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Introduction
The senior survey provides valuable information to the university adminis-
tration, faculty, students, and prospective students. The administration uses
the data from this survey to compare Trinity to its peer institutions and to
study longitudinal trends. For example, the university community wants to
know if Trinity students study as many hours per week as those at other
schools. Furthermore, it would be beneficial to the university community to
know if the amount of time Trinity students study is increasing, decreasing,
or staying constant. Also, the community would like to know if students
are getting a well rounded liberal arts education and if students are utilizing
the resources available to them. Therefore, it is imperative to have accurate
information to give these individuals so that Trinity is representing the true
situation of students.

My project will focus on making the data analysis as accurate as possible.
The answers students give to the questions on the survey vary dramatically
across major; for example, English majors use the scientific method much
less often than science majors. Therefore, if a disproportionate number of
science majors are selected to take the survey, it will appear that students
at Trinity use the scientific method more than they really do. Ideally, it
would be best if the correct proportion of each major were selected before
administering the survey. For example, if 30% of the graduating population
are science majors, then it would be best if 30% of the students surveyed
were science majors. No more and no less.

However, in administering the survey, upper division classes are selected and
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seniors in that class fill out the survey. The classes are selected to generate
approximately the correct proportion of students desired, but in selecting
classes it is impossible to get correct percentages of students from each ma-
jor. Additionally, some professors do not allow the survey to be administered
in their class due to time constraints. Thus, the mean of each survey question
could be biased because the correct proportion of majors is not selected.

Survey Sampling Theory
Proportionate sampling, in the case of the senior survey, would require that
the proportion of each major sampled equal the proportion of students in that
major that actually graduated. Since there is no efficient way to select a pro-
portionate sample, post-stratification weighting is the best way to remedy the
above problem. Each year we know how many students graduate and know
what each student’s major is. Therefore, we know the correct “weights” (the
percentage of students graduating with a particular major) for each major.
The survey population will be divided into different strata based on major.
The mean and variance will then be calculated for each particular stratum
(major or group of majors). If the survey is split into three strata (for exam-
ple, science, business, and other majors) then there will be three means, one
for each of these groups, and three variances. Post-stratification weighting is
a linear combination of these statistics for each stratum, weighted with the
true proportion of graduating seniors in that major, which will then yield one
mean and one variance for a particular question on the survey. If you take
the mean of all the responses of a particular question for a non-proportionate
sample, the sample mean may be biased. Stratification eliminates this bias
by weighting each stratum sample mean. This can increase the variance of
the sample mean, but it eliminates the bias.

In order to provide a more theoretical understanding of the mean and vari-
ance for survey samples, we must first explore some basic statistical prop-
erties. Let Y be a random variable that models a student’s response to a
particular question. The population mean and variance of a set of N mea-
surements is defined as follows.

Definition 1. The population mean, Ȳ , is defined as the sum of all mea-
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surements in the population (Y1, Y2, . . . , YN) divided by N .

Ȳ =

N∑
i=1

Yi

N

Definition 2. The variance of the population, S2, is a way to measure the
variation of the measurements Y1, Y2, . . . , YN . The variance of the population
is essentially defined as the average of the squared deviations from the mean
Ȳ .

S2 =
1

N − 1

N∑
i=1

(Yi − Ȳ )2

Ȳ and S2 are called population parameters and are unknown because the
entire senior population was not polled. Hence, we will use estimators in
place of the above population parameters. The estimator of the mean is the
sample mean, ȳ.

Definition 3. The sample mean, ȳ, is defined as the sum of all measurements
of a simple random sample with replacement (y1, y2, . . . , yn) divided by n.

ȳ =

n∑
i=1

yi

n
.

The estimator for the variance will be defined and used later. It should
be noted that E(yi) = Ȳ , because the expected value of any response is the
population mean. Likewise, V ar(yi) = S2. The expected value and variance
of ȳ that are found in any introductory statistics text assume a SRS (simple
random sample) with replacement. Using basic properties of expected values
we have that, for a SRS with replacement,

E(ȳ) = E

( n∑
i=1

yi

n

)
=

n∑
i=1

E(yi)

n
=

n∑
i=1

Ȳ

n
= Ȳ .

Therefore, ȳ is an unbiased estimator of Ȳ . Similarly, because observations
in a SRS are independent,

V ar(ȳ) = V ar

( n∑
i=1

yi

n

)
=

V ar

(
n∑

i=1

yi

)
n2

=

n∑
i=1

V ar(yi)

n2
=

nS2

n2
=

S2

n
.
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The mean and variance of ȳ for survey sampling are similar to that of a SRS
with replacement, but there are some twists that must be addressed. The
properties of the mean and variance of ȳ for a SRS shown above assume
replacement. However, survey samples do not allow replacement: once a
person is surveyed, theoretically, he or she cannot be surveyed again.

For a SRS with replacement, independence can be assumed because any
observation has no effect on any other. However, for our survey results (SRS
without replacement) every observation affects the probability of the next
observation. For example, consider a box which contains 12 red balls and 12
white balls. If one ball is selected from the box, the probability of selecting
a red ball is 1

2
. However, if a red ball is selected on that draw, then the

probability of drawing a red ball on the next selection is 11
23

. If a red ball was
not selected on the first draw, then the probability of drawing a red ball on
the next selection is 12

23
. Either way, the probability of selecting a red ball

changes when replacement is not permitted.

We can also calculate the population parameters for the example above. Let
each red ball be assigned yi = 1, and each white ball yi = 0. The parameters
are calculated as follows

Ȳ =

N∑
i=1

Yi

N
=

24∑
i=1

Yi

24
=

12

24

S2 =

N∑
i=1

(Yi − Ȳ )2

N − 1
=

24∑
i=1

(
Yi − 1

2

)2

23
=

12

[(
0− 1

2

)2

+

(
1− 1

2

)2]
23

=
6

23

Definition 4. The sample mean of a simple random sample without replace-
ment, ȳsrvy, is defined as the sum of all measurements (y1, y2, . . . , yn) divided
by n.

ȳsrvy =

n∑
i=1

yi

n
.
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For survey results the expected value of the sample mean is still the same,

E(ȳsrvy) = E

( n∑
i=1

yi

n

)
= Ȳ .

Again consider the example that we used above. Imagine two different sce-
narios: Case 1 : 4 balls are selected from the box with replacement, and Case

2 : 4 balls are selected from the box without replacement.
n∑

i=1

yi is the total

number of red balls selected from the box.
n∑

i=1

yi in Case 1 is a binomial dis-

tribution and
n∑

i=1

yi in Case 2 is a hypergeometric distribution. Therefore, we

can calculate the expected value of the sum in Case 1 by using the expected
value formula for a binomial distribution with p = 1

2
and n = 4,

E(
n∑

i=1

yi) = np = 4 ∗ 1

2
= 2.

Using the expected value of the sample mean,

E(ȳ) =

E(
n∑

i=1

yi)

n
=

2

4
=

1

2
= Ȳ .

For Case 2 we have a hypergeometric distribution with n = 4, N = 24, and
M = 12, which yields

E(
n∑

i=1

yi) = n

(
M

N

)
= 4 ∗ 12

24
= 2.

Similarly,

E(ȳ) =

E(
n∑

i=1

yi)

n
=

2

4
=

1

2
= Ȳ .

Notice that in this example the expected value of the sample means are the
same with and without replacement.
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We can now calculate the variances for this example. The variance of the sum
for Case 1 is a binomial random variable and can be calculated as follows,

V ar(
n∑

i=1

yi) = np(1− p) = 4 ∗ 1

2
∗ 1

2
= 1.

The variance of the sample mean can be found as follows,

V ar(ȳ) =

V ar(
n∑

i=1

yi)

n2
=

1

42
=

1

16
.

Again, recall that Case 2 is a hypergeometric distribution with n = 4, N =
24, and M = 12. The variance of the sum for Case 2 is

V ar(
n∑

i=1

yi) = n

(
M

N

)(
N −M

N

)(
N − n

N − 1

)
= 4 ∗ 12

24
∗ 12

24
∗ (1− 12

24
) =

5

16
,

which yields the following variance of the sample mean for Case 2,

V ar(ȳ) =

V ar(
n∑

i=1

yi)

n2
=

5
6

42
=

5

96
.

The variance of the sample mean without replacement is smaller than the
variance of the sample mean with replacement. The variance is smaller with-
out replacement because we are removing people from the population; thus,
we are getting a better estimate of the sample mean without replacement
than with replacement.

Now can mathematically show how V ar(ȳsrvy) is different. The variance
of the sum, in a sample without replacement, is not necessarily equal to
the sum of the variances. To illustrate this concept we must investigate the
variance formula. First note that,

E(
n∑

i=1

yi) = nȲ .
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V ar(
n∑

i=1

yi) = E

[( n∑
i

yi − nȲ

)2]
(1)

= E

[( n∑
i

(yi − Ȳ )

)2]
(2)

= E

[ n∑
i,j

(yi − Ȳ )(yj − Ȳ )

]
(3)

= E

[ n∑
i

(yi − Ȳ )2 +
n∑

i6=j

(yi − Ȳ )(yj − Ȳ )

]
(4)

= E

[ n∑
i

(yi − Ȳ )2

]
+ E

[ n∑
i6=j

(yi − Ȳ )(yj − Ȳ )

]
(5)

=
n∑
i

E

[
(yi − Ȳ )2

]
+

n∑
i6=j

E

[
(yi − Ȳ )(yj − Ȳ )

]
(6)

A sample with replacement is independent; thus, the expected value of a
product equals the product of the expected values for a sample with replace-
ment. Furthermore, E(yi − Ȳ ) = 0. Thus for a sample with replacement

E

[
(yi − Ȳ )(yj − Ȳ )

]
= E

[
(yi − Ȳ )

]
E

[
(yj − Ȳ )

]
= 0.

However, independence does not hold under a sample without replacement.
Therefore, the variance of the sum for a sample without replacement is not
necessarily equal to the sum of the variances.

Definition 5. The sampling fraction, f , is defined as the proportion of the
population that was sampled.

f =
n

N

Theorem 11. The variance of a sum for a SRS without replacement is

V ar(
n∑

i=1

yi) = (1− f)nS2

.
1Leslie Kish, Survey Sampling, New York: John Wiley and Sons, 1965, 63.
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Proof. From (6) we have,

V ar(
n∑

i=1

yi) =
n∑
i

E

[
(yi − Ȳ )2

]
+

n∑
i6=j

E

[
(yi − Ȳ )(yj − Ȳ )

]
.

Taking the expected values yields,

E

[
(yi − Ȳ )2

]
=

N∑
i

(Yi − Ȳ )2

N

and

E

[
(yi − Ȳ )(yj − Ȳ )

]
=

N∑
i6=j

(Yi − Ȳ )(Yj − Ȳ )

N(N − 1)
,

which yields,

V ar(
n∑

i=1

yi) =
n

N

N∑
i

(Yi − Ȳ )2 +
n(n− 1)

N(N − 1)

[ N∑
i6=j

(Yi − Ȳ )(Yj − Ȳ )

]
Recall from (2) and (4),( N∑

i

(Yi − Ȳ )

)2

=
N∑
i

(Yi − Ȳ )2 +
N∑

i6=j

(Yi − Ȳ )(Yj − Ȳ ).

Hence,

N∑
i6=j

(Yi − Ȳ )(Yj − Ȳ ) =

( N∑
i

(Yi − Ȳ )

)2

−
N∑
i

(Yi − Ȳ )2.

Thus,

V ar(
n∑

i=1

Yi) =
n

N

N∑
i

(Yi− Ȳ )2 +
n(n− 1)

N(N − 1)

[( N∑
i

(Yi− Ȳ )

)2

−
N∑
i

(Yi− Ȳ )2

]
.
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Note that
(

N∑
i

(Yi − Ȳ )

)
= 0. Therefore,

V ar(
n∑

i=1

yi) =
n

N

N∑
i

(Yi − Ȳ )2 − n(n− 1)

N(N − 1)

N∑
i

(Yi − Ȳ )2

= n

( N∑
i

(Yi − Ȳ )2

N − 1

)[
(N − 1)− (n− 1)

N

]
= nS2

(
N − n

N

)
= (1− f)nS2

Corollary 1. The variance of a sample mean without replacement, ȳsrvy, is

V ar(ȳsrvy) =
(1− f)S2

n
.

Proof.

V ar(ȳsrvy) = V ar

( n∑
i=1

yi

n

)
=

V ar(
n∑

i=1

yi)

n2
=

(1− f)nS2

n2
=

(1− f)S2

n
.

For a survey sample if only a small proportion of people are surveyed,
then we would expect the variance of the sample mean to be large. How-
ever, if the proportion of people surveyed is large, then we would expect the
variance of the sample mean to be much smaller. If the population size is
large and the number of people surveyed is small then f is very small, and
the variance resembles the variance of a SRS with replacement V ar(ȳ) = S2

n
.

Proportionate Samples
We will begin by discussing stratification and proportionate samples. Defin-
itions of the major variables pertaining to strata are given in Figure 1. First,
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h denotes a particular stratum

ȳh ȳh =

nhP

j=1
yj

nh
the sample mean for the hth stratum

nh the number of people surveyed from the hth
stratum

fh fh = nh

Nh
the sampling fraction for the hth stratum

Wh Wh = Nh

N
the fraction of people in the population of
the hth stratum over the entire population

ȳprop ȳprop =
H∑
h

Whȳh the sample mean that weights the individual

sample means of each stratum
ȳps ȳps = ȳprop the sample mean for a post-stratified survey

Figure 1: Key Terms

we consider that the data has been partitioned into distinct strata (in our
case all the students have been put into their major groups). We have H
different strata. In a proportionate sample the proportion of people selected
from each stratum is equivalent to the proportion of people in the entire stra-
tum population. That is, if 30% of graduating seniors are science majors,
then 30% of the survey sample will be science majors. The weight of each
stratum is denoted by Wh = Nh

N
. We have that

nh

n
=

Nh

N
= Wh.

Cross multiplying gives us
nh

Nh

=
n

N
.

Thus, the sampling fraction of each stratum equals the sampling fraction for
the entire population: fh = f for h = 1, 2, . . . , H.

The sample mean, ȳh, is found for each stratum h. The variance of the
sample mean for the hth stratum is exactly the same as the variance without
strata:

V ar(ȳh) =
(1− fh)S

2
h

nh

.
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For this paper the weights signify the number of people with a given major
in the population divided by the entire population. The weights are equal to
both the proportion of people in the population in the stratum and the pro-
portion of people in the sample in the stratum; hence, we can use these values
to “weight” each stratum sample mean to get a mean that is representative
of the students combined. Weighting the sample means for each stratum
under a proportionate sample generates the exact same sample mean that
would be computed if all the responses were added up and divided by the
total number. However, introducing this notation now is necessary because
it allows use to distinguish post-stratification from proportionate sampling
later.

Definition 6. The proportionate sample mean, ȳprop, is defined as a linear
combination of each stratum’s sample mean weighted by W1, . . . ,WH .

ȳprop =
H∑
h

Whȳh.

Theorem 2.

V ar(ȳprop) =

(
1− f

n

) H∑
h

WhS
2
h

Proof.

V ar(ȳprop) = V ar(
H∑
h

Whȳh)

We will assume that the sample mean for each stratum is independent, be-
cause what one major does should not effect what other majors do. Therefore,

V ar(ȳprop) =
H∑
h

W 2
h

(1− fh)S
2
h

nh

=
1

N2

H∑
h

(1− fh)N
2
hS2

h

nh

=
1

N2

H∑
h

(1− fh)NhS
2
h

fh
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Recall that fh = f for h = 1, 2, . . . , H. Thus, we can pull the (1−f)
f

term out
of the sum. Also Note that (1− f) = N−n

N
. Hence,

V ar(ȳprop) =
1

N2

(
1− f

f

) H∑
h

NhS
2
h

=
1

N2

( N−n
N
n
N

) H∑
h

NhS
2
h

=

(
N − n

N

)(
1

n

) H∑
h

Nh

N
S2

h

=

(
1− f

n

) H∑
h

WhS
2
h.

If the sample is perfectly proportionate, then the variance of the weighted
stratum sample means would be the same as the variance of the sample mean
with no weights, that is V ar(ȳsrvy) = V ar(ȳprop). Thus, if the majors’ weights
for the senior survey had been selected in a perfectly proportionate manner
then everything would be alright, but it was not.

Post-Stratification
Post-stratification can be used when creating a proportionate sample is hard,
or costly, or when the data has already been collected. It is beneficial to use
post-stratification analysis anytime that the sample mean for the survey may
be biased because the sample is not proportionate. Post-stratification elim-
inates any bias that may be present in the sample mean. In order to do
post-stratification analysis it is necessary to have information on the popu-
lation as a whole, and it is also necessary to be able to fragment the survey
sample into strata. The first step for post-stratification analysis is to de-
termine the particular strata that will be used and then to group the data
into these strata. Once that has been done, sample means should be found
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for every strata and weighted by Wh to determine a sample mean for the
entire survey that has no bias. As you might imagine the variance for post-
stratification is larger than the variance for a proportionate sample because
it is essentially trying to correct the data after it has been collected, which
is much less precise than selecting a proportionate sample before the data is
analyzed. The variance of the sample mean using post-stratification is given
by2

V ar(ȳps) =
1− f

n

H∑
h

WhS
2
h +

1− f

n

H∑
h

Wh(1−Wh)
S2

h

n2
h

.

Note that the first term corresponds to V ar(ȳprop), but the second term
makes the variance larger due to weighting each stratum’s sample mean af-
ter the survey has been completed. However, if nh is relatively large for every
value of h then the variance of a post-stratified sample is similar to that of a
proportionate sample.

Theory Summary
The list below outlines the properties of the variance of the sample mean.

• The variance in a SRS with replacement is

V ar(ȳ) =
S2

n
.

• The variance in a SRS without replacement is

V ar(ȳsrvy) =
(1− f)S2

n
.

• The variance for the hth stratum in a SRS without replacement is

V ar(ȳh) =
(1− fh)S

2
h

nh

.

2Kish, 90. Hansen, Hurwitz, and Madow, Sample Survey Methods and Theory, New
York: John Wiler and Sons, Vol. II, 1953, 5.13.
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• The variance of the weighted proportionate sample mean is

V ar(ȳprop) =

(
1− f

n

) H∑
h

WhS
2
h. (7)

• The variance using post-stratification is

V ar(ȳps) =
1− f

n

H∑
h

WhS
2
h +

1− f

n

H∑
h

Wh(1−Wh)
S2

h

n2
h

. (8)

Figure 2 provides an excellent visual interpretation of the spread of the
sample mean for a sample that is not proportionate and does not use the
weights, a proportionate sample, and a sample that is not proportionate
that utilizes the post-stratification weights. The sample mean for the non-
proportionate sample without weights is biased, meaning that the middle of
the estimator distribution lies to the left (or right) of the population para-
meter. A proportionate sample corrects the bias, the distribution is centered
around the population parameter. The non-proportionate sample that uses
the post-stratification weights is unbiased, it is centered about the population
parameter, but the variance, or spread, of the distribution has increased due
to using the weights after it has been collected, instead of having a propor-
tionate sample. It is possible that the sample mean of a non-proportionate
sample without weights is only slightly biased, which would mean that the
distribution is centered just to the left or right of the population parame-
ter. If this is the case, the benefits of post-stratification may be minimal or
even harmful, because post-stratification would remove the bias but could
increase the spread. Therefore, it may be possible that the sample mean
using post-stratification weights lies in one of the outlying tails. In any case,
Figure 2 illustrates the benefits and costs associated with post-stratification
in a manner that is easy to comprehend.

In conclusion, I will be examining the weighted sample means for several
questions on the survey. If a certain major was oversampled in the survey,
then weighting the stratum sample means should correct the bias. I will also
look at the variance of the sample mean for each question using both the
post-stratification method and the non-weighted method to see if the vari-
ance is larger for post-stratification. If there is little difference in the two
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Parameter

Parameter

Parameter

Stratified Population, Sampling is Not
Proportionate, Weights are Not Used

Stratified Population, Sampling is Proportionate

Stratified Population, Sampling is Not Proportionate,
Post-Stratification Weights Applied

Estimator

Estimator

Estimator

Figure 2: Sample Mean Distribution
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variances, then post-stratification will be very beneficial: the bias will be
corrected, with little change in the variance.

Since the variance of the population is not known, the sample variance,
s2, will be used in the calculations. The sample variance is an unbiased
estimator3 of S2 and is defined as

s2
y =

n∑
i=1

(yi − ȳ)2

n− 1
.

The sample variance is an unbiased estimator of the population variance, so
it can be substituted into the variance of the sample mean equations in place
of the population variance, S2. The sample mean for the non-weighted data
will be calculated as follows

ȳ =

n∑
i=1

yi

n
.

The weighted sample mean for the post-stratified data will be calculated as
follows

ȳps =
H∑
h

Whȳh.

I will compute the variance of the sample mean for all responses, before
weights are introduced, using the formula

V ar(ȳ) =
(1− f)s2

y

n
.

I will then compute the variance of the weighted sample mean for post-
stratification using the following formula

V ar(ȳps) =
1− f

n

H∑
h

Whs
2
h +

1− f

n

H∑
h

Wh(1−Wh)
s2

h

n2
h

.

3Kish, 36.
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Survey Details
Now that the theory behind survey sampling has been covered in depth we
can move on to the details of the survey and the data itself. In this paper I
will examine the data corresponding to two different questions on the senior
survey. One of the questions gathers quantitative data from the student
and one of the questions gathers categorical data from the student. The
analysis of the quantitative question just requires that the sample mean and
the variance of the sample mean be calculated as documented in the previous
section. The analysis of the categorial question is a bit more difficult, since we
do not have numbers to work with. Hence, we will transform the categorical
question into a binary event. That is, for the given question one answer to
the question will be categorized as a success and will be assigned the value 1,
and the other answer will be categorized as a failure and will be assigned the
value 0. After this adjustment is made the sample mean and variance of the
sample mean can easily be calculated because the responses are quantitative.
The two questions on the survey that I will examine are presented below.

Question 1. During the time school is in session, about how many hours
a week do you usually spend outside of class on activities related to your
academic program, such as studying, writing, reading, lab work, rehearsing,
etc.?
(A) 5 or fewer hours a week
(B) 6-10 hours a week
(C) 11-15 hours a week
(D) 16-20 hours a week
(E) 21-25 hours a week
(F) 26-30 hours a week
(G) more than 30 hours a week

The responses to the question are assigned a single numerical value ac-
cording to the average of the high and low numbers in the range. Thus, if
a student responds that he studies 11-15 hours a week, then we will denote
that as 13 hours of study. 35 hours will be assigned for the ‘more than 30
hours’ response.

Question 2. How often have you used a computer to produce visual displays
of information (charts, graphs, spreadsheets, etc.)?
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(A) Very Often
(B) Often
(C) Occasionally
(D) Never

Question 2 involves categorical data. For this question I have combined
responses (A) and (B) and will from now on call them “frequent” responses,
and I have combined responses (C) and (D) and will refer to them as “infre-
quent” responses. This was done to create a binomial distribution instead of
a multinomial distribution. A binomial distribution works well for this ques-
tion because it is simple and it gives us a pretty good idea of the percentage
of students who use visual displays on a regular basis. Frequent responses
are assigned a value of 1 and infrequent responses are assigned a value of 0.
The sample mean for this question is a percentage; for example, a sample
mean of .6 would indicate that 60% of those surveyed produce visual displays
frequently.

Now before we can begin to analyze the data for each question, I must
explain how strata were introduced to the data. To refresh, we are using
strata to correct for possible oversampling. It would seem likely that science
majors tend to study more than all other majors. Therefore, if too many
science majors were selected to take part in the survey, then it would appear
that the entire student body studies more than it really does. Students will
be split into three different strata: science, business, and other. If a student
is a double major, then he or she will be assigned to the science group if either
major is science. If the student is a double major and one of the majors is
business, then he or she will be assigned to the business group unless the
other major is science. Finally, if a student is double majoring in two other
disciplines, then he or she will remain in the other category. Figure 3 provides
the number of students in each stratum in both the population and in the
sample. The “Prop” row provides the proportion of students in that stratum
that were sampled. If the Prop value is greater than Wh, then that stratum
has been oversampled. For example, Figure 3 shows that science majors were
oversampled every year. It is possible that the sample mean of hours studied
without stratification would be biased in those years due to science majors
studying more (as we will see later). Likewise, business and science majors
tend to use a lot of graphs and charts, so if too many of them are selected
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Student Information
Business Science Other

2001 2003 2005 2001 2003 2005 2001 2003 2005
Nh 166 147 138 111 117 127 220 261 271
nh 109 62 46 62 71 60 88 47 54
Wh 0.33 0.28 0.26 0.22 0.22 0.24 0.44 0.50 0.51
Prop 0.42 0.34 0.29 0.24 0.39 0.38 0.34 0.26 0.34

Figure 3: Student Demographics by Major

Hours Studied
2001 2003 2005

ȳsrvy 14.31 14.55 17.14
Var(ȳsrvy) .1125 .2403 .3365
std dev(ȳsrvy) .3354 .4902 .5801
n 259 180 160
f 0.52 0.34 0.30

Figure 4: Question 1, No Strata

then it will appear that more students utilize these visual aids than they
do in reality. Figure 3 also shows that Business majors were oversampled
in all years. Couple that with the oversampling of science majors in those
years as well, and there could be significant bias in the sample mean without
post-stratification. These questions should provide fruitful results for post-
stratification.

Data Analysis: Question 1
The statistics for Question 1 without stratification are presented in Figure 4
for the three years in which this survey was given. Figure 4 illustrates a clear
upward trend in the hours studied over these three years, in the absence of
post-stratification. However, we must be careful not to assume that this is
the actual trend without first exploring how the introduction of strata af-
fects the results. Figure 5 provides all the valuable information for the three
separate strata and it also provides the key statistics for each stratum.
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Hours Studied by Major
Business Science Other

2001 2003 2005 2001 2003 2005 2001 2003 2005
ȳh 12.39 13.10 15.04 16.98 17.27 20.90 14.81 12.36 14.74
std dev(ȳh) 0.414 0.777 0.884 0.716 0.664 0.911 0.598 0.724 0.894
s2

h 54.43 64.78 53.91 72.05 79.54 94.29 52.36 30.02 53.86
nh 109 62 46 62 71 60 88 47 54
Wh 0.33 0.28 0.26 0.22 0.22 0.24 0.44 0.50 0.51
Prop 0.42 0.34 0.29 0.24 0.39 0.38 0.34 0.26 0.34

Figure 5: Question 1, Stratified

Comparing Hours Studied
2001 2003 2005

ȳps 14.49 13.66 16.28
ȳsrvy 14.31 14.55 17.14
Var(ȳps) .1062 .1855 .2783
Var(ȳsrvy) .1125 .2403 .3365
std dev(ȳps) .3259 .4306 .5275
std dev(ȳsrvy) .3354 .4902 .5801

Figure 6: Question 1, Post-Stratified and Non-Stratified

Figure 5 shows that there is a defined upward trend in hours studied for
business and science majors, but the results do not translate to the other
majors. Hours studied for other majors declined in 2003 and rose in 2005
to reach roughly the 2001 mark. The “Prop” row provides data on the pro-
portion of each type of major sampled and the Wh row provides data on the
proportion of each type of major in the population. Looking at how the two
values differ for a given year and major will tell us if a major was oversam-
pled for a particular year. For example, it appears that science majors were
oversampled in 2003, while other majors were undersampled. The ramifica-
tions of this are addressed in Figure 6, which compares the statistics using
post-stratification and no stratification.

20



After weighting the stratified means we see that the average number of
hours for 2003 has decreased due to the oversampling mentioned earlier. We
see the similar thing happening in 2005, science majors were again oversam-
pled and other majors were undersampled. Hence, the average hours studied
decreases after stratification because science majors, on average, study more
than other majors.

One interesting thing to note is that the variance of the sample mean ac-
tually decreases after stratification. From equations (7) and (8), we see that
the variance for a post-stratified sample mean (non-proportionate sample) is
larger than the variance of sample mean with proportionate sampling because
of the extra term on the end. However, the extra term is divided by n2

h and
the number of students sampled from every major is quite high, so that num-
ber should be very large, making the extra term basically zero. Therefore, the
variance for post-stratification for this question would be roughly the same as
the variance of a proportionate sample. The variance for post-stratification
is lower than the variance without weights because science majors were over-
sampled all three years and science majors have the highest variance.

Hence, for Question 1 we can conclude that post-stratification provides a
more accurate sample mean, because it takes into account oversampling and
undersampling by correcting the bias in the sample mean, it provides a vari-
ance that is roughly the same as would be the variance of a proportion-
ate sample, and it provides a variance that is better than the case without
weights.

Furthermore, we can conclude for the entire senior population that studying
time rose to its highest level of the three years in 2005. We can do a z-test
on the difference between the two means to determine if the difference in
hours studied in 2001 and 2005 is statistically significant. The z value can
be determined as follows:

z =
ȳps2005 − ȳps2001√

V ar(ȳps2005) + V ar(ȳps2001)
.

Gathering the variables from Figure 6,

z =
16.28− 14.49√
.1062 + .2783

= 2.887.
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Proportion of Students Producing Visual Displays
2001 2003 2005

ȳsrvy 0.680 0.730 0.720
Var(ȳsrvy) 0.00040 0.00074 0.00087
std dev(ȳsrvy) 0.020 0.027 0.029
n 259 178 164
f 0.52 0.34 0.31

Figure 7: Question 2, No Strata

The z-value can then be compared with a normal distribution to determine
the rejection region for the two tailed test. We can reject the hypothesis that
the two means are the same at the 1% level. We can conclude that we are
reasonably certain that the average hours studied in 2005 is higher than in
2001.

Data Analysis: Question 2
The statistics for Question 2 without stratification are outlined in Figure 7.
A brief glance at the data reveals that apparently students in 2003 and 2005
produced and used visual displays more often than did students in 2001. This
seems logical. More computers are available on campus now than in 2001.
Computers are in most classrooms now enabling Power Point presentations
for in class presentations. Furthermore, students have probably begun to
use visual displays much more often in response to the increased demand by
employers of science and business majors for students to have knowledge of
these skills. However, we must be very careful not to interpret the results
from Figure 7 as proof that students are using visual displays more now than
in 2001. After all, business and science students are going to use visual dis-
plays much more than other majors. Business majors routinely give power
point presentations and many science majors work will graphs on a daily
basis and use spreadsheets routinely. Thus, this is an excellent question to
see how, or if, post-stratification alters the results. Figure 8 illustrates the
statistics for Question 2 by stratum. Figure 8 provides some revealing in-
formation. The proportion of science majors who produced visual displays
in 2005 is roughly the same proportion as 2001. Similarly, the proportion of
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Visual Displays Produced by Major
Business Science Other

2001 2003 2005 2001 2003 2005 2001 2003 2005
ȳh 0.76 0.75 0.83 0.85 0.80 0.85 0.45 0.59 0.46
std dev(ȳh) 0.024 0.042 0.044 0.030 0.030 0.033 0.041 0.066 0.061
s2

h 0.18 0.19 0.14 0.13 0.16 0.13 0.25 0.25 0.25
nh 109 61 48 62 71 62 88 46 54
Wh 0.33 0.28 0.26 0.22 0.22 0.24 0.44 0.50 0.51
Prop 0.42 0.34 0.29 0.24 0.40 0.38 0.34 0.26 0.33

Figure 8: Question 2, Stratified

Comparing Hours Studied
2001 2003 2005

ȳps 0.646 0.682 0.651
ȳsrvy 0.680 0.730 0.720
Var(ȳps) 0.00037 0.00079 0.00082
Var(ȳsrvy) 0.00040 0.00074 0.00087
std dev(ȳps) 0.019 0.028 0.0287
std dev(ȳsrvy) 0.020 0.027 0.0295

Figure 9: Question 1, Post-Stratified and Non-Stratified

other majors utilizing visuals in 2005 is roughly the same as the proportion
in 2001. It appears that increase from 2001 to 2005 is due to a sharp rise
in business students who say that they produce visual displays more often.
The rise in ȳsrvy in 2003 appears to be due to other majors producing visual
displays more frequently. Figure 9 compares the results of post-stratification
to the original statistics without stratification. Figure 9 runs counter to the
earlier theory that students produced visual displays more often in 2005 than
they did in 2001. Looking at the weights and proportions in Figure 8 shows
that the decrease in ȳps in 2005 can be attributed to the fact that science
majors were oversampled in 2005 and other majors were undersampled.

Once again, the variance for post-stratification is below or near the variance
without stratification. Thus, post-stratification provides insightful analysis
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for Question 2 as well. Post-stratification provides a better estimate of the
mean of the population. We will use the values in Figure 9 to formulate a
z-value to determine if the proportion in 2001 and 2005 are different.

z =
ȳps2005 − ȳps2001√

V ar(ȳps2005) + V ar(ȳps2001)
=

.651− .646√
.00082 + .00037

= 0.145

We cannot reject the hypothesis that the proportions in 2001 and 2005 are
different even at the 10% level. Finally, we will use a z-test one last time to
determine if the proportions in 2003 and 2005 might be different.

z =
ȳps2005 − ȳps2003√

V ar(ȳps2005) + V ar(ȳps2003)
=

.651− .682√
.00082 + .00079

= −0.773

Again, we cannot reject the hypothesis that the proportions in 2003 and 2005
are different even at the 10% level. Thus, using post-stratification we are not
able to determine if Trinity students are producing more visual images or
not. However, post-stratification still has its benefit because it provides an
unbiased estimate of the mean. Post-stratification provides better estimates
of the population, even though we could not detect if the proportion was
rising or falling.

Conclusion
Post-stratification can be a very valuable tool to provide better estimates of
a population if creating a proportionate sample is costly. As we have seen
the benefits of post-stratification are maximized when a large sample from
each stratum is collected. The large sample reduces, or even eliminates, the
extra term in the variance for a post-stratified sample. Post-stratification
analysis provided valuable insight for the senior survey because the number
of students in each stratum was sufficiently large.

Further research can investigate the benefits of post-stratification for the
senior survey with more refined strata, perhaps individual majors. Since
there are some majors with few students it is plausible that the variance for
the post-stratified sample mean will be much larger than the sample mean
without stratification.
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