SPECTRAL DECOMPOSITION OF KAC-MURD0CK-SZEGÖ MATRICES

William F. Trench
Department of Mathematics
Trinity University
San Antonio, Texas, USA
December 2012

1 Introduction

Kac, Murdock, and Szegö [1] showed that the eigenvalues of

$$
K=\left(\rho^{|r-s|}\right)_{r, s=1}^{n}, \quad 0<\rho<1
$$

are

$$
\begin{equation*}
\lambda_{j}=\frac{1-\rho^{2}}{1-2 \rho \cos \theta_{j}+\rho^{2}}, \quad 1 \leq j \leq n \tag{1}
\end{equation*}
$$

where $\theta_{1}, \theta_{2} \ldots, \theta_{n}$ are the zeros of

$$
\begin{equation*}
G(\theta)=\sin (n+1) \theta-2 \rho \sin n \theta+\rho^{2} \sin (n-1) \theta \tag{2}
\end{equation*}
$$

in $(0, \pi)$. They also showed that

$$
\begin{equation*}
\frac{(j-1) \pi}{n+1}<\theta_{j}<\frac{j \pi}{n+1}, \quad 1 \leq j \leq n \tag{3}
\end{equation*}
$$

They did not find the associated eigenvectors. We address this and other elementary properties of K simply for the sake of exposition; there is nothing new here.

Since K is a symmetric Toeplitz matrix, it has $\lceil n / 2\rceil$ linearly independent eigenvectors

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \tag{4}
\end{array}\right]^{T}
$$

such that (a) $x_{r}=x_{n-r+1}, 1 \leq r \leq n$, and $\lfloor n / 2\rfloor$ linearly independent eigenvectors such that that (b) $x_{r}=-x_{n-r+1}, 1 \leq r \leq n$. Vectors that satisfy (a) are symmetric and those that satisfy (b) are skew-symmetric. In the terminology we introduced in [3], an eigenvalue associated with a symmetric eigenvector is even and an eigenvector associated with a skew-symmetric eigenvector is odd. In [4] we showed that if

$$
t_{r}=\frac{1}{\pi} \int_{0}^{\pi} f(\theta) \cos r \theta d \theta, \quad 0 \leq r \leq n-1,
$$

and f is nonincreasing, then $T=\left[t_{r-s}\right]_{r, s=1}^{n}$ has distinct eigenvalues $\lambda_{1}>\lambda_{2}>$ $\cdots>\lambda_{n}$, where $\lambda_{2 k-1}$ is even, $1 \leq k \leq\lceil n / 2\rceil$, and $\lambda_{2 k}$ is odd, $1 \leq k \leq\lfloor n / 2\rfloor$. Based on numerical experiments, Laurie [2] conjectured that the components of a λ_{j}-eigenvector have exactly $j-1$ changes in sign. A matrix with this property is oscillatory. Here we show explicitly that K has these properties.

2 Results

Obviously, λ is an eigenvalue of K if and only if $\lambda=1 / \mu$, where μ is an eigenvalue of

$$
K^{-1}=\frac{1}{1-\rho^{2}}\left[\begin{array}{rcccccc}
1 & -\rho & 0 & \cdots & 0 & 0 & 0 \\
-\rho & 1+\rho^{2} & -\rho & \cdots & 0 & 0 & 0 \\
0 & -\rho & 1+\rho^{2} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1+\rho^{2} & -\rho & 0 \\
0 & 0 & 0 & \cdots & -\rho & 1+\rho^{2} & -\rho \\
0 & 0 & 0 & \cdots & 0 & -\rho & 1
\end{array}\right] .
$$

Denote

$$
a=\frac{1+\rho^{2}}{1-\rho^{2}} \quad \text { and } \quad b=\frac{\rho}{1-\rho^{2}}
$$

Then (4) is a μ-eigenvector of K^{-1} - and therefore a $1 / \mu$-eigenvector of K - if and only if

$$
\begin{equation*}
-b x_{r-1}+(a-\mu) x_{r}-b x_{r+1}=0, \quad 1 \leq r \leq n \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{0}=\rho x_{1} \quad \text { and } \quad x_{n+1}=\rho x_{n} \tag{6}
\end{equation*}
$$

The general solution of (5) is

$$
\begin{equation*}
x_{r}=c\left(\alpha \zeta^{r}+\beta \zeta^{-r}\right), \quad 1 \leq r \leq n \tag{7}
\end{equation*}
$$

where ζ is a zero of

$$
p(z)=-b z^{2}+(a-\mu) z-b=-b(z-\zeta)(z-1 / \zeta)
$$

and the associated eigenvalue of K^{-1} is

$$
\mu=a-b(\zeta+1 / \zeta)
$$

Since μ is real, $\zeta=e^{i \theta}$; hence $\mu=a-2 b \cos \theta$ is an eigenvalue of K^{-1} and

$$
\frac{1}{\mu}=\frac{1}{a-2 b \cos \theta}=\frac{1-\rho^{2}}{1-2 \rho \cos \theta+\rho^{2}}
$$

is an eigenvalue of K.
From (6) and (7),

$$
\left[\begin{array}{cc}
1-\rho \zeta & 1-\rho / \zeta \tag{8}\\
\zeta^{n+1}-\rho \zeta^{n} & \zeta^{-n-1}-\rho \zeta^{-n}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The determinant of this matrix is

$$
D(\zeta)=\zeta^{-n-1}(1-\rho \zeta)^{2}-\zeta^{n+1}(1-\rho / \zeta)^{2}=G(\theta)
$$

(Recall (2).) If $D(\zeta)=0$, then

$$
\alpha=1-\rho / \zeta, \quad \beta=-(1-\rho \zeta)
$$

is a solution of (8), and (7) becomes

$$
\begin{equation*}
x_{r}=c(1-\rho / \zeta) \zeta^{r}-(1-\rho \zeta) \zeta^{-r}, \quad 1 \leq r \leq n \tag{9}
\end{equation*}
$$

With the appropriate choice of c,

$$
x_{r}=\sin r \theta-\rho \sin (r-1) \theta=(1-\rho \cos \theta) \sin r \theta+\rho \sin \theta \cos r \theta, \quad 1 \leq r \leq n
$$

which we rewrite as

$$
\begin{equation*}
x_{r}=A \sin (r \theta+\alpha), \quad 1 \leq r \leq n \tag{10}
\end{equation*}
$$

where

$$
A=\sqrt{1-2 \rho \cos \theta+\rho^{2}}, \quad \cos \alpha=\frac{1-\rho \cos \theta}{A}, \quad \text { and } \quad \sin \alpha=\frac{\rho \sin \theta}{A}
$$

To separate the even and odd spectra of K, we note that

$$
\begin{aligned}
D(\zeta) & =\left[\zeta^{-(n+1) / 2}(1-\rho \zeta)+\zeta^{(n+1) / 2}(1-\rho / \zeta)\right] \\
& \times\left[\zeta^{-(n+1) / 2}(1-\rho \zeta)-\zeta^{(n+1) / 2}(1-\rho / \zeta)\right]
\end{aligned}
$$

If ζ is a zero of the first factor, (9) becomes

$$
\begin{aligned}
x_{r} & =c(1-\rho / \zeta)\left(\zeta^{r}+\zeta^{n-r+1}\right) \\
& =c(1-\rho / \zeta) \zeta^{(n+1) / 2}\left(\zeta^{-(n-2 r+1) / 2}+\zeta^{(n-2 r+1) / 2}\right), \quad 1 \leq r \leq n
\end{aligned}
$$

so the associated eigenvector is symmetric. With $\zeta=e^{i \theta}$, the first factor is multiple of

$$
\begin{aligned}
C(\theta) & =\cos \frac{(n+1) \theta}{2}-\rho \cos \frac{(n-1) \theta}{2} \\
& =(1-\rho) \cos \frac{\theta}{2} \cos \frac{n \theta}{2}-(1+\rho) \sin \frac{\theta}{2} \sin \frac{n \theta}{2}
\end{aligned}
$$

and a suitable choice of c yields

$$
x_{r}=\cos \frac{(n-2 r+1) \theta}{2}, \quad 1 \leq r \leq n
$$

If ζ is a zero of the second factor, (9) becomes

$$
\begin{aligned}
x_{r} & =c(1-\rho / \zeta)\left(\zeta^{r}+\zeta^{n-r+1}\right) \\
& =c(1-\rho / \zeta) \zeta^{(n+1) / 2}\left(\zeta^{-(n-2 r+1) / 2}-\zeta^{(n-2 r+1) / 2}\right), \quad 1 \leq r \leq n
\end{aligned}
$$

so the eigenvector is skew-symmetric. With $\zeta=e^{i \theta}$, the second factor is a multiple of

$$
\begin{aligned}
S(\theta) & =\sin \frac{(n+1) \theta}{2}-\rho \sin \frac{(n-1) \theta}{2} \\
& =(1-\rho) \cos \frac{\theta}{2} \sin \frac{n \theta}{2}+(1+\rho) \sin \frac{\theta}{2} \cos \frac{n \theta}{2}
\end{aligned}
$$

and an appropriate choice of c yields

$$
x_{r}=\sin \frac{(n-2 r+1) \theta}{2}, \quad 1 \leq r \leq n
$$

It is easy to verify that C changes sign in

$$
\left(\frac{2(j-1) \pi}{n}, \frac{(2 j-1) \pi}{n}\right), \quad 1 \leq j \leq\lceil n / 2\rceil,
$$

and S changes sign in

$$
\left(\frac{(2 j-1) \pi}{n}, \frac{2 j \pi}{n}\right), \quad 1 \leq j \leq\lfloor n / 2\rfloor .
$$

Since the right side of (1) is a decreasing function of j, it follows that the even and odd eigenvalues of K are interlaced and the largest is even. Moreover,

$$
\frac{(j-1) \pi}{n}<\theta_{j}<\frac{j \pi}{n}, \quad 1 \leq j \leq n .
$$

This and (3) yield the slightly improved estimates

$$
\frac{(j-1) \pi}{n}<\theta_{j}<\frac{j \pi}{n+1}, \quad 1 \leq j \leq n .
$$

Either of the last two inequalities implies that $r \theta_{j}$ increases by at least $(j-1) \pi$ but less than $j \pi$ as $r=1,2, \ldots, n$. This and (10) imply that K is oscillatory.

References

[1] U. Grenander, G. Szegö, Toeplitz Forms and Their Applications, Univ. of California Press, Berkeley and Los Angeles, 1958.
[2] D. P. Laurie, Initial values for the inverse Toeplitz eigenvalue, SIAM J. Sci. Comput., 22 (2001), 2239-2255.
[3] W.F. Trench, Spectral evolution of a one-parameter extension of a real symmetric Toeplitz matrix, SIAM J. Matrix Anal. Appl. 11 (1990), 601-611.
[4] Interlacement of the even and odd spectra of real symmetric Toeplitz matrices, Linear Algebra Appl., 195 (1993), 59-68

