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Abstract

We consider the functional difference system (A) ∆xi(n) = fi(n; X),
1 ≤ i ≤ k, where X = (x1, . . . , xk) and f1(·; X), . . . , fk(·;X) are real-
valued functionals of X , which may depend quite arbitrarily on values of
X(`) for multiple values of ` ∈ Z . We give sufficient conditions for (A) to
have solutions that approach specified constant vectors as n → ∞. Some
of the results guarantee only that the solutions are defined for n sufficiently
large, while others are global. The proof of the main theorem is based
on the Schauder-Tychonoff theorem. Applications to specific quasi-linear
systems are included.
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1 Introduction

Throughout this paper Z is the set of all integers. If m is an integer, then
Zm =

{

n ∈ Z
∣

∣n ≥ m
}

.
We consider the functional difference system

∆xi(n) = fi(n;X), 1 ≤ i ≤ k,

where X = (x1, . . . , xk) : Z → Rk and f1(·;X), . . . , fk(·;X) are real-valued
functionals of X. We view X = {X(`)}`∈Z as a two-way infinite sequence; for
a given n, fi(n;X) may depend quite arbitrarily on values of X(`) for multiple
values of ` ∈ Z. We also write the system as

∆X(n) = F (n;X). (1)
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Definition 1 If n0 is an integer, then Cn0
is the space of bounded sequences

X = {X(n)}n∈Z that are constant for n ≤ n0, with norm ‖X‖ = supn∈Z |X(n)|,
where |U | = max{|u1|, . . . , |uk|} if U = (u1, . . . , uk). If {Xν} is an infinite
sequence of elements in Cn0

, we say that Xν → X if limν→∞ ‖Xν −X‖ = 0. We
say that X ∈ Cn0

is a solution of (1) if ∆X(n) = F (n;X) for n ≥ n0.

Note that Cn0
is a Banach space. We make the following standing assump-

tion.

Assumption 1 Let m and r be integers, with 0 ≤ r ≤ k, and let ρ1, . . . , ρk be

arbitrary positive numbers. If X ∈ Cm and

|xi(n)| ≤ ρi, n ∈ Z, 1 ≤ i ≤ r, (2)

and

|xi(n)| ≥ ρi, n ∈ Z, r + 1 ≤ i ≤ k, (3)

then

|fi(n;X)| ≤ wi(n, ρ1, . . . , ρk), n ∈ Zm, 1 ≤ i ≤ k, (4)

where wi : Zm × (0,∞)k → (0,∞) and

∞
∑

n=m

wi(n, ρ1, . . . , ρk) <∞, 1 ≤ i ≤ k,

for all ρ1, . . . , ρk > 0. Finally, if {Xν} ⊂ Cm with

|xiν(n)| ≤ ρi, n ∈ Z, 1 ≤ i ≤ r,

and

|xiν(n)| ≥ ρi, n ∈ Z, r + 1 ≤ i ≤ k,

for all ν, and Xν → X, then

lim
ν→∞

F (n;Xν) = F (n;X), n ∈ Zm. (5)

We say that the system (1) is nonsingular in x1, . . . , xr and singular in xr+1,
. . . , xk. We also say that (1) is purely singular if r = 0, purely nonsingular if
r = k, or mixed if 0 < r < k.

2 The Main Theorem

The following theorem is our main result.

Theorem 1 Suppose that n0 ≥ m and ρ1, . . . , ρk, and α1, . . . , αk are positive

numbers such that αi < 1 if 1 ≤ i ≤ r, and

∞
∑

n=n0

wi(n, ρ1, . . . , ρk) ≤ αiρi, 1 ≤ i ≤ k. (6)
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Let c1, . . . , ck be constants such that

|ci| ≤ (1 − αi)ρi, 1 ≤ i ≤ r, (7)

and

|ci| ≥ (1 + αi)ρi, r + 1 ≤ i ≤ k. (8)

Then there is an X̂ in Cn0
such that

∆X̂(n) = F (n; X̂), n ∈ Zn0
, (9)

|x̂i(n) − ci| ≤ αiρi, n ∈ Z, 1 ≤ i ≤ k, (10)

and

lim
n→∞

x̂i(n) = ci, 1 ≤ i ≤ k. (11)

Proof. We obtain X̂ as a fixed point of the transformation Y = T X defined
by

yi(n) =























ci −

∞
∑

`=n

fi(`;X), n ≥ n0,

ci −

∞
∑

`=n0

fi(`;X), n < n0,

1 ≤ i ≤ k, (12)

acting on the subset Sn0
of Cn0

such that

|xi(n) − ci| ≤ αiρi, n ∈ Z, 1 ≤ i ≤ k. (13)

If X̂ = T X̂ for some X̂ ∈ Sn0
, then X̂ satisfies (9), (10), and (11).

Since Sn0
is a closed convex subset of a Banach space, the Schauder-Tychonoff

theorem [1, p. 405] asserts that X̂ = T X̂ for some X̂ in Sn0
if

(a) T is defined on Sn0
;

(b) T (Sn0
) ⊂ Sn0

;
(c) T Xν → T X if {Xν} ⊂ Sn0

and Xν → X;
(d) T (Sn0

) has compact closure.
For the rest of the proof we assume that X ∈ Sn0

. Then (7) and (13) imply
(2), while (8) and (13) imply (3). By Assumption 1, (2) and (3) imply (4);
hence, (6) and (12) imply that Y = T X is defined, and that

|yi(n) − ci| ≤ αiρi, n ∈ Z, 1 ≤ i ≤ k.

This establishes hypotheses (a) and (b) of the Schauder-Tychonoff theorem.
Now suppose {Xν} ⊂ Sn0

and Xν → X. Let Yν = T Xν = (y1ν , . . . , ykν)
and Y = T X = (y1, . . . , yk). From (12),

|yiν(n) − yi(n)| ≤

∞
∑

`=n0

|fi(`;Xν) − fi(`;X)|, n ∈ Z, 1 ≤ i ≤ k. (14)
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From (6), if ε > 0, there is an N > n0 such that

∞
∑

`=N+1

wi(`, ρ1, . . . , ρk) < ε, 1 ≤ i ≤ k.

Then (4) and (14) imply that

|yiν(n) − yi(n)| ≤

N
∑

`=n0

|fi(`;Xν) − fi(`;X)| + 2ε, n ∈ Z, 1 ≤ i ≤ k. (15)

Since
lim

ν→∞
|fi(`;Xν) − fi(`;X)| = 0, ` ≥ n0,

from (5), (15) implies that lim supν→∞ ‖Yν − Y ‖ ≤ 2ε. Since ε > 0, this implies
that limν→∞ ‖Yν − Y ‖ = 0. This establishes hypothesis (c) of the Schauder-
Tychonoff theorem.

We will now show that T (Sn0
) is compact. Let C = (c1, . . . , ck) and Γ =

(γ1 , . . . , γk), with

γi(n) =

∞
∑

`=n

wi(`, ρ1, . . . , ρk), 1 ≤ i ≤ k, n ≥ n0.

From (4) and (12),

T (Sn0
) ⊂ A =

{

V ∈ Cn0

∣

∣ |V (n) − C| ≤ |Γ(n)|
}

,

so it suffices to show that A is compact. From [2, pp. 51-53], this is true if
A is totally bounded; that is, for every ε > 0 there is a finite subset Aε of
Cn0

such that for each V ∈ A there is a Ṽ ∈ Aε that satisfies the inequality
‖V − Ṽ ‖ < ε. To establish the existence of Aε, choose an integer n1 ≥ n0 such
that |Γ(n1)| < ε. Now let

M = max
{

|Γ(n)|
∣

∣n0 ≤ n ≤ n1 − 1
}

,

let p be an integer such that pε > M , and letQ =
{

rε
∣

∣ r = integer ,−p ≤ r ≤ p
}

.
Let Aε be the finite set of k-vector functions A on Z defined as follows:

(i) If n ≥ n1, then A(n) = C.

(ii) If n ≤ n0, then A(n) = A(n0).

(iii) If n0 ≤ n ≤ n1 − 1, then A(n) = (c1 + q1(n), . . . , ck + qk(n)), where q1(n),
. . . , qk(n) are in Q.

Then, since |V (n) − C| ≤ M for n0 ≤ n ≤ n1 − 1 if V ∈ A, the set Aε has
the desired property. Therefore the Schauder-Tychonoff theorem implies that
T X̂ = X̂ for some X̂ in Sn0

.
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3 Applications of Theorem 1

Since all our results follow from Theorem 1, we will simply verify (6), (7),
and (8) in each case, without specifically citing Theorem 1. We say that the
problem Pr(n0; c1, . . . , ck) has a solution if there is a sequence X̂ in Cn0

such
that ∆X̂(n) = F (n;X), n ≥ n0, and limn→∞ x̂i(n) = ci, 1 ≤ i ≤ k. Some
of our results are local at ∞, in that a solution is shown to exist only if n0 is
sufficiently large. Others are global, in that a solution is shown to exist for all
n ≥ m.

Theorem 2 If ci 6= 0 for r + 1 ≤ i ≤ k, then Pr(n0; c1, . . . , ck) has a solution

if n0 is sufficiently large.

Proof. Let α1, . . . , αk be positive, with αi < 1 for 1 ≤ i ≤ r. Choose ρ1, . . . , ρk

to satisfy (7) and (8). Then choose n0 to satisfy (6).

Theorem 3 If
∞

∑

n=n0

wi(n, ρ1, . . . , ρk) < ρi, 1 ≤ i ≤ r, (16)

then Pr(n0, c1, . . . , ck) has a solution if |c1|, . . . , |cr| are sufficiently small and

|cr+1|, . . . , |ck| are sufficiently large.

Proof. Choose α1, . . . , αk sufficiently large to satisfy (6). (Because of (16),
this can be achieved with αi < 1, 1 ≤ i ≤ r.) Then P (n0, c1, . . . , ck) has a
solution if (7) and (8) hold.

Theorem 4 If |c1|, . . . , |ck| are sufficiently large, then P0(m; c1, . . . , ck) has a

solution.

Proof. Let ρ1, . . . , ρk be positive. Choose α1, . . . , αk to satisfy (6) with
n0 = m. Then choose c1, . . . , ck to satisfy (8) with r = 0.

Theorem 5 Suppose that

lim sup
ρ→0+

ρ−1

∞
∑

n=m

wi(n, ρ, . . . , ρ) = ψi < 1, 1 ≤ i ≤ k. (17)

Then Pk(m; c1, . . . , ck) has a solution if |c1|, . . . , |ck| are sufficiently small.

Proof. Let ψi < αi < 1, 1 ≤ i ≤ k. From (17), we can choose ρ0 so small that

∞
∑

n=m

wi(n, ρ0, . . . , ρ0) ≤ αiρ0, 1 ≤ i ≤ k.

Now choose c1, . . . , ck so that |ci| ≤ (1 − αi)ρ0, 1 ≤ i ≤ k.
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Theorem 6 Suppose that

lim sup
ρ→∞

ρ−1

∞
∑

n=m

wi(n, ρ, . . . , ρ) = ηi < 1, 1 ≤ i ≤ k. (18)

Let c1,. . . , ck be arbitrary. Then Pk(m; c1, . . . , ck) has a solution.

Proof. Let ηi < αi < 1, 1 ≤ i ≤ k. From (18), we can choose ρ0 so large that
ρ0 ≥ |ci|/(1 − αi), 1 ≤ i ≤ k, and

∞
∑

n=m

wi(n, ρ0, . . . , ρ0) ≤ αiρ0, 1 ≤ i ≤ k.

Assumption 2 In addition to Assumption 1, assume that (1) is mixed (that is,
0 < r < k), and

wi(n, ρ1, ρ2, . . . , ρk) = ui(n, ρ1, . . . , ρr) + vi(n, ρr+1 , . . . , ρk), 1 ≤ i ≤ r,

where ui and vi are positive, and

lim
ρ→∞

∞
∑

n=m

vi(n, ρ, . . . , ρ) = 0, 1 ≤ i ≤ r. (19)

Theorem 7 If Assumption 2 holds, then Pr(n0, c1, . . . , ck) has a solution if n0

and |cr+1|, . . . , |ck| are sufficiently large and |c1|, . . . , |cr| are sufficiently small.

Proof. Let ρ1 > 0 and 0 < α1 < 1, and choose n0 ≥ m so that

∞
∑

n=n0

ui(n, ρ1, . . . , ρ1) < α1ρ1, 1 ≤ i ≤ r.

From (19), we can choose ρ2 so large that

∞
∑

n=n0

(ui(n, ρ1, . . . , ρ1) + vi(n, ρ2, . . . , ρ2)) ≤ α1ρ1, 1 ≤ i ≤ r.

Now choose α2 so that

∞
∑

n=n0

wi(n, ρ1, . . . , ρk) ≤ α2ρ2, r + 1 ≤ i ≤ k,

if ρi = ρ1, 1 ≤ i ≤ r, and ρi = ρ2 , r+ 1 ≤ i ≤ k. Then choose |ci| ≤ (1− α1)ρ1,
1 ≤ i ≤ r, and |ci| ≥ (1 + α2)ρ2, r + 1 ≤ i ≤ k.
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Theorem 8 In addition to Assumption 2, suppose that

lim sup
ρ→0+

ρ−1

∞
∑

n=m

ui(n, ρ, . . . , ρ) = ψi < 1, 1 ≤ i ≤ r.

Then Pr(m, c1, . . . , ck) has a solution if |c1|, . . . , |cr| are sufficiently small and

|cr+1|, . . . , |ck| are sufficiently large.

Proof. Let ψi < αi < 1, 1 ≤ i ≤ r. Choose ρ1 so small that

∞
∑

n=m

ui(n, ρ1, . . . , ρ1) < αiρ1, 1 ≤ i ≤ r.

Now apply the argument used in the proof of Theorem 7, with n0 = m.

Theorem 9 In addition to Assumption 2, suppose that

lim sup
ρ→∞

ρ−1

∞
∑

n=m

ui(n, ρ, . . . , ρ) = ηi < 1, 1 ≤ i ≤ r.

Then Pr(m, c1, . . . , ck) has a solution if |cr+1|, . . . , |ck| are sufficiently large.

Proof. Let ηi < αi < 1, 1 ≤ i ≤ r. Choose ρ1 so large that ρ1 ≥ |ci|/(1 − αi),
1 ≤ i ≤ r, and

∞
∑

n=m

ui(n, ρ1, . . . , ρ1) < αiρ1, 1 ≤ i ≤ r.

Now apply the argument used in the proof of Theorem 7, with n0 = m.

4 Quasi-linear Systems: I

Consider the system

∆xi(n) =

k
∑

j=1

aij(n)gij(xj(φij(n))), 1 ≤ i ≤ k, (20)

assuming throughout that, for some integer m and 1 ≤ i ≤ j ≤ k, φij : Zm → Z,
gij : Z → R, aij : Zm → R,

|gij(u)| = |u|γij and
∞
∑

n=m

|aij(n)| <∞.

We assume that for some r in {0, 1, . . . , k}, γij > 0 if 1 ≤ i ≤ r and γij < 0 if
r + 1 ≤ i ≤ k, for 1 ≤ j ≤ k. Then Assumption 1 holds, with

wi(n, ρ1, ρ2, . . . , ρk) =

k
∑

j=1

|aij(n)|ρ
γij

j .
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It is to be understood throughout this section that this is the definition of wi.
If 0 < r < k, then (20) satisfies Assumption 2 with

ui(n, ρ1, . . . , ρr) =

r
∑

j=1

|aij(n)|ρ
γij

j

and

vi(n, ρr+1, . . . , ρk) =

k
∑

j=r+1

|aij(n)|ρ
γij

j .

Theorem 10 If γij > 0, 1 ≤ i, j ≤ k, there is an n0 ≥ m, which depends upon

c1, . . . , ck, such that Pk(n0; c1, . . . , ck) has a solution.

Proof. If 0 < α < 1, choose ρ1, ρ2, . . . , ρk so that |ci| ≤ (1 − α)ρi, 1 ≤ i ≤ k.
Then choose n0 so that

∞
∑

n=n0

wi(n, ρ1, ρ2, . . . , ρk) ≤ αρi, 1 ≤ i ≤ k.

Theorem 11 If γij = 1, 1 ≤ i, j ≤ k, there is an n0 ≥ m, independent of c1,
. . . , ck, such that Pk(n0; c1, . . . , ck) has a solution.

Proof. If 0 < α < 1, choose n0 so that

∞
∑

n=n0

wi(n, 1, . . . , 1) < α, 1 ≤ i ≤ k.

Then
∞
∑

n=n0

wi(n, ρ, . . . , ρ) < αρ, 1 ≤ i ≤ k,

for any ρ > 0. For arbitrary c1, . . . , ck choose ρ so that |ci| ≤ (1−α)ρ, 1 ≤ i ≤ k.

Theorems 5-9 imply the following theorems.

Theorem 12 If γij > 1, 1 ≤ i, j ≤ k, then Pk(m; c1, . . . , ck) has a solution if

|c1|, . . . , |ck| are sufficiently small.

Theorem 13 If 0 < γij < 1, 1 ≤ i, j ≤ k, and c1, . . . , ck are arbitrary, then

Pk(m; c1, . . . , ck) has a solution.

Theorem 14 If 0 < r < k, then Pr(n0; c1, . . . , ck) has a solution if n0 and

|cr+1|, . . . , |ck| are sufficiently large and |c1|, . . . , |cr| are sufficiently small.

Theorem 15 If 0 < r < k and γij > 1, 1 ≤ i ≤ r, 1 ≤ j ≤ k, then

Pr(m; c1, . . . , ck) has a solution if |c1|, . . . , |cr| are sufficiently small and |cr+1|,
. . . , |ck| are sufficiently large.

Theorem 16 If 0 < r < k and 0 < γij < 1, 1 ≤ i ≤ r, 1 ≤ j ≤ k, then

Pr(m; c1, . . . , ck) has a solution if |cr+1|, . . . , |ck| are sufficiently large.
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5 Quasi-linear Systems: II

In this section we consider

∆xi(n) =

k
∑

j=1

βn
ij

n
∑

`=0

pij(n − `)gij(xj(φij(n))), 1 ≤ i ≤ k, n ≥ 0, (21)

where gij and φij are as in the previous section, |βij | < 1, and

∞
∑

n=0

|βn
ijpij(n)| <∞, 1 ≤ i, j ≤ n.

Here we can take

wi(n, ρ1, . . . , ρk) =

k
∑

j=1

ρ
γij

j

n
∑

`=0

|βn
ijpij(n− `)|.

Therefore Assumption 1 holds with

∞
∑

n=0

wi(n, ρ1, . . . , ρk) =

k
∑

j=1

σijρ
γij

j ,

where

σij =

∞
∑

n=0

n
∑

`=0

|βn
ijpij(n − `)| =

∞
∑

`=0

∞
∑

n=`

|βn
ijpij(n− `)|

=
1

1 − |βij|

∞
∑

n=0

|βn
ijpij(n)|.

All the arguments used in the previous section can now be used with |aij|
replaced by σij; therefore, Theorems 10-16 all hold (with m = 0) for (21).
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