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UNPUBLISHED NOTE

Abstract. It is shown that a formula of Gohberg and Semencul for the inverse

of a Toeplitz matrix is equivalent to an earlier formula of the author, and that a

similar formula of Heinig follows from a formula of the author for the inverse of a

Hankel matrix.

This manuscript was submitted for publication in Linear Algebra and Its Ap-

plications in 1989 or 1990 with the title “A note on Toeplitz Inversion” Formulas.”

Two referee reports essentially said that the connection between my Toeplitz inver-

sion algorithm (1964) and the Gohberg-Semencul (1972) formula for the inverse of

a Toeplitz matrix was well known and I should therefore shorten the paper to fo-

cus on the connection between my Hankel inversion algorithm and Heinigs formula

for the inverse of a Toeplitz matrix. This struck me as strange, since most papers

citing the Gohberg-Semencul formula up until that time either avoided mentioning

my inversion algorithm altogether or were vague on its main point, which is cen-

tral to the Gohberg-Semencul formula: If Tn is invertible and det(Tn−1) 6= 0 then

T−1
n is completely determined by its first row and column by means of a formula

stated explicitly in the last four equations of my paper, which are computationally

equivalent to the Gohberg-Semencul formula. However, I yielded to the referees and
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the result was “A note on a Toeplitz inversion formula,” Linear Algebra Appl. 129

(1990), 55-62.

TEXT OF AN EMAIL MESSAGE SENT TO

LEONID LEHRER, VADIM OLSHEVSKY, AND ILYA SPITKOVSKY ON MARCH 31, 2011

I write concerning two paragraph that I read in the Amazon.com preview of

Convolution Equations and Singular Integral Operators (Operator Theory: Ad-

vances and Applications, 2010, Volume 206), concerning the connection between

the Gohberg-Semencul formula (1972) and my Toeplitz inversion algorithm (1964):

“At the time of the publication of [GS72] the authors were unaware of the

recursive inversion algorithm that was derived earlier in [Tre64] for the case of

positive definite Toeplitz matrices. The paper [Tre64] also presents [without a

proof] a generalization to non-Hermitian matrices, but it is stated that all principal

minors have to be nonzero. Although the Gohberg-Semencul formula is absent in

[Tre64], it can be derived from the recursion in [Tre64], at least for the special cases

considered there.”

As for “[without a proof]:”

In [Tre64, Section 3] I stated that ”The derivation of the algorithm follows

the same lines as in the Hermitian case and will be omitted.” Surely you must

have made similar statements where appropriate in your own published papers.

This remark is clearly intended to create the impression that the non-Hermitian

algorithm was in some way not on solid ground until [GS72] appeared. Sorry, that

doesn’t work: S. Zohar presented a detailed derivation of the general algorithm

in “Toeplitz matrix inversion: the algorithm of W. F. Trench”, (Journal of the

Association for Computing Machinery 16 (1969) 592–601), three years before the

publication of [GS72].

As for “it is stated that all principal minors have to be nonzero” and “at least
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for the special cases considered there:”

With your collective expertise in this field you certainly know that the as-

sumption concerning nonzero principal minors has nothing to do with the Gohberg-

Semencul formula. I imposed it to support the O(n2) Levinson-type recursion that

I used to compute the first and last columns of T−1
n . Having accomplished this,

the rest of the inverse is computed from the last four equations in [Tre64], which

are computationally equivalent to the Gohberg-Semencul. This method works if

the upper left corner entry of Tn is nonzero, which is exactly what Gohberg and

Semencul assumed. There are no “special cases” here.

The computational equivalence of my work and the Gohberg-Semencul formula

has been noted by many authors. I will supply specific sources on request. Moreover,

you can read about the equivalence in my technical note “The Relationship between

Trench’s Toeplitz Inversion Algorithm and the Gohberg–Semencul Formula,” which

you can access by simply entering ’Gohberg-Semencul formula’ in any major US

search engine and looking at the first page of returns, or by logging onto

http://ramanujan.math.trinity.edu/wtrench/research/index.shtml

Some months ago I sent this document – with a different title – to Vadim

Olshevsky. I will soon post an update dealing with your comments on my work and

your response to this message.

The fact is this: the Gohberg-Semencul formula is an elegant and important

extension of my algorithm. Perhaps this was not immediately clear, since Gohberg

and Semencul apparently did not know of my paper (published eight years earlier)

or Zohar’s (published three years earlier). However, since you have taken the role

of contemporary chroniclers of a subject with a history going back to 1964, you

have a responsibility for unbiased historical accuracy. You have not fulfilled that

responsibility. This obviously crafted belittling of my work cheapens your tribute
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to a great mathematician.

“Moreover, the second important fact is that it was the form of the Gohberg-

Semencul formula that triggered the development of the inversion of structured

matrices (see the previous section).”

Without claiming credit for “triggering” anything, I submit that my Toeplitz

inversion algorithm has not gone unnoticed, as I hope you can see from the attached

bibliography of over 850 citations and references. I also remind you that my paper

“An algorithm for the inversion of finite Hankel matrices” (SIAM J. Math 1965,

1102-1107) presented an O(n2) Hankel inversion algorithm. In a ”Note on a Toeplitz

inversion formula” (Lin. Alg. Appl. 129, 1990, 55-62, posted on my web page), I

showed that Heinig’s Toeplitz inversion formula (Beitrage zur spektraltheorie von

Operatorbuscheln und zur alge-braischen Theorei von Toeplitzmatizen, Diss. B,

TH KarlMarxStadt 1979) follows from my Hankel inversion algorithm, published

fourteen years earlier.
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A NOTE ON TOEPLITZ INVERSION FORMULAS

William F. Trench

The explicit formulas of Gohberg and Semencul [5] and Heinig [7] for the inverse

of a Toeplitz matrix have important applications and provide theoretical insight into

the properties of Toeplitz matrices. It is well known (see, e.g., [1]-[4], [6],[8],[9]) that

the Gohberg–Semencul formula is closely related to a a recursive formula in [10].

(In fact, the two formulas are equivalent.) Although it does not seem to have been

noted explicitly in the literature, the Heinig formula follows from a formula in [11]

for the inverse of a Hankel matrix. Here we present explicit derivations of these two

connections.

We first consider the Gohberg–Semencul formula.

Theorem 1 [Gohberg–Semencul, 1972]. Suppose that the Toeplitz matrix

Tn = (φr−s)
n
r,s=0

is invertible, and let x0, . . . , xn and y0, . . . , yn be the solutions of the systems

(1)

n
∑

s=0

φr−sxs = δr0, 0 ≤ r ≤ n,

and

(2)
n

∑

s=0

φr−sys = δrn, 0 ≤ r ≤ n.

Suppose also that x0 6= 0, and define

(3) xr = yr = 0 if r < 0 or r > n.
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Let An and Bn be the lower triangular Toeplitz matrices

(4) An = (xr−s)
n
r,s=0, Bn = (yr−s−1)

n
r,s=0,

and let Cn and Dn be the upper triangular Toeplitz matrices

(5) Cn = (yn+r−s)
n
r,s=0, Dn = (xn+r−s+1)

n
r,s=0.

Then

(6) T−1
n = x−1

0 (AnCn −BnDn).

Gohberg and Semencul actually showed that if (1) and (2) have solutions with

x0 6= 0, then Tn is invertible, with inverse as in (6). Since our interest is in the

inversion formula itself, we simplify the presentation by assuming from the outset

that Tn is invertible. A similar comment applies to the Heinig formula, given below.

Denote

T−1
n = (brs)

n
r,s=0.

It is clear from (1) and (2) that (x0, . . . , xn)t and (y0, . . . , yn)t are the first and last

columns of T−1
n . Thus, (6) shows that T−1

n is completely specified by its first and

last columns, provided that x0 6= 0. To facilitate the comparison of Theorem 1

with Theorem 2 (below), we point out that since the inverse of a Toeplitz matrix is

symmetric about its secondary diagonal, an equivalent statement is that T−1
n is in

this case determined by its first row and first column. This is easily made explicit

by replacing r and s by n− r and n− s in (2), to obtain

(7)
n

∑

s=0

φs−ryn−s = δr0, 0 ≤ r ≤ n.

This makes it obvious that (yn, . . . , y0) is the first row of T−1
n . It is also now obvious

that

(8) yn = x0 = b00 = det(Tn−1)/det(Tn);
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hence, assuming that x0 6= 0 is equivalent to assuming that Tn−1 is also invertible.

The following theorem is clearly implicit in results stated in Section 3 of [10].

These results, although stated for general (not necessarily Hermitian) matrices,

are proved in [10] only for the Hermitian case; however, a general proof was later

supplied by Zohar [12].

Theorem 2 [Trench, 1964]. Suppose that Tn and Tn−1 are both invertible,

and let ψ0, . . . , ψn−1 and η0, . . . , ηn−1 be the solutions of the systems

(9)
n−1
∑

s=0

φr−sψs = φr+1, 0 ≤ r ≤ n− 1,

and

(10)
n−1
∑

s=0

φs−rηs = φ−r−1, 0 ≤ r ≤ n− 1.

For convenience, define

(11) ψ−1 = η−1 = −1

and ψr = ηr = 0 if r = n. Then the elements of T−1
n are given by

(12) brs = br−1,s−1 + b00(ψr−1ηs−1 − ηn−rψn−s), 0 ≤ r, s ≤ n,

if we define

(13) b−1,` = b`,−1 = 0, 0 ≤ ` ≤ n.

To deduce Theorem 1 from this, we first observe that the definition (11) and

manipulation of indices enables us to rewrite (9) and (10) as

(14)
n

∑

s=0

φr−sψs−1 = 0, 1 ≤ r ≤ n,
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and

(15)
n

∑

s=0

φs−rηs−1 = 0, 1 ≤ r ≤ n.

With r = 0, the left sides of (14) and (15) both equal −1/x0. To see this for

(14), note that subtracting ψs−1 times column s+ 1 of Tn from the first column of

Tn (1 ≤ s ≤ n) and invoking (9) yields

det(Tn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d φ−1 φ−2 . . . φ−n

0
... Tn−1

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where

d = φ0 −
n

∑

s=1

φ−sψs−1,

so that

det(Tn) = (φ0 −

n
∑

s=1

φ−sψs−1) det(Tn−1);

therefore, from (8) and (11),

(16)
n

∑

s=0

φ−sψs−1 = −1/b00 = −1/x0.

A similar argument applied to T t
n shows that

det(Tn) = (φ0 −
n

∑

s=1

φsηs−1) det(Tn−1);
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therefore

(17)
n

∑

s=0

φsηs−1 = −1/x0.

Now we combine (14) and (16) as

(18)
n

∑

s=0

φr−sψs−1 = −δ0r/x0, 0 ≤ r ≤ n,

and (15) and (17) as

(19)

n
∑

s=0

φs−rηs−1 = −δ0r/x0, 0 ≤ r ≤ n.

Comparing (1) with (18) and (7) with (19) shows that ψj−1 = −xj/x0 and ηj−1 =

−yn−j/x0 (0 ≤ j ≤ n); therefore, (12) can be rewritten in terms of the Gohberg–

Semencul parameters as

(20) brs = br−1,s−1 + x−1
0 (xryn−s − yr−1xn−s+1), 0 ≤ r, s ≤ n.

This equation and (13) are equivalent to the Gohberg–Semencul formula. To see

this, simply perform the matrix operations in (6) and recall (3), (4) and (5) to

obtain

brs = x−1
0

min(r,s)
∑

k=0

(xr−kyn+k−s − yr−k−1xn+k−s+1)

= x−1
0 (xryn−s − yr−1xn−s+1) + x−1

0

min(r,s)
∑

k=1

(xr−kyn+k−s − yr−k−1xn+k−s+1).
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Taking the new summation index k′ = k − 1 in the last sum yields (20).

We now consider the Heinig formula.

Theorem 3 [Heinig, 1979]. Suppose that Tn is invertible, let x0, . . . , xn be

as in Theorem 1, and let z0, . . . , zn be the solution of

(21)
n

∑

s=0

φr−szs = φr−n−1, 0 ≤ r ≤ n,

where φ−n−1 (which does not appear in Tn) is arbitrary. Let xr = 0 if r < 0 or

r > n+ 1,

(22) zn+1 = −1, zr = 0 if r < 0 or r > n+ 1,

and define

Un = (zr−s)
n
r,s=0 and Vn = (zn+r−s+1)

n
r,s=0.

Then

(23) T−1
n = UnDn − AnVn,

where An and Dn are as in Theorem 1.

We will deduce (23) from an inversion formula given in [11] for a Hankel matrix

(24) Hn = (Cr+s)
n
r,s=0.

The following lemma is clearly implicit in the first paragraph of Section 3 of [11].

For the reader’s convenience, we use the notation of that paragraph here.

Lemma 1 [Trench, 1965]. Suppose that the matrix Hn in (24) and its

principal submatrix

Hn−1 = (Cr+s)
n−1
r,s=0
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are both invertible, and let u0,n−1, . . . , un−1,n−1 and u0n, . . . , unn be the solutions

of the systems

(25)
n−1
∑

s=0

Cr+sus,n−1 = −Cn+r, 0 ≤ r ≤ n− 1,

and

(26)
n

∑

s=0

Cr+susn = −Cn+r+1, 0 ≤ r ≤ n,

where C2n+1 in (26) (which does not appear in Hn) is arbitrary. Define

(27) λn = C2n +

n−1
∑

s=0

Cn+sus,n−1,

(28) un,n−1 = un+1,n = 1

and un+1,n−1 = 0. Then

H−1
n = (ars)

n
r,s=0,

where

(29) ars = ar−1,s+1 + λ−1
n (ur,n−1us+1,n − urnus+1,n−1), 0 ≤ r, s ≤ n,

with

(30) a−1,s+1 = ar−1,n+1 = 0, 0 ≤ r, s ≤ n.

By adding us,n−1 times column s (s = 0, . . . , n − 1) of Hn to its last column

and invoking (25), it can be seen that

det(Hn) = λn det(Hn−1);
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hence, our assumptions imply that λn 6= 0, so that the division in (29) is legitimate.

However, to deduce the Heinig formula in complete generality, it is necessary to

eliminate the assumption that Hn−1 is invertible. The following stronger version

of Lemma 1 was motivated by this requirement. It had not occurred to the author

earlier.

Theorem 4. Suppose that Hn in (24) is invertible, and let ξ0, . . . , ξn and

η0, . . . , ηn be the solutions of the systems

(31)
n

∑

s=0

Cr+sξs = δrn, 0 ≤ r ≤ n,

and

(32)
n

∑

s=0

Cr+sηs = −Cn+r+1, 0 ≤ r ≤ n,

where C2n+1 is arbitrary. For convenience, define ξn+1 = 0 and

(33) ηn+1 = 1.

Then H−1
n = (ars)

n
r,s=0, with

(34) ars = ar−1,s+1 + (ξrηs+1 − ηrξs+1), 0 ≤ r, s ≤ n,

subject to (30).

Proof. Comparing (26) and (28) with (32) and (33) shows that

(35) ηs = usn, 0 ≤ s ≤ n+ 1.

From (25), (27) and (28),

n
∑

s=0

Cr+sus,n−1 = δrnλn, 0 ≤ r ≤ n.
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From this and (31),

(36) ξr = λ−1
n ur,n−1, 0 ≤ r ≤ n,

if λn 6= 0. Now (35) and (36) imply that (29) can be rewritten as (34) if Hn and

Hn−1 are both nonsingular. However, the quantities in (31), (32) and (34) are all

continuous functions of C0, . . . , C2n so long as det(Hn) 6= 0; hence, (34) is also valid

for all such that C0, . . . , C2n, including those for which det(Hn−1) may happen to

vanish.

To obtain Theorem 3, we simply rewrite (1) and (21) as

(37)
n

∑

s=0

φn−r−sxs = δrn, 0 ≤ r ≤ n,

and

(38)
n

∑

s=0

φn−r−szs = φ−r−1, 0 ≤ r ≤ n,

and apply Theorem 4 to the Hankel matrix

(39) Hn = (φn−r−s)
n
r,s=0;

i.e., with

C` = φn−`.

Making this substitution into (31) and (32) and comparing the results with (37)

and (38) shows that ξr = xr and ηr = −zr (0 ≤ r ≤ n). Moreover, ηn+1 = −zn+1

by definition (cf. (22) and (33)). Therefore, (34) can be rewritten as

(40) ars = ar−1,s+1 + (xs+1zr − xrzs+1), 0 ≤ r, s ≤ n.

for the Hankel matrix (39). With {ars} as in (40),

n
∑

k=0

arkφn−k−s = δrs, 0 ≤ r, s ≤ n.
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Replacing k by n− k here yields

n
∑

k=0

ar,n−kφk−s = δrs, 0 ≤ r, s ≤ n;

hence, the elements of T−1
n are

(41) brs = ar,n−s.

Finally, replacing s by n− s in (30) and (40) and using (41) shows that

(42) brs = br−1,s−1 + (xn−s+1zr − xrzn−s+1), 0 ≤ r, s ≤ n,

with

(43) b−1,s−1 = br−1,−1 = 0, 0 ≤ r, s ≤ n.

An easy argument like the one used to show that (6) is equivalent to (12) and (13)

confirms that (23) is equivalent to (42) and (43).
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