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1 Introduction

In this note we try to simplify a messy topic usually covered in an elementary differ-

ential equations course. The method of Frobenius is a way to solve equations of the

form

x2.˛0 C ˛1x/y00 C x.ˇ0 C ˇ1x/y0 C .
0 C 
1x/y D 0; (1)

where ˛i ; ˇi , and 
i are constants and ˛0 ¤ 0. Important examples are

x2y00 C xy0 C .x2 � �2/y D 0 and xy00 C .1 � x/y0 C �y D 0;

where � and � are constants, and multiplying the second equation through by x puts it

in the form (1). The first is Bessel’s equation, named after the German mathematician

and astronomer Frederick Wilhelm Bessel (1784-1846), and the second is Laguerre’s

equation, named after the French mathematician Edward Nicholas Laguerre (1834-

1886), who contributed extensively to the theory of infinite series.

The method is named after its inventor, Ferdinand George Frobenius (1849–1917),

a professor at the University of Berlin. Frobenius developed it in his doctoral thesis,

written under the direction of Karl Weierstrass (1815-1897), one of the founders of the

theory of functions of a complex variable. Frobenius studied more general problems

(for example, see [1]–[4]), but most equations treated by his method in elementary

courses can be written as in (1).

If ˛1 D ˇ1 D 
1 D 0 then (1) reduces to

˛0x2y00 C ˇ0xy C 
0y D 0;

which is called Euler’s equation in honor of Leonhard Euler (1707-1783), a Swiss

mathematician who made important contributions to many areas of mathematics and

is considered to be one of the greatest mathematicians of all time. We don’t need the

method of Frobenius to solve Euler’s equation. In any elementary differential equations

textbook you’ll see that its general solution is determined by the zeros of

p0.r/ D ˛0r.r � 1/ C ˇ0r C 
0 D ˛0.r � r1/.r � r2/;

which is called the indicial polynomial of (1). Specifically, the general solution of

Euler’s equation is

y D

(
c1xr1 C c2xr2 if r1 ¤ r2;

xr1.c1 C c2 ln x/ if r1 D r2:
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Therefore we assume that at least one of ˛1, ˇ1, and 
1 is nonzero, and we define

p1.r/ D ˛1r.r � 1/ C ˇ1r C 
1:

In most textbooks it is assumed that r1, r2, and the constants in (1) are real numbers,

but this doesn’t simplify matters, so we’ll allow them to be complex.

If r1 �r2 is not an integer then the method of Frobenius yields solutions of the form

(a) y1 D

1X

nD0

anxnCr1 and (b) y2 D

1X

nD0

bnxnCr2 ;

where the series converge in some interval containing the origin. If r1 D r2 then (a)

and (b) are the same, and finding a second solution that isn’t just a multiple of the

first is somewhat complicated and treated incompletely in most textbooks. Worse, if

r1 D r2 C k where k is a nonnegative integer then (1) has a solution of the form (a),

but not (b), and methods usually presented for finding a second solution are a mystery

to most students. We will try to clarify all three cases.

For brevity, when we say that a y2 is a second solution of (1), we mean that y2 is not

a constant multiple of y1. Then every solution of (1) can be written as y D c1y1 Cc2y2

where c1 and c2 are constants.

2 Preliminaries

For convenience, let

Ly D x2.˛0 C ˛1x/y00 C x.ˇ0 C ˇ1x/y0 C .
0 C 
1x/y;

so we want find y such that Ly D 0. A series

y.x; r/ D

1X

nD0

an.r/xnCr

where r and a0.r/, a1.r/, . . . , are independent of x can be differentiated term by term

with respect to x, so

y0.x; r/ D

1X

nD0

.nCr/an.r/xnCr�1 and y00.x; r/ D

1X

nD0

.nCr/.nCr�1/an.r/xnCr�2:

Therefore

˛i x
2y00.x; r/ C ˇi xy0.x; r/ C 
i y.x; r/ D

1X

nD0

pi.n C r/an.r/xnCr ; i D 1; 2;
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so

Ly.x; r/ D

1X

nD0

p0.n C r/an.r/xnCr C

1X

nD0

p1.n C r/anxnCrC1

D

1X

nD0

p0.n C r/an.r/xnCr C

1X

nD1

p1.n C r � 1/an�1.r/xnCr

D p0.r/a0.r/xr C

1X

nD1

Œp0.n C r/an C p1.n C r � 1/an�1 �xnCr :(2)

We want to find r and a0.r/, a1.r/, . . . , so that Ly.x; r/ D 0 for all x. For a big step

in the right direction, let r be a complex number such that p0.n C r/ is nonzero for all

positive integers n, and define

a0.r/ D 1 and an.r/ D �
p1.n C r � 1/

p0.n C r/
an�1.r/; n � 1: (3)

Then (2) and (3) imply that

Ly.x; r/ D p0.r/xr : (4)

Applying the second equality in (3) repeatedly yields

a1.r/ D �
p1.r/

p0.r C 1/
; a2.r/ D

p1.r C 1/p1.r/

p0.r C 2/p0.r C 1/
;

and, for n � 2,

an.r/ D .�1/n p1.n C r � 1/ � � � p1.r C 1/p1.r/

p0.n C r/ � � � p0.r C 2/p0.r C 1/
;

which we write more compactly as

an.r/ D .�1/n

Qn
j D1 p1.j C r � 1/
Qn

j D1 p0.j C r/
; n � 0; (5)

where
0Y

j D1

p1.j C r � 1/ D

0Y

j D1

p0.j C r/ D 1:

We’ll see that it is useful to define

´.x; r/ D
@y

@r
.x; r/ D y.x; r/ ln x C

1X

nD1

a0

n.r/xnCr :

(Since a0.r/ D 1 for all r , a0

0.r/ D 0.) Then (4) implies that

L´.x; r/ D L
@y

@r
.x; r/ D

@

@r
Ly.x; r/ D p0

0.r/xr C p0.r/xr ln x: (6)
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3 Case 1: r1 � r2 ¤ an integer

If r1 �r2 is not an integer then p0.nCr1/ and p0.nCr2/ are both nonzero for all n � 1.

Therefore (4) implies that Ly.x; r1/ D Ly.x; r2/ D 0 (since p.r1/ D p.r2/ D 0), so

y1 D y.x; r1/ D

1X

nD0

an.r1/xnCr1 (7)

and

y2 D y.x; r2/ D

1X

nD0

an.r2/xnCr2 (8)

are linearly independent solutions of (1).

Example 1 For the equation

3x2y00 C x.1 C x/y0 � .1 C 3x/y D 0;

p0.r/ D .r � 1/.3r C 1/; p1.r/ D r � 3;

r1 D 1, and r2 D �1=3. From (3),

an.r/ D �
n C r � 4

.n C r � 1/.3n C 3r C 1/
an�1.r/:

Hence

an.1/ D �
n � 3

n.3n C 4/
an�1.1/ and an.�1=3/ D �

3n � 13

3n.3n � 4/
an�1.�1=3/; n � 1;

so

y1 D x C
2

7
x2 C

1

70
x3 and y2 D

1X

nD0

.�1/n

3nnŠ

0
@

nY

j D1

3j � 13

3j � 4

1
A xn�1=3:

4 Case 2: r1 D r2

If r1 D r2 then (7) and (8) define the same solution, which we will call y1. However,

in this case

p.r/ D ˛0.r � r1/2 and p0.r/ D 2˛0.r � r1/; so p.r1/ D p0.r1/ D 0:

Therefore (6) implies that

y2 D ´.x; r1/ D y1 ln x C

1X

nD1

a0

n.r1/xnCr1

is a second solution if (1).
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To use this result we must compute a0

n.r1/ for all n � 0. Since a0.r/ D 1 for all r ,

a0

0.r/ D 0. If

p0.j C r/ ¤ 0 and p1.r C j � 1/ ¤ 0; 1 � j � m;

(the first inequality for all j with r1 D 1), then (5) implies that

ln jan.r/j D

nX

j D1

ln

ˇ̌
ˇ̌p1.j C r � 1/

p0.j C r/

ˇ̌
ˇ̌ D

nX

j D1

.ln jp1.j Cr�1/j�ln jp0.j Cr/j/; 1 � n � m:

Differentiating this yields

a0

n.r/

an.r/
D

nX

j D1

bj .r/ (9)

where

bj .r/ D
p0.j C r/p0

1.j C r � 1/ � p0

0.j C r/p1.j C r � 1/

p1.j C r � 1/p0.j C r/
; 1 � j � m: (10)

Hence,

a0

n.r/ D an.r/

nX

j D1

bj .r/; 1 � j � m: (11)

Therefore, if p0.r/ D ˛0.r � r0/2 and p1.j C r1 � 1/ ¤ 0 for all j � 1, we can let m

be arbitrary in (10), so

y2 D

1X

nD0

an.r1/

0
@

nX

j D1

bj .r1/

1
A ´nCr1

is a second solution of (1).

Example 2 For the equation

x2.1 C 2x/y00 C x.3 C 5x/y0 C .1 � 2x/y D 0

p0.r/ D .r C 1/2; p1.r/ D .r C 2/.2r � 1/;

and r1 D r2 D �1. From (3) and (5),

an.r/ D �
2n C 2r � 3

n C r C 1
an�1.r/; n � 0;

so

an.r/ D .�1/n

nY

j D1

2j C 2r � 3

j C r C 1
; n � 0:

Therefore

an.�1/ D
.�1/n

nŠ

nY

j D1

.2j � 5/; n � 0;
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and

y1 D

1X

nD0

.�1/n

nŠ

0
@

nY

j D1

.2j � 5/

1
A xn�1:

If an.r/ ¤ 0 then

ln jan.r/j D

nX

j D1

.ln j2j C 2r � 3j � ln jj C r C 1j/ ;

so

a0

n.r/

an.r/
D

nX

j D1

�
2

2j C 2r � 3
�

1

j C r C 1

�
D

nX

j D1

5

.j C r C 1/.2j C 2r � 3/

Hence

a0

n.�1/ D an.�1/

nX

j D1

5

j.2j � 5/
;

so

y2 D y1 ln x C 5

1X

nD1

.�1/n

Qn
j D1.2j � 5/

nŠ

0
@

nX

j D1

1

j.2j � 5/

1
A xn�1:

The method we used to obtain (11) is called logarithmic differentiation. It doesn’t

work if p1 contains a factor of the form r � r1 � m where m is a nonnegative integer,

since this puts a zero in the denominator of (10) with r D r1 and j D m C 1. If m is

the least nonnegative integer for which p has this property, then either

p1.r/ D 
1.r � r1 � m/ where 
1 ¤ 0 (12)

or

p1.r/ D ˛1.r � r1 � m/.r � s/ where ˛1 ¤ 0 and s ¤ r1 C `; 0 � ` � m� 1: (13)

In either case (5) implies that

an.r1/ D

8
<̂

:̂
.�1/n

Qn
j D1 p1.j C r1 � 1/
Qn

j D1 p0.j C r1/
if 0 � j � m;

0 if n > m;

so

y1 D

mX

nD0

an.r1/xnCr1 :

To find y2 we must compute a0
n.r1/ for all n � 1. We can use logarithmic differentia-

tion as in (9) and (10) for 1 � n � m, since p1.j C r1 � 1/ ¤ 0 for 1 � j � m. If

n > m then (5) and (12) or (13) imply that

an.r/ D .r � r1/bn.r/ if n > m;
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with

bn.r/ D .�1/n
bQn

j D1p1.j C r � 1/
Qn

j D1 p0.j C r/
;

where the “ b ” over the product symbol in the numerator indicates that the factor

.r � r1/ in p1.m C r/ if n > m is omitted. Therefore

a0

n.r/ D .bn.r/ C .r � r1/b0

n.r//; n > m;

so

a0

n.r1/ D bn.r1/; n > m:

If (13) holds with s D r1 C q where q is an integer � m, then bn.r/ has the factor

r � r1 if n > q, so a0

n.r1/ D 0 if n > q.

Example 3 For the equation

x2.1 � x/y00 C x.3 � 2x/y0 C .1 C 2x/y D 0;

p0.r/ D .r C 1/2; p1.r/ D �.r � 1/.r C 2/;

and r1 D r2 D �1. From (3) and (5),

an.r/ D
n C r � 2

n C r C 1
an�1.r/; so an.r/ D

nY

j D1

j C r � 2

j C r C 1
; n � 0:

In particular,

a1.r/ D
r � 1

r C 2
and a2.r/ D

r.r � 1/

.r C 2/.r C 3/
;

so a1.�1/ D �2, a2.�1/ D 1, and an.�1/ D 0 if n � 3. Therefore

y1 D .1 � x/2=x:

Also,

a0

1.r/ D
3

.r C 2/2
and a0

2.r/ D
6.r2 C 2r � 1/

.r C 2/2.r C 3/2
;

so a0

1.�1/ D a0

2.�1/ D �3. If n � 3, then

an.r/ D .r C 1/bn.r/ where bn.r/ D
r.r � 1/

.n C r � 1/.n C r/.n C r C 1/
;

so

a0

n.�1/ D bn.�1/ D
2

.n � 2/.n � 1/n
; n � 3:

Therefore

y2 D y1 ln x C 3 � 3x C 2

1X

nD3

1

.n � 2/.n � 1/n
xn�1:
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5 Case 3: r1 � r2 D a positive integer

If r1 � r2 D k is a positive integer then p0.n C r1/ ¤ 0 for n � 1, so y1 in (7) is a

solution of (1). However, y2 in (8) is undefined, since p0.r2 C k/ D p0.r1/ D 0. In

this case we construct a second solution of (1) as a linear combination of

w1 D ´.x; r1/ D y1.x/ ln x C

1X

nD0

a0

n.r1/xnCr1

and

w2.x/ D

k�1X

nD0

cnxnCr2 ; n � 1; (14)

for suitably chosen c0, . . . , ck�1.

From (6),

Lw1 D p0

0.r1/ D ˛0.0/.r1 � r2/ D k˛0; (15)

As in the proof of (2),

Lw2.x/ D

k�1X

nD0

p0.n C r2/cnxnCr2 C

k�1X

nD0

p1.n C r2/cnxnCr2C1

D

k�1X

nD0

p0.n C r2/cnxnCr2 C

kX

nD1

p1.n C r2 � 1/cn�1xnCr2

D p0.r2/c0xr2 C

k�1X

nD0

Œp0.n C r2/cn C p1.n C r2 � 1/cn�1� xnCr2

Cp1.k C r2 � 1/ck�1xkCr2 :

Therefore, if we define

c0 D 1 and cn D �
p1.n C r2 � 1/

p0.n C r2/
cn�1; 1 � n � k � 1

(we can’t let n D k because k C r2 D r1 and p0.r1/ D 0), then

cn D .�1/n

Qn
j D1 p1.j C r2 � 1/
Qn

j D1 p0.j C r2/
; 0 � n � k � 1; (16)

and, since p0.r2/ D 0,

Lw2 D p1.k C r2 � 1/ck�1xkCr2 D p1.r1 � 1/ck�1xr1:

This and (15) imply that if C is any constant, then

L.w2 C Cw1/ D Œp1.r1 � 1/ck�1 C Ck˛0� xr1:

Therefore, if

C D �
p1.r1 � 1/ck�1

k˛0

(17)

then y2 D w2 C Cw1 is a solution of (1).
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Example 4 For the equation

x2y00 C x.1 � 2x/y0 � .4 C x/y D 0;

p0.r/ D .r � 2/.r C 2/; p1.r/ D �2r � 1;

r1 D 2, r2 D �2, and k D r1 � r2 D 4. From (3) and (5),

an.r/ D
2j C 2r � 1

.j C r � 2/.j C r C 2/
an�1.r/; n � 1; (18)

and

an.r/ D

nY

j D1

2j C 2r � 1

.j C r � 2/.j C r C 2/
; n � 0; (19)

if r ¤ �2. Therefore

an.2/ D
1

nŠ

nY

j D1

2j C 3

j C 4
; n � 0;

so

y1 D

1X

nD0

1

nŠ

0
@

nY

j D1

2j C 3

j C 4

1
A xnC2:

From (16),

cn D
1

nŠ

nY

j D1

2j � 5

j � 4
; 0 � j � 3;

so

c0 D 1; c1 D 1; c2 D
1

4
; and c3 D �

1

12
:

Therefore, from (14),

w2 D x�2

�
1 C x C

1

4
x2 �

1

12
x3

�
:

From (17) and (18) with r1 D 2 and r2 D �2,

C D �
p1.1/c3

4
D �1=16:

From (19) and logarithmic differentiation,

a0

n.r/ D �2an.r/

nX

j D1

j 2 C j.2r � 1/ C r2 � r C 4

.j C r � 2/.j C r C 2/.2j C 2r � 1/
; n � 1;

so

a0

n.2/ D �2an.2/

nX

j D1

j 2 C 3j C 6

j.j C 4/.2j C 3/
; n � 1:
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Therefore

y2 D x�2

�
1 C x C

1

4
x2 �

1

12
x3

�

�
1

16
y1 ln x C

1

8

1X

nD1

1

nŠ

0
@

nY

j D1

2j C 3

j C 4

1
A

0
@

nX

j D1

j 2 C 3j C 6

j.j C 4/.2j C 3/

1
A xnC2:
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