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Abstract. Vector quantization is an important concept in the field of infor-

mation theory and coding theory. The p-median problem is a classic graph

theory problem with natural extensions to operations research facility location
problems. We investigate some previously unrecognized connections between

these problems, and ultimately show that the problem of designing an optimal

vector quantizer on a discrete set X is closely related to solving the p-median
problem on a graph G = (X, E). We also demonstrate how vector quantization

and its connection to the p-median problem have important applications in ra-
diotherapy treatment design, specifically in the IMRT beam selection problem.

1. Introduction

Claude E. Shannon laid the groundwork of vector quantization (VQ) by assuming
the existence of a distortion measure that would quantify the difference in quality
between an input and a coded reproduction. He worked on VQ under the guise of
source coding subject to a fidelity criterion [3].

The p-median problem is a classic graph theory problem with natural extensions
in operations research to problems such as the facility location problem. This
problem involves locating p facilities on a graph so that the sum of the weighted
distances from the vertices of the graph to their nearest facility is minimized [1].

We begin by defining and describing these concepts in detail, and then we note
some previously unrecognized connections between them. We then apply VQ, the
p-median problem, and the connections between them to the problem of designing
a feasible radiotherapy treatment design. A critical radiotherapy design question is
how to choose a collection of angles from which to emit radiation into the tumor.
It is important that these angles satisfy clinical restrictions and constraints on the
amount of radiation deposited in different areas of the body. We show that vector
quantization and the p-median problem are important tools for solving this problem,
and conclude by introducing some new avenues of research that our results present.

2. Vector Quantization

2.1. Basic Definitions. The material in this section is treated exhaustively in [3],
and interested readers are directed to this text. Vector quantization is a process
for coding continuous or discrete vector signals subject to a fidelity criterion. It is
often used to compress images or other data.
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A vector quantizer Q maps vectors from an input set of vectors X into a fi-
nite set C (called the codebook) containing N output points (called codevectors or
codewords). Thus,

Q : X → C,

where C = {y1, y2, . . . , yN} and yi ∈ X for each i ∈ J = {1, 2, . . . , N}. The vector
quantizer separates X into N distinct regions called cells, denoted Xi for i ∈ J ,
and defined as

Xi = {x ∈ X | Q(x) = yi}.
These cells are disjoint and together include all elements of the input set. Thus we
have, ⋃

i

Xi = X and Xi

⋂
Xj = ∅ for i 6= j.

So, these individual cells form a partition of X, defined as

PQ = {Xi | i ∈ J }.
The basic operation of a vector quantizer is to partition an input set of vectors

into partition cells and select a codevector from each cell to serve as a representative
for all of the vectors within that cell. Thus, vector quantizers may be separated
into two separate processes, known as the encoder E and decoder D. The encoder’s
job is to examine each input vector and to determine which partition cell it should
belong to. Thus, the encoder maps elements from X into the set J , which contains
indices of the cells of X. The decoder then chooses a vector from each numbered
cell to serve as the codevector for that region. Thus, the decoder maps elements
from J into the codebook C. We have,

E : X → J and D : J → C.

As an example, let X be a finite set of points on a city map. These points could
be houses, schools, businesses, or any other location within the city. Consider an
encoder that maps children’s houses into partition cells, or school districts, each
represented by a school district number. These school districts are disjoint subsets
of X. The decoder then maps the index number of a particular school district to a
location within that district representing the location of the school. Depending on
the design of the decoder, the quantizer might choose a location that already has
a house, school or business built on it, or it could choose an unused location.

2.2. Representing VQ With Binary Selector Functions. We represent the
operation of the encoder in terms of selector functions Si(x), defined as binary
functions that indicate whether a vector x is in a given cell Xi. Thus,

Si(x) =
{

1 if x ∈ Xi

0 otherwise.

Since the decoder creates a codebook by selecting a codevector from each cell Xi,
it is possible to create a selector function that describes the entire operation of the
quantizer, as follows:

λij =
{

1 if xj is quantized as xi

0 otherwise.

Notice that the codebook is:

C = {xi | λii = 1}.
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2.3. Vector Quantizer Performance. We quantify the nonnegative cost of quan-
tizing any input vector x ∈ X with the codevector Q(x) by measuring distortion,
denoted by d(x,Q(x)). The most common measurement of distortion between vec-
tors is the Euclidean distance ,

d(x,Q(x)) = ‖x−Q(x)‖.

The methods of quantifying distortion are numerous, however, and often depend
on the particular application of VQ. For now we will simply assume that d(x,Q(x))
is a distortion metric meaningful to its application.

We use this distortion measure to determine the overall performance of the vector
quantizer. Vector quantization is inherently a statistical problem. One of its original
uses was analog to digital signal conversion. For this reason, vector quantizers were,
and still are, designed so that even though the input signal is not previously known,
a suitable measure of expected distortion may be obtained. In order to work towards
this measure of expected distortion, we first state the following definition.

Definition 2.1. A function fX defined on X is called a joint probability density
function (pdf) if

fX(x) ≥ 0, x ∈ X,∫
x∈X

fX(x)dx = 1,

where the integral is taken to be a multiple integral over the k-dimensional space.

In the school district example, if X corresponds to the set of points on a map,
fX(x) is the probability that a location x is a house with school-age children. There
are many different factors that may determine probability, depending on the par-
ticular application of VQ.

If we model the quantizer as a random process, its performance corresponds to
its expected distortion, which by definition is

DQ = Ed(x,Q(x)) =
∫

d(x,Q(x))fX(x)dx,

where fX(x) is a joint probability density function (pdf) of the input vector space
X. Here we are evaluating a statistical average of the distortion measure over the
entire input vector space. This measure is called the average distortion of the vector
quantizer. If the input set of vectors has a discrete distribution (as opposed to a
continuous distribution), then we have

DQ = Ed(x,Q(x)) =
∑

i

fX(xi)d(xi,Q(xi)),

where each xi is a value in X that has nonzero probability. In terms of the selector
function described in Section 2.2,

DQ =
∑

i

∑
j

fX(xj)d(xi, xj)λij , (2.1)

where λij = 1 if and only if Q(xj) = xi.
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2.4. Optimal Vector Quantizer Design. The vector quantizer design problem
is: Find a codebook C specifying the decoder D and a partition PQ specifying the
encoder E such that the average distortion DQ is minimized. If we find such a
codebook and partition, then the resulting encoder E and decoder D produce a
globally optimal quantizer.

We now state three conditions that lead to algorithms for codebook improve-
ment. These conditions are often called the necessary conditions for optimal vector
quantizers. See [3] for more details and proofs of the following conditions.

(1) Partition Condition. Given a codebook C, a partition is optimal if and
only if it assigns vectors to the codevectors yi in a nearest neighbor fashion,
i.e.,

Q(x) = yi ⇐⇒ d(x, yi) ≤ d(x, yj) ∀j ∈ J .

In other words, given a fixed codebook, it is both necessary and sufficient
for optimality that the partition satisfy the Partition Condition.

(2) Codebook Condition. Given a partition PQ, a codebook is optimal if
and only if it minimizes the distortion between vectors x ∈ Xi and the
codevectors yi, averaged over the probability distribution of x given that x
lies in Xi. Hence,

E[d(x, yi)|x ∈ Xi] ≤ E[d(x, y)|x ∈ Xi]

for all y ∈ X. This condition is fairly intuitive, as it ensures that each code-
vector minimizes the expected distortion over its respective partition cell.
This condition is both necessary and sufficient for producing an optimal
codebook, given a fixed partition.

(3) Boundary Condition. Let

B = {x | d(x, yi) = d(x, yj) for some i 6= j}
be the boundary points of the given partition. These points are equidistant
from two codevectors and hence do not have a unique nearest neighbor. An
optimal codebook for a given source distribution must assign these points
to one and only one partition cell. In order to practically ensure that
this condition holds, an effective tie-breaking scheme must be implemented
when designing the encoder.

Returning to the school district example, the first condition ensures that an
optimal partition, or school district plan, is one in which the houses are closer to that
district’s school than any other school. Likewise, the second condition guarantees
that an optimal set of school locations given a set of school districts is one in which
the schools minimize distortion, averaged over the probability distribution, between
the school and each house in a given district. The third condition ensures that no
house lies within two school districts at the same time.

2.5. Lloyd Algorithm. The Lloyd algorithm is useful for designing an effective
quantizer. It is based on the fact that the Partition Condition and Codebook
Condition allow us to obtain an optimal codebook given a fixed partition, and an
optimal partition given a fixed codebook. The algorithm requires an initial, discrete
set of vectors called the training set. If the set we are trying to quantize is discrete,
then we may simply apply the Lloyd Algorithm to this set. If it is continuous, then
we select a set of observations from it and use these as the training set for the Lloyd
Algorithm. The algorithm begins with an initial codebook, and at every iteration
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produces a new codebook that is guaranteed to either reduce or leave unchanged
the overall distortion D. The algorithm is a three step process, as follows:

Lloyd Algorithm
(1) Set m = 1. Begin with an initial codebook C1.
(2) (The Lloyd Iteration)

• Given the codebook Cm, create partition cells by using
the Partition Condition as follows:

Ri = {v | d(v, yi) < d(v, yj),∀j 6= i}.
If d(v, yi) = d(v, yj) for any j 6= i, then break the tie by
assigning v to the cell Rj for which j is smallest, thus
satisfying the Boundary Condition.

• Using the Codebook Condition, we create a new code-
book Cm+1, which is optimal for the partition Pm =
{Ri | 1 ≤ i ≤ N}.

(3) Compute D, the average distortion for Cm+1, and if it has
decreased less than δ, stop. Otherwise, set m + 1 → m and
go to step 2.

Theorem 2.2 (Gersho and Gray [3]). Each application of the Lloyd Iteration re-
duces or leaves unchanged the average distortion.

Proof. From the necessary conditions for optimality, the Partition Condition implies
that the first part of the Lloyd Iteration can only improve or leave unchanged the
encoder for the given decoder. Similarly, the Codebook Condition implies that the
second part can only improve or leave unchanged the decoder for the given encoder.
Hence, the average distortion of the vector quantizer cannot increase. �

Theorem 2.3 (Gersho and Gray [3]). For a finite training set, the Lloyd Algorithm
always produces a sequence of vector quantizers whose average distortions converges
in a finite number of iterations.

Proof. There are a finite number of ways to partition the input set into N subsets.
For each partition, the Codebook Condition yields a codebook with a particular
value of average distortion. The monotone nonincreasing average distortion implies
that the algorithm cannot return in subsequent iterations to a partition yielding a
higher average distortion. Hence, the average distortion of the sequence of vector
quantizers produced must converge to a fixed value in a finite number of steps. �

3. Graph Theory and Designing Optimal VQ Codebooks

3.1. Introduction. The p-median problem has long been useful in solving opera-
tions research problems dealing with facility location. The problem is to choose a
p-element subset of a graph such that the weighted sum of the distances between
the vertices of the graph and their nearest element in the subset is minimized [1].

3.2. P-Median Problem. Let G = (X, E) be a complete, weighted and undi-
rected graph, where X is the set of vertices and E is the set of edges. Let

dij = [d(xi, xj)]

be the shortest distance matrix where the entry in the ith row and jth column
contains the shortest distance between vertices xi and xj , according to some metric
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d. Let w(xi) be the vertex weights. In the facility location problem, these are the
costs of satisfying the demand at each vertex xi. Let ξij be an allocation variable
such that

ξij =
{

1 if vertex xj is allocated to vertex xi

0 otherwise.
The integer optimization formulation of the p-median problem is:

min
∑

i

∑
j

w(xj)dijξij

subject to:∑
i

ξij = 1 for j = 1, . . . , n∑
i

ξii = p

ξij ≤ ξii ∀i, j = 1, . . . , n

ξij ∈ {0, 1}.



(3.1)

The constraint
∑

i ξij = 1 for j = 1, . . . , n ensures that each vertex is allocated to
one and only one element in the p-element subset. The second constraint,

∑
i ξii =

p, guarantees that there are p vertices allocated to themselves, which forces the
cardinality of the p-median subset to be p. The last two constraints ensure that
the allocation variables are either 0 or 1.

If ξ∗ij is an optimal answer to the problem defined by (3.1), then the p-medians
are the elements of:

Xp = {xi | ξ∗ii = 1}.

3.3. Using the P-Median Problem to Design Optimal VQ Codebooks.
The following theorem shows an important connection between VQ and the p-
median problem in that we may design an optimal VQ codebook by solving a
particular p-median problem for a fixed p > 0.

Theorem 3.1. Let X be a finite set of vectors. Let fX(x) be a pdf of X, and
d(xi, xj) be a metric on X. An optimal vector quantizer Q : X → C, |C| = p, may be
found by solving the p-median problem on the graph G = (X, E) with vertex weights
fX(x), obtaining an optimal solution Xp = C, where C is the optimal codebook for
Q.

Proof. Let w(xj) = fX(xj),∀j, and let dij = [d(xi, xj)]. Then by solving (3.1), we
obtain [ξij ] such that ∑

i

∑
j

fX(xj)d(xi, xj)ξij

is minimized. The constraint
∑

i ξij = 1 for j = 1, . . . , n corresponds to the
Boundary Condition for vector quantizers and ensures that each vertex is allocated
to one and only one element in the p-element subset (codebook). The constraint∑

i ξii = p ensures that the number of outputs is p, i.e. |Xp| = |C| = p. The last
two constraints guarantee that the allocation variables, which correspond to the
selector functions λij in VQ, are either 0 or 1. Then, if λij = ξij , we have that the
average distortion of the quantizer given by (2.1) is minimized. We conclude that
C = {xi | λii = 1} = Xp = {xi | ξii = 1} is an optimal codebook for Q. �
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3.4. Solution Techniques. Kariv and Hakimi [6] showed that the problem of
finding a p-median on a graph is NP-hard in p and n, even when the graph is
planar, has maximum vertex degree 3, and all of the edges have length 1 and all
vertex weights are 1. Polynomial algorithms exist, however, for the case when p is
fixed.

Theorem 3.2. Let n = |X|. The worst-case complexity of the p-median problem
on G = (X, E) for a fixed p ∈ N is O(pnp+1).

Proof. Before the algorithm begins, a shortest path distance matrix is created us-
ing Dijkestra’s algorithm, containing the shortest weighted distances between all
vertices of the graph. The complexity of this step is O(n2) [1]. The search then
proceeds through every p-element subset of X, requiring(

n

p

)
≤ np

calculations. For each p-element subset of X, we must compare every x ∈ X to the
p elements of the subset, to satisfy the nearest neighbor condition. This requires
pn calculations. So, the overall complexity is no greater than

O(n2 + (pn)np) = O(pnp+1).

�

Given Theorems 3.1 and 3.2, the following corollary becomes apparent:

Corollary 3.3. The problem of designing an optimal quantizer on a discrete set
of data is polynomial.

4. Applications in Radiotherapy Treatment Design

4.1. Introduction. Intensity Modulated Radiotherapy Treatment (IMRT) is a
method of cancer treatment that directs ionizing beams of radiation through the
anatomy and into a tumorous region. The goals of IMRT are to 1) direct a uni-
form amount of radiation into the tumor and 2) limit the amount of radiation that
deposits in nearby critical and normal healthy tissues. The tumor should receive
enough radiation to kill the cancer cells, and the critical structures should receive
no more than a previously specified amount of radiation in order to reduce damage
[4]. The radiation deposited per unit mass of tissue is called absorbed dose and
is measured in Gray (Gy), which is equal to one Joule of energy deposited per
kilogram [5].

4.2. Theraputic Advantage. Cancer cells are innately focused on reproducing
and lack the effective capability to repair themselves. Consequently, cancer cells
are killed when their DNA is damaged, while healthy cells are able to continue
reproducing after minor damage by irradiation [2]. The difference between the
radiation tolerance of cancer and normal cells is called the therapeutic advantage.
IMRT treatments take advantage of this therapeutic advantage by delivering the full
dose prescribed to the tumor in smaller daily doses [5]. This method of treatment
kills the tumor cells, but gives enough time between doses for the normal tissue
to heal. It also allows the dead cancer cells to be carried away by the healthy
tissue around the tumor, preventing a collection of dead tissue where the tumor
was located.
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4.3. IMRT Treatment Method. Before the treatment takes place, physicians
use a series of sequential CT scans to obtain a 3D representation of the tumor
and any nearby critical structures. Physicians then indicate on each CT scan the
location of these structures, and the remaining tissue is labeled as normal tissue.
The prescription is then specified by the following variables [4]:

• TLB → The lower bound for absorbed dose in the tumor.
• TUB → The upper bound for absorbed dose in the tumor.
• CUB → The upper bound for absorbed dose in the critical structures.
• NUB → The upper bound for absorbed dose in the normal tissue.

Each critical structure is assigned a different upper bound that varies with the
structure type and is determined by the susceptibility and severity of damage to
that structure. For instance, a significant amount of damage to the spinal cord
may result in paralysis or loss of critical body functions. Therefore, the tolerance
assigned to the spinal cord is comparatively lower than most other structures [5].

After the physicians determine an IMRT plan that meets the constraints of the
prescription, the patient is laid on a couch and immobilized. The device that emits
the radiation is called a linear accelerator, or LINAC. The LINAC is mounted on a
movable arm, called the gantry, that is able to make a complete 360 degree rotation
around the patient. This allows physicians to deliver varying radiation doses from
any particular collection of angles. The gantry rotates around a point called the
isocenter, and patients are positioned so that the isocenter is located in the middle
of the tumor.

LINACs are usually equipped with a multileaf collimator, a device with pneu-
matic “leaves” that move back and forth to block portions of the radiation beam.
The multileaf collimator allows the beam to be shaped, thereby partitioning each
of the 360 angles into sub-beams, also known as pencil beams [5].

4.4. Optimal IMRT Plan Design. The following is a brief discussion of the
construction of an IMRT plan. See [2], [4] and [5] for further details.

There are three separate problems to solve when designing an IMRT plan. They
are 1) determining which angles should be used to focus radiation on the patient,
2) finding a fluency pattern (a collection of exposure times) corresponding to these
angles, and 3) choosing a delivery sequence that efficiently administers this treat-
ment [2]. This paper investigates the first problem, which is known as the beam
selection problem.

Linear programs are often used to determine optimal treatments, consisting of
fluency values, or radiation exposure times, for each angle and sub-beam. Together
these values define the fluency vector x, where x(a,i) is the exposure time for the
ith sub-beam of angle a, for a ∈ A = {iπ/180o | i = 0, 1, 2, . . . , 359}. The dose
matrix A is an approximation of how radiation is deposited into each dose point
in the anatomy. The units of A are Gy per unit time. The linear transformation
x 7→ Ax maps the fluency vector into the anatomy and determines the amount of
radiation deposited at every dose point in the anatomy [2]. The linearity is not
just an assumption of the model–it is experimentally validated that the dose is
deposited linearly [5]. We partition A into full-column sub-matrices AT , AC and
AN , containing the dose points corresponding to the tumor, critical structures and
normal tissue, respectively. There are several linear programs in the literature for
producing optimal IMRT plans, and the following is an example:
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min{ω · lT α + uT
Cβ + uT

Nγ} subject to:
TLB − Lα ≤ AT x ≤ TUB

ACx ≤ CUB + UCβ
ANx ≤ NUB + UNγ

0 ≤ Lα ≤ TLB
−CUB ≤ UCβ

0 ≤ UNγ
0 ≤ x,

where ω is a weight determining the importance of meeting the lower bound on
the tumor. The first three constraints are elastic and are allowed to vary with
α, β and γ, respectively. These vectors represent how much the model is allowed
to violate the radiation constraints on the tumor, critical structures and normal
tissue, respectively. The matrices L, UC , and UN define how elasticity is measured,
and each corresponds with a respective vector, l, uC and uN that decides how
discrepancies are penalized. The decision values are x, α, β and γ [4].

This model has been implemented in a prototype treatment package named
Radiotherapy OptimAl Design (RAD). RAD allows users to delineate a tumor,
critical structures, and normal tissue on a 64 x 64 grid (similar to how a physician
would indicate these structures on a CT scan). One can then assign prescription
values to these structures and solve for the optimal plan corresponding to that
problem instance [4].

4.5. IMRT Beam Selection Problem. Unfortunately, delivering a treatment
from all 360 gantry angles is not clinically feasible. Current clinical constraints
require that IMRT treatments consist of 7-9 gantry angles from which to deliver
radiation. This is primarily because physicians limit the treatment time in order
to reduce patient movement, which may result in treatment error. Thus, the beam
selection problem is how to select p angles so that the subsequent p-angle treatment
is effective. Solving integer programs designed to choose p angles exceeds calculation
capabilities. An alternative strategy is to begin with an optimal treatment like the
one described above and strategically prune angles to form an effective and clinically
feasible treatment. In the next section we discuss how an optimal vector quantizer
addresses this problem.

5. Optimal VQ and IMRT Treatment Design

5.1. Characteristic Vectors. We define a k-dimensional characteristic vector ca

for a given angle a as
ca = (g1(a), g2(a), . . . , gk(a)),

where gi : A → R, A = {iπ/180o | i = 0, 1, 2, . . . , 359}. The components gi(a) are
different statistics or characteristics of the angle a as it is used in the optimal 360
degree plan. We measure ca by a norm ||ca||, and this norm induces the metric:

d(ai, aj)) = ||cai − caj ||.

Using the characteristic vectors allows us to measure an angle’s effectiveness with
respect to a wide variety of user-defined statistics, including statistics on what the
apparent effect each angle has on the quality of treatment. Angle location is perhaps
the most obvious characteristic of a given angle. Preliminary efforts at incorporating
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VQ and IMRT have met with some success in using a pure angle distance metric [2].
This yields a one-dimensional characteristic vector, which contains angle location,
i.e. ca = (πa/180o). The method presented here allows us to incorporate numerous
other factors, including how each angle contributes to the overall prescription and
the absorbed dose within the anatomy.

If we let X be a set of characteristic vectors, then using VQ on X allows us
to 1) group angles according to how similar their characteristics are, and 2) to
select a codebook of p characteristic vectors to represent X such that the average
distortion of doing so is minimized. Therefore, the angles that correspond to these
characteristic vectors satisfy the objective of the beam selection problem. These
angles may or not be truly optimal however, as their optimality depends on what
statistical data is present in the characteristic vectors. Hence, this technique is
simply a heuristic to solving the overall problem.

5.2. Vector Quantization and the Beam Selection Problem. We first let
f(ai) be a pdf that describes the statistical characteristics of the angles in the
optimal 360 angle plan. Ultimately the process presented here is an attempt to
solve a deterministic optimization problem via a statistical technique. This fact
places this technique squarely in the realm of probability modelling.

The pdf should contain information regarding the likelihood of using any given
angle. It is an open question as to how to create an effective pdf for this problem,
although there are several theories. One example is to calculate how much absorbed
dose each individual angle can deliver to the tumor before violating the constraints
on the critical structures or normal tissue. Here we are measuring each angle’s
potential for treating the tumor, and the assumption is that the potential for a given
angle translates into the probability of that angle being used. Until further results
are gathered we will assume that f(ai) is an appropriate pdf for this particular
application.

Once we have an appropriate pdf, we define a quantizer

Q : X → C,

where |C| = p, and C ⊆ X. If we let w(cai
) = f(ai),∀i, then by Theorem (3.1) we

can find the optimal codebook C by solving the p-median problem on the graph
G = (X, E). Furthermore, we have that this codebook contains the characteristic
vectors associated with the angles that are solutions to the beam selection problem.
This collection of p angles is a solution to the beam selection problem in the sense
that there exists no other collection of p angles that can be selected with lower
average distortion (based upon the information in the characteristic vector) of the
original 360 angle plan.

6. New Directions

Our results suggest new areas of research, and the following questions should be
investigated.

• What angle statistics or characteristics should be included in the character-
istic vector? How do we best select these characteristics to accurately depict
angle differences according to what is actually happening in the anatomy?

• What is an appropriate probability density function for an optimal treat-
ment consisting of 360 angles?
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• How may we reduce the complexity of solving the p-median problem, and
what are intelligent heuristics?

• Can we use the p-median problem to make statements about the Lloyd
Algorithm?
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