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Abstract

We consider the functional difference system (A) Az;(n) = fi(n; X),
1 <i <k, where X = (z1,...,2%) and f1(5X), ..., fu(-;X) are real-
valued functionals of X, which may depend quite arbitrarily on values of
X (£) for multiple values of £ € Z. We give sufficient conditions for (A) to
have solutions that approach specified constant vectors as n — co. Some
of the results guarantee only that the solutions are defined for n sufficiently
large, while others are global. The proof of the main theorem is based
on the Schauder-Tychonoff theorem. Applications to specific quasi-linear
systems are included.
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1 Introduction

Throughout this paper Z is the set of all integers. If m is an integer, then
Zm:{neZ’an}.
We consider the functional difference system

Azi(n) = fi(n; X), 1<i<k,

where X = (71,...,7) : 2 — R¥ and f1(; X), ..., fx(:; X) are real-valued
functionals of X. We view X = {X(¢)}scz as a two-way infinite sequence; for
a given n, f;(n; X) may depend quite arbitrarily on values of X (¢) for multiple
values of £ € Z. We also write the system as

AX(n) = F(n; X). (1)



DEFINITION 1 If ng is an integer, then C,, is the space of bounded sequences
X = {X(n)}nez that are constant for n < ng, with norm || X|| = sup,,cz | X (n)|,
where |U| = max{|ui|,...,|ug|} if U = (u1,...,ux). If {X,} is an infinite
sequence of elements in C,,, we say that X, — X if lim, o || X, — X|| = 0. We
say that X € Cp, is a solution of (1) if AX(n) = F(n; X) for n > ny.

Note that C,, is a Banach space. We make the following standing assump-
tion.

ASSUMPTION 1 Let m and r be integers, with 0 < r < k, and let p1, ..., px be
arbitrary positive numbers. If X € C,,, and
lzi(n)| < piy neZ, 1<i<r, (2)
and
lzi(n)| > piy, neZ, r+1<i<k, (3)
then
[filn; X)l Swi(n, p1,- . px), N € Zm, 1<i<k, (4)

where w; : Z, % (0,00)k — (0,00) and

Zwi(napla"'apk)<ooa IS’LSIC,
for all p1, ..., pr > 0. Finally, if {X,} C Cy,, with

lzi(n)| < pi;, neZ, 1<i<r,

and
[z (n)| > pi;, n€Z, r+1<i<k,

for allv, and X, — X, then

lim F(n; X)) = F(n; X), né€ Z,. (5)
We say that the system (1) is nonsingular in 1, ..., x, and singular in 41,

.., k. We also say that (1) is purely singular if r = 0, purely nonsingular if
r =k, or mized if 0 < r < k.

2 The Main Theorem

The following theorem is our main result.

THEOREM 1 Suppose that ng > m and p1, ..., pg, and a1, ..., ai are positive
numbers such that a; <1 if 1 <i <r, and

o0

Z wi(napla"'apk)gaipia IS’LSIC (6)

n=no



Let ¢y, ..., c be constants such that
leil < (1 —ai)pi, 1<i<m, (7)

and
el = (1 +a)pi, r+1<i<k. ®

Then, there is an X in Cn, such that

AX(n)=F(n; X), n€ 2y, 9)
|Ti(n) —ci| < aips, neZ, 1<i<k, (10)

and
lim Z;(n) =¢, 1<i<k. (11)

PROOF. We obtain X as a fixed point of the transformation ¥ = 7 X defined
by

C'L_Zfl(éaX)a nZHOa
yi(n) = o 1<i<k, (12)
C; — Z fl(é,X), n <no,
e:n[)

acting on the subset S, of C,,, such that
|zi(n) —ci| < aips, neZ, 1<i<k. (13)

If X = TX for some X € S,,, then X satisfies (9), (10), and (11).

Since S, is a closed convex subset of a Banach space, the Schauder-Tychonoff
theorem [1, p. 405] asserts that X = 7X for some X in S, if

(a) T is defined on S,,;

(b) T(Sny) C Snos

(0)TX, - TX it {X,} CS,, and X, — X;

(d) 7(S,,) has compact closure.

For the rest of the proof we assume that X € S,,,. Then (7) and (13) imply
(2), while (8) and (13) imply (3). By Assumption 1, (2) and (3) imply (4);
hence, (6) and (12) imply that Y = 7 X is defined, and that

lyi(n) —ci| < aipi, neZ, 1<i<k.

This establishes hypotheses (a) and (b) of the Schauder-Tychonoff theorem.
Now suppose {X,} C S,, and X, — X. Let Y, = 7X, = (Y10y- -+, Ykv)
and Y =TX = (y1,...,yk). From (12),

|yw(”)—yz(”)|§ Z |fl(€aXl/)_f’L(€?X)|’ TLGZ, 1§'L§k (14)

e:n[)



From (6), if € > 0, there is an N > ng such that

o0

Z wi(éapla"'apk)<ea IS’LSIC
{=N+1

Then (4) and (14) imply that

N
|yw(”)—yz(”)| < Z |fi(€;Xu)_fi(€;X>|+26a TLGZ, 1 S’LSIC (15)

e:n[)

Since
lim [fi(6; X,) — fi(6; X)[ =0, £ > no,

from (5), (15) implies that limsup,,_,, ||Y, — Y| < 2e. Since € > 0, this implies
that lim, . ||Y, — Y| = 0. This establishes hypothesis (c) of the Schauder-
Tychonoff theorem.

We will now show that 7(S,,) is compact. Let C' = (¢1,...,¢;) and I’ =
(Y1, -, 7), with

Vi(n)zzwi(éapla"'apk)a 1§1§k; n 2 ng.
l=n

From (4) and (12),
T(Sny) CA={V €Cny|IV(n) - C| < |T(n)]},

so it suffices to show that A4 is compact. From [2, pp. 51-53], this is true if
A is totally bounded; that is, for every e¢ > 0 there is a finite subset A, of
Cn, such that for each V' € A there is a V € A, that satisfies the inequality
||V — V|| < e. To establish the existence of A., choose an integer ny > ng such
that |I'(n1)| < e. Now let

M:max{|F(n)|’n0§n§n1—1},

let p be an integer such that pe > M, and let Q) = {re ’ r = integer ,—p < r < p}.
Let A, be the finite set of k-vector functions A on Z defined as follows:

(i) If n > ny, then A(n) =C.
(ii) If n < ng, then A(n) = A(ng).

(iii) If ng <n <ny —1, then A(n) = (c1 + q1(n), ..., ck + gx(n)), where g1(n),
.., qk(n) are in Q.
Then, since |[V(n) — C| < M for ng < n <n; —1if V € A, the set A, has

the desired property. Therefore the Schauder-Tychonoff theorem implies that
TX = X for some X in S, . O



3 Applications of Theorem 1

Since all our results follow from Theorem 1, we will simply verify (6), (7),
and (8) in each case, without specifically citing Theorem 1. We say that the
problem P,.(ng;ci,...,cr) has a solution if there is a sequence X in Cp, such
that AX(n) = F(n; X), n > ng, and lim,,, &;(n) = ¢;, 1 < i < k. Some
of our results are local at oo, in that a solution is shown to exist only if ng is
sufficiently large. Others are global, in that a solution is shown to exist for all
n > m.

THEOREM 2 Ifc¢; £ 0 forr+1 <i <k, then P.(ng;c1,...,cr) has a solution
if ng is sufficiently large.

PROOF. Let ay, ..., ai be positive, with a; < 1 for 1 <4 < r. Choose p1, ..., pk
to satisfy (7) and (8). Then choose ng to satisty (6). O

THEOREM 3 If

o0

Z wi(napla"'apk)<pi; ISZST; (16)
n=no
then P.(no,c1,...,ck) has a solution if |c1|, ..., |er| are sufficiently small and
lers1l, - |ex| are sufficiently large.
ProOF. Choose aji, ..., aj sufficiently large to satisfy (6). (Because of (16),
this can be achieved with «; < 1, 1 < ¢ < r.) Then P(ng,ci,...,c;) has a
solution if (7) and (8) hold. 0
THEOREM 4 If |c1|, ..., |ck| are sufficiently large, then Py(m;eca,. .., ck) has a
solution.
PROOF. Let pi, ..., pr be positive. Choose ai, ..., oy to satisfy (6) with
ng = m. Then choose ¢y, ..., ¢; to satisfy (8) with » = 0. O

THEOREM 5 Suppose that

limsupp ! Zwi(n,p,...,p):1/)i<1, 1<i<k. (17)
p—0+ n=m
Then Pi(m;c1, ..., ck) has a solution if |c1], ..., |ck| are sufficiently small.

PROOF. Let ¢; < a; < 1,1 < i < k. From (17), we can choose pg so small that

o0

Zwi(naPOa"'apO)Sa’iPOa IS’LSk
n=m
Now choose ¢1, ..., ¢ so that |¢;| < (1 — a;)po, 1 <i<k. |



THEOREM 6 Suppose that

o0

lim sup p~* Zwi(n,p,...,p):m<1, 1<i<k. (18)
pP—00 n=m
Let c1,. .., ¢ be arbitrary. Then Py(m;cy, ..., ck) has a solution.

PROOF. Let 1; < a; < 1,1 < i < k. From (18), we can choose py so large that
Po > |C’L|/(1 - ai)a 1 < 1 < ka and

o0

Zwi(naPOa"'apO)Sa’iPOa IS’LSIC

n=m

O

ASSUMPTION 2 In addition to Assumption 1, assume that (1) is mized (that is,
0<r<k), and

wi(”aplaan . 'apk) :u’i(napla .- 'apT) +vi(n;pr+la .- 'apk); 1 <1< T,

where u; and v; are positive, and

o0
lim Zvi(n,p,...,p):(), 1<i<r. (19)
pP—00
n=m
THEOREM 7 If Assumption 2 holds, then P.(ng,c1,...,ck) has a solution if ng
and |cry1], - - -, |ex| are sufficiently large and |c1], . .., |cr| are sufficiently small.

PROOF. Let p; > 0 and 0 < a1 < 1, and choose ng > m so that

o0

Zui(napla"'apl)<alpla 1SZST

n=no

From (19), we can choose ps so large that

o0

Z (u’i(napla .. 'apl) +v’i(nap25 <. 'ap2)) < 101, 1 < { <.
n=no
Now choose «as so that

o0

Zwi(napla"'apk)SQQPQ; T+1S’L§k,

n=no

ifp;=p1,1 <i<r,and p; = p2, 7+ 1 <i < k. Then choose |¢;| < (1 — a1)p1,
1<i<r,and |¢i] > (14 ag)pe, r+1<i<k. O



THEOREM 8 In addition to Assumption 2, suppose that

o0
lim sup p~* Zul (nyp,...,p)=w; <1, 1<i<r.
p—0+ n=m
Then P.(m,ci,...,ck) has a solution if |c1], ..., |c| are sufficiently small and
lersils -+ |ck| are sufficiently large.

PROOF. Let ¢; < a; < 1,1 <4 < r. Choose p; so small that
o0
Zui(napla"'apl)<aipla 1SZST
m

Now apply the argument used in the proof of Theorem 7, with ng = m. d

THEOREM 9 In addition to Assumption 2, suppose that

o0
lim sup p~* Z ui(n,p,...,p)=n<1, 1<i<r.
pP— 00 n=m
Then Pr.(m,ci,...,cx) has a solution if |cry1], - .., |ck| are sufficiently large.

PROOF. Let 1; < o; < 1,1 <4 <r. Choose p; so large that p; > |¢;|/(1 — o),
1<i<r, and

o0
Zui(napla"'apl)<aipla 1SZST
n=m
Now apply the argument used in the proof of Theorem 7, with ng = m. d

4 Quasi-linear Systems: I

Consider the system

Az;(n Za” n)gij(zi(pij(n))), 1<i<k, (20)

assuming throughout that, for some integer mand 1 <17 < j <k, ¢y : Zp, — Z,
9ij - Z =R, ai: Zyy — R,

|9i(u)| = |u

Y and Z la;;(n)| < oo.

We assume that for some 7 in {0,1,...,k}, 75; > 0if 1 <4 <7 and ;; <0 if
r+1<i<k, for1<j<k. Then Assumption 1 holds, with

’Y1
wi(naplaPQa"'apk E |a”LJ 7.



It is to be understood throughout this section that this is the definition of w;.
If 0 < r < k, then (20) satisfies Assumption 2 with

r
’LL»L'(TL, Py pT) = Z |G,1J(7’L)|p;h]
j=1

and
k

vi(n, Pr4ly .- pk) = Z |alij(n>|p;’ij'
j=r+1

THEOREM 10 If v;; >0, 1 <14,j < k, there is an ng > m, which depends upon

€1y - -, Ck, Such that Px(ng;ci,...,ck) has a solution.
PROOF. If 0 < o < 1, choose p1, pa, ..., pr so that |¢;| < (1 —a)p;, 1 <i < k.
Then choose ng so that
o0
Z wi(n, p1, p2, - k) < ap;, 1<i<k.
n=ng

O

THEOREM 11 If v;; = 1,1 < 4,5 < k, there is an ng > m, independent of ci,
..y Ck,y such that Py(ng;ci,...,cr) has a solution.

PROOF. If 0 < a < 1, choose ng so that

o0
> wiln,1,... 1) <a, 1<i<k
n=no
Then
o0
Zwi(napa"')p)<apa IS’LSIC,
n=no
for any p > 0. For arbitrary ¢y, ..., ¢x choose p so that |¢;] < (1—a)p, 1 <i < k.
0

Theorems 5-9 imply the following theorems.

THEOREM 12 If v;; > 1,1 < 1,5 < k, then Py(m;ci,...,ck) has a solution if
lea], -y |ex| are sufficiently small.

THEOREM 13 If0 < v < 1,1 < 4,5 <k, and c1, ..., cx are arbitrary, then
Pi(m;c, ..., cx) has a solution.

THEOREM 14 If 0 < r < k, then P.(no;c1,...,ck) has a solution if ng and
lers1l, - - |ex| are sufficiently large and |c1], ..., |c| are sufficiently small.

THEOREM 15 If 0 < r < k and v; > 1,1 < i < r, 1 < 5 <k, then
P.(m;cy, ..., ck) has a solution if |c1|, ..., |cr| are sufficiently small and |cr41],
.y |ex| are sufficiently large.

THEOREM 16 If 0 < r <k and 0 < v < 1,1 <i <r, 1 < j <k, then
P.(m;c1,...,cx) has a solution if |cri1], .., |ck| are sufficiently large.



5 Quasi-linear Systems: II

In this section we consider

k n

sz Zﬁzzpu n—£{ gw x]((bzg( )))a 1<i<k, n>0,
Jj=1
where g¢;; and ¢;; are as in the previous section, |3;;| < 1, and

o0
D 1Bpi(n) < oo, 1<, j<n.

Here we can take

n
w’i(napla"'apk Zp’yw Z|6'Zp’b](n_€)|
j=1 £=0

Therefore Assumption 1 holds with

[eS) k

— Yij
§ wi(napla"'apk)_ E U’ijpj]a
n=0 j=1

where

oij = ZD@J% —01=>_> " 1B5pii(n—0)

n=0 £=0 0=0 n=~

= anpz
1— 5”|Z| g

(21)

All the arguments used in the previous section can now be used with |a;j]

replaced by o;;; therefore, Theorems 10-16 all hold (with m = 0) for (21).
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