, if you present some other types of
hands students will be able to notice that they are not so clear cut or easily
de�ned. Students, therefore, are able to see the mathematical progression
and the complexities that quickly arise.

6 Problem Set 2 - Isomorphic Paths and Scores
Problems

This problem set is really two di�erent problem sets combined. The purpose
of combining these two problem sets is to demonstrate the isomorphic nature
of combinatorial problems and how the realization that certain problems are
isomorphic can lead to a deeper understanding of the concepts. Isomorphic
problems are de�ned by Siegler (1977) as "problems that are formally identi-
cal but di�er in their surface structure" (Janackova et all, 2006, p130). This
helps break students away from only comprehending problems on the surface
and attaching certain words and situations to certain formulas. As stated
above in the framework, this problem set consists of two di�erent sets of
problems. The �rst one focuses on the possible paths to get from point A to
point B while the second one focuses on the di�erent possible partial scores
that can lead to given �nal score. As di�erent restrictions are placed on each
set of problems, the students work to discover the answer. At the end of the
two problem sets, and in response to the careful board work of the teacher,
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students will see that although the questions were presented very di�erently,
the problem sets actually contained the same three questions mathematically.

6.1 Path Questions
In this set of questions, there will be a "town" marked out on the �rst
quadrant of a cartesian plane, and students must determine the number of
di�erent possible paths with di�erent circumstances or restrictions to get
from a starting point A (normally at point (0, 0) in the bottom left corner of
the "town") to point B (normally at point (m,n) in the top right corner of
the "town"). One of the conditions that will hold throughout the problems is
that the only acceptable moves throughout the grid are north (up) and east
(right). This set of problems is bene�cial for a high school classroom as it
o�ers more visual students an opportunity to actually draw out the possible
paths. This is an option that is not normally available in standard math
questions. It is important for students of all ability levels and all learning
types to be given opportunities to succeed and apply what they are good at
to math problems.

Question 1: In a town that measures 2 units North/South and 3
units East/West, how many possible ways are there to get from
A(0, 0) to B(3, 2) remembering that you may only move North and
East?

More visual learners might want to �rst draw the possible paths and then list
them out letting N denote a move North and E denote moves East. Each
path in the list must contain 2Ns and 3Es After drawing the paths, this
should be the list generated by the di�erent paths (Please note that when
listing the paths on the board, it will be more visually appealing and more
organized to write the possible paths vertically):

• NNEEE; NENEE; NEENE; NEEEN ; ENEEN ; EENEN ; EEENN ;
EENNE; ENENE; ENNEE

As students will be able to see, there are exactly 10 possible paths. When
generating lists with students about possible paths, it is very important to
encourage organized and strategic listing. Based on the research, this is an
area that students struggle in, but when following the lead of the teacher,
they should be able to develop organized and thorough listing techniques.
Another method to approaching this problem is to notice that it is essentially
a combination question. There are �ve total moves necessary to get from A
to B, and, in those �ve moves, there are exactly two moves that need to be
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made going North. Thus, this can be represented as the number of di�erent
ways to choose 2 Ns out of a set of 5 moves:

(
5

2

)
=

5!

2!(5− 2)!
=

5!

(2!)(3!)
= 10.

This is perfect time to remind students that this is the exact same as choosing
3Es out of 5 total moves:

(
5

3

)
=

5!

3!(5− 3)!
=

5!

(3!)(2!)
= 10.

The concept to reinforce here is by choosing the 2Ns you are also, by default,
choosing the 3 moves that must be Es. This is the identity that

(
n

k

)
=

(
n

n− k

)
.

(This identity will resurface in the next question as well as in the �rst two
questions of the second part of the problem set, so it is important for teachers
to make sure their students grasp this concept.) Just as in problem set one,
students will see that both methods led them to the correct answer of ten
possible paths.

Question 2: In a town that measures 7 units North/South and
8 units East/West, how many possible way are there to get from
A(0, 0) to B(8, 7) again remembering that you may only move North
and East?

For this question teachers should not immediately discourage students from
listing out the options, as they will �gure out on their own that it is neither
a productive use of their time nor is there an e�ective way to list over 6,000
items by hand. With that in mind, teachers should refer to Problem 1 and
have students recall what they needed to do to �gure out how to set up the
combinations. Even math that is uncomfortable for students can be made
easier when it has been seen before so this should help guide the students to
work on this more complex question. In the previous problem, we focused on
the number of total moves and then whether we wanted to choose the moves
North or East. So, in this problem, there 15 moves total needed to get from
A to B: 7Ns and 8Es. Therefore, for this question, the number of possible
paths is given by either (

15

7

)
=

15!

7!(15− 7)!
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or (
15

8

)
=

15!

8!(15− 8)!

both of which will give us

15!

(7!)(8!)
= 6, 435

possible paths.

Question 3: In a town that measures 4 units North/South and 4
units East/West, how many possible ways are there to get from
A(0, 0) to B(4, 4) only moving North and East if now you may not
go above, but you may touch, the diagonal that connects A and B?

The only way to approach this problem without higher level combinatorics
that utilizes the Catalan Numbers, is to simply list out the possibilities.
It would be bene�cial for teachers to give students an ample amount of
time to generate the lists on their own or in groups so they can be sure to
be thorough in their e�orts. In order to get students thinking about the
restrictions, teachers should plot A and B on a coordinate plane at (0, 0)
and (4, 4) respectively and then draw the straight line that connects the two
points. This is a challenging exercise, but it is very bene�cial to encourage
students to develop organization in their listing system. If students seem
to be getting stuck, the teacher might want to go ahead and give them the
number of possible paths so that students can work towards that goal and
have a way to know that there e�ort is complete. This information should
not be o�ered right away though as teachers do not want to keep anyone
from having the satisfaction of coming up with the answer on their own. The
number of possibilities is given by the fourth Catalan Number,

C4 =
1

5
∗

(
8

4

)
= 14.

The goal, however, is for the students to generate the following list of possible
paths.

• EEEENNNN ; EEENENNN ; EENEENNN ; ENEEENNN ; ENEENENN ;
ENENEENN ; ENENENEN ; EENNENEN ; EENNEENN ; EENENENN ;
EENENNEN ; EEENNENN ; EEENNNEN ; ENEENNEN

While generating this list either as a class or in groups, it is important to
emphasize which paths are not possible; to do this, teachers should encourage
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students to look at the graph and the diagonal line as they are working.
Hopefully as students start to see which paths cross the diagonal, and thus
violate the necessary conditions, they will create the generalization that there
may never more Ns than Es. If there were, the path would then cross the
diagonal. To enhance the lesson, or if a teacher is short on time, she may scale
the problem down so it is looking at the paths from (0, 0) to (3, 3) instead,
and work this in addition to the problem above or in place of depending on
the situation. For this adjusted problem, the total number of possible paths
is the third Catalan Number,

C3 =
1

4
∗

(
6

3

)
= 5

, and the list of possible paths is as follows:
• EEENNN ; EENENN ; ENEENN ; ENENEN ; EENNEN

6.2 Score Questions
In this set of questions, two teams, the Eagles and the Ninjas, are playing soc-
cer, and students must determine the number of possible partial scores that
could have led to the given �nal score under di�erent restrictions. Scores
at the end of sports games or competitions are certainly something that
students have encountered before. These problems can be generalized to a
certain sport if a particular school is strong in a given sport or if there are
large number of athletes in a given class. This way, the material is even
more authentic for the students. Additionally, scores can be written down
and listed as they are thought about. Since the goal of this second part
of the problem set is to draw connections about the isomorphic nature of
the problems, it is imperative that the teachers guide students to be able
to make those generalizations. This includes setting up lists in similar ways
and following similar procedures. If teachers completely stray from what has
already been completed, students will be at a disadvantage for discovering
the isomorphic identities of the questions. It is important for teachers to
understand, however, that the discovery that these problems are isomorphic
might not come immediately to students; in fact, it might require some fur-
ther exploration and re�ection on the material. This problem set, though,
does provide a good start to developing an understanding of a very important
mathematical concept while simultaneously delving deeper into combinato-
rial problems.

Question 4: How many di�erent partial scores could there have
been leading to the �nal score of Eagles 3 - Ninjas 2?
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For this question, like Question 1 of the problem set, some students will be
more comfortable listing out the di�erent possible scores. With the intention
of leading students towards understanding the overlap of these questions,
teachers should encourage their students to denote each set of partial scores as
a list of who scored and in what order. For example, if the Eagles scored �rst,
then the Ninjas, then the Eagles, Ninjas, and Eagles again, students should
list that set of partial scores as ENENE. So the each item or partial score
would be a sequence with Es representing Eagles' points and Ns representing
Ninjas' points. The list will look as follows:

• NNEEE; NENEE; NEENE; NEEEN ; ENEEN ; EENEN ; EEENN ;
EENNE; ENENE; ENNEE

The list contains 10 items representing 10 possible partial scores. For students
who would rather approach the question using combinations, it must �rst be
recognized that there were 5 points that were scored in all in the game. Of
those �ve points, the Eagles scored 3 and the Ninjas scored 2. Thus, the
combination is set up as how many di�erent ways are there for the Ninjas to
score their two points, and analogously, how many di�erent ways are there
for the Eagles to score their 3 points. So, students would hopefully develop
the combination

(
5

2

)
or the combination

(
5

3

)
which are both equivalent.

Therefore, the number of partial scores that could lead to this �nal score is
(

5

2

)
=

(
5

3

)
=

5!

(3!)(2!)
= 10.

Question 5: In a high scoring game, the Ninjas keep the game
close but the Eagles are still able to win 8 - 7. How many di�erent
partial scores could have led to this particular outcome?

As in Question 2 of the problem set, there are way too many of these to
list out; however, teachers should not immediately discourage the method.
Either giving students time to start generating the list or presenting the
combinations approach �rst should quickly deter students from trying to list
out all the di�erent possibilities. Again, teachers should use the previous
question as a guide to help students conceptualize how to turn this question
into a combinatorial application. Since the Eagles scored 8 points and the
Ninjas scored 7 points, there were 15 points scored all together. Therefore,
this can be thought of as the number of di�erent ways the Eagles could have
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scored their 8 points which would be represented as
(

15

8

)
=

15!

8!(15− 8)!
.

Or students can think of the number of di�erent ways the Ninjas could have
scored their 7 points: (

15

7

)
=

15!

7!(15− 7)!
.

Both expressions are equivalent, so the total number of possible partial scores
is given by

15!

(7!)(8!)
= 6, 435.

Question 6: This �nal game ended up tied: Eagles 4 - Ninjas 4. If
the Ninjas were never ahead during the game, though they could
have been tied, how many possible partial scores are there leading
to this outcome?

The best way to go about this problem is by listing the possible sequences
of scores, just like students did in Question 4. As lists are being generated,
either as a class or in groups, special attention should be paid to and con-
versations had about which scores are not possible. Noticing that the Ninjas
may never be ahead and employing the listing technique utilized in Ques-
tion 3, students will hopefully make the connection that their list can never
have more Ns than Es since the Ninjas may never have more points than
the Eagles. From this understanding, the list of partial scores will look as
follows:

• EEEENNNN ; EEENENNN ; EENEENNN ; ENEEENNN ; ENEENENN ;
ENENEENN ; ENENENEN ; EENNENEN ; EENNEENN ; EENENENN ;
EENENNEN ; EEENNENN ; EEENNNEN ; ENEENNEN

As in Question 3, this list might take a while to fully develop, but the pro-
cess of coming up with the list is very important so students should not be
rushed. Additionally, it is important to notice that while some students did
not understand the list that was the solution to Question 3, they might un-
derstand this much better simply because they are picturing a score board
rather than a map. This is great as more students are being reached but
the same mathematical and combinatorial concepts are being applied. The
overall result then is more students understand more math, which is a very
positive result of this problem set. Similarly to the �rst part of the problem
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set, this question can be modi�ed to a 3-3 tie in order to save time of enhance
the lesson. In that case, the number of possible partial scores is 5, and the
list is represented below.

• EEENNN ; EENENN ; ENEENN ; ENENEN ; EENNEN

Although this problem set may seem to have gotten tedious, the sequence of
questions provides a thorough guide to how many combinatorial questions
are essentially asking the same thing but are just hidden under di�erent cov-
ers. Teachers can implement this problem set in a classroom in a couple
di�erent ways. If a school is on a block schedule and thus the math class
has approximately 90 minutes each day, then a teacher could try and work
through this Isomorphic Problem set in just one day; otherwise, clearly the
problem set can be broken up into 2 sections and worked on consecutive days.
It is important though that the problem set is worked in a condensed period
of time in order to reach the most students that will be able to make the
connections that the problems are the same. If the problem set is too spread
out, the short term memory of high school students will win and thus the un-
derlying theme will be lost. After completing the problems, teachers could
assign students to look through the work they have done to compare and
contrast the two di�erent parts of the problem set. Once students are given
the opportunity to look back and re�ect, they will hopefully see, even if it is
simply from the fact that they used the same operations, that two seemingly
di�erent problems are actually the same. The goal of this problem set, is
for students to reach that coveted "ah-hah" moment that the combinatorial
and mathematical reasoning and operations are the exact same on these dif-
ferent problems. This lesson is extended as students are informed that this
phenomenom does not only occur in combinatorics, but rather isomorphic
problems exist throughout many aspects of mathematics. Indeed, a large
portion of understanding complex math questions is �guring out the di�er-
ent ways to look at the question so that a workable, understandable question
might surface. Once that realization happens, then many seemingly impos-
sible questions are approachable. This is an idea that can be very intriguing
to students and should be emphasized to show its importance.

7 Conclusion
This paper and the work of my senior project focused on the current issues
in high school mathematical education, the proposed reforms to high school
mathematical education, and the power that combinatorics holds to support
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those proposed reforms. Additionally, the two problem sets I developed can
provide high school teachers with a pre-formulated way to expand on com-
binatorial ideas in their classrooms. The problem sets are e�ective on many
di�erent levels. Most importantly though, they take intermediate combina-
torial ideas and put them into a very accessible context for students of all
ability levels and learning types. These questions all dealt with situations and
backgrounds that are familiar to most high school students thus bringing the
normally distant and disconnected subject of math into the realm of their ev-
eryday life. Additionally these questions serve as just some examples of how
well combinatorics supports the proposed reforms and standards delineated
for high school math classrooms in order to make high school math education
a more holistic and idea based subject rather than just the regurgitation of
formulas and techniques.

Although I do not know yet what level of high school math I will be teaching
in approximately a year and a half, I do know that I will be in a high school
math classroom and I plan on implementing much, if not all, of what I have
learned throughout the process of developing this project. Combinatorics is
just an example of all of the exciting and approachable types of mathematics
that are available that we should truly be exposing students to at lower levels
of math. Combinatorial problems at a high school level provide a great
starting o� point in order to guide students to explore the many di�erent
ways to think about situations and problems. This would encourage students
to stay interested in math, hopefully, and continue pursuing the subject.
Ultimately, though, the goal is to get students intrigued and excited about
math and to break down the "I hate math" wall that so many students have
built up around themselves by the time they reach high school. There is so
much more to o�er students than just formulas and techniques, high school
math teachers have the ability to shape their way of thinking so they can
become mathematical thinkers and problem solvers.
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