Asymptotically Constant Solutions of Functional Difference Systems

William F. Trench

J. Difference Eq. Appl., 8 (2002), 811-821

Dedicated to Allan Peterson on the Occasion of His 60th Birthday.

Abstract

We consider the functional difference system (A) $\Delta x_i(n) = f_i(n; X)$, $1 \leq i \leq k$, where $X = (x_1, \ldots, x_k)$ and $f_1(\cdot; X), \ldots, f_k(\cdot; X)$ are real-valued functionals of X, which may depend quite arbitrarily on values of $X(\ell)$ for multiple values of $\ell \in \mathcal{Z}$. We give sufficient conditions for (A) to have solutions that approach specified constant vectors as $n \to \infty$. Some of the results guarantee only that the solutions are defined for n sufficiently large, while others are global. The proof of the main theorem is based on the Schauder-Tychonoff theorem. Applications to specific quasi-linear systems are included.

Keywords: Functional difference system; Nonsingular; Quasi-linear; Schauder-Tychonoff theorem; Singular

Mathematics Subject Classification (2000): 39A11

1 Introduction

Throughout this paper \mathcal{Z} is the set of all integers. If m is an integer, then $\mathcal{Z}_m = \{n \in \mathcal{Z} \mid n \geq m\}.$

We consider the functional difference system

$$\Delta x_i(n) = f_i(n; X), \quad 1 < i < k,$$

where $X = (x_1, \ldots, x_k) : \mathcal{Z} \to \mathcal{R}^k$ and $f_1(\cdot; X), \ldots, f_k(\cdot; X)$ are real-valued functionals of X. We view $X = \{X(\ell)\}_{\ell \in \mathcal{Z}}$ as a two-way infinite sequence; for a given n, $f_i(n; X)$ may depend quite arbitrarily on values of $X(\ell)$ for multiple values of $\ell \in \mathcal{Z}$. We also write the system as

$$\Delta X(n) = F(n; X). \tag{1}$$

DEFINITION 1 If n_0 is an integer, then C_{n_0} is the space of bounded sequences $X = \{X(n)\}_{n \in \mathbb{Z}}$ that are constant for $n \leq n_0$, with norm $\|X\| = \sup_{n \in \mathbb{Z}} |X(n)|$, where $|U| = \max\{|u_1|, \ldots, |u_k|\}$ if $U = (u_1, \ldots, u_k)$. If $\{X_{\nu}\}$ is an infinite sequence of elements in C_{n_0} , we say that $X_{\nu} \to X$ if $\lim_{\nu \to \infty} \|X_{\nu} - X\| = 0$. We say that $X \in C_{n_0}$ is a solution of (1) if $\Delta X(n) = F(n; X)$ for $n \geq n_0$.

Note that C_{n_0} is a Banach space. We make the following standing assumption.

Assumption 1 Let m and r be integers, with $0 \le r \le k$, and let ρ_1, \ldots, ρ_k be arbitrary positive numbers. If $X \in \mathcal{C}_m$ and

$$|x_i(n)| \le \rho_i, \quad n \in \mathcal{Z}, \quad 1 \le i \le r,$$
 (2)

and

$$|x_i(n)| \ge \rho_i, \quad n \in \mathcal{Z}, \quad r+1 \le i \le k,$$
 (3)

then

$$|f_i(n;X)| \le w_i(n,\rho_1,\ldots,\rho_k), \quad n \in \mathcal{Z}_m, \quad 1 \le i \le k,$$
 (4)

where $w_i: \mathcal{Z}_m \times (0, \infty)^k \to (0, \infty)$ and

$$\sum_{n=m}^{\infty} w_i(n, \rho_1, \dots, \rho_k) < \infty, \quad 1 \le i \le k,$$

for all $\rho_1, \ldots, \rho_k > 0$. Finally, if $\{X_{\nu}\} \subset \mathcal{C}_m$ with

$$|x_{i\nu}(n)| \le \rho_i, \quad n \in \mathcal{Z}, \quad 1 \le i \le r,$$

and

$$|x_{i\nu}(n)| \ge \rho_i, \quad n \in \mathcal{Z}, \quad r+1 \le i \le k,$$

for all ν , and $X_{\nu} \to X$, then

$$\lim_{\nu \to \infty} F(n; X_{\nu}) = F(n; X), \quad n \in \mathcal{Z}_m.$$
 (5)

We say that the system (1) is nonsingular in x_1, \ldots, x_r and singular in x_{r+1}, \ldots, x_k . We also say that (1) is purely singular if r = 0, purely nonsingular if r = k, or mixed if 0 < r < k.

2 The Main Theorem

The following theorem is our main result.

THEOREM 1 Suppose that $n_0 \ge m$ and ρ_1, \ldots, ρ_k , and $\alpha_1, \ldots, \alpha_k$ are positive numbers such that $\alpha_i < 1$ if $1 \le i \le r$, and

$$\sum_{n=n_0}^{\infty} w_i(n, \rho_1, \dots, \rho_k) \le \alpha_i \rho_i, \quad 1 \le i \le k.$$
 (6)

Let c_1, \ldots, c_k be constants such that

$$|c_i| \le (1 - \alpha_i)\rho_i, \quad 1 \le i \le r,\tag{7}$$

and

$$|c_i| \ge (1 + \alpha_i)\rho_i, \quad r + 1 \le i \le k. \tag{8}$$

Then there is an \hat{X} in C_{n_0} such that

$$\Delta \hat{X}(n) = F(n; \hat{X}), \quad n \in \mathcal{Z}_{n_0}, \tag{9}$$

$$|\hat{x}_i(n) - c_i| \le \alpha_i \rho_i, \quad n \in \mathcal{Z}, \quad 1 \le i \le k, \tag{10}$$

and

$$\lim_{n \to \infty} \hat{x}_i(n) = c_i, \quad 1 \le i \le k. \tag{11}$$

PROOF. We obtain \hat{X} as a fixed point of the transformation $Y = \mathcal{T}X$ defined by

$$y_{i}(n) = \begin{cases} c_{i} - \sum_{\ell=n}^{\infty} f_{i}(\ell; X), & n \geq n_{0}, \\ c_{i} - \sum_{\ell=n_{0}}^{\infty} f_{i}(\ell; X), & n < n_{0}, \end{cases}$$
 $1 \leq i \leq k,$ (12)

acting on the subset S_{n_0} of C_{n_0} such that

$$|x_i(n) - c_i| \le \alpha_i \rho_i, \quad n \in \mathcal{Z}, \quad 1 \le i \le k.$$
 (13)

If $\hat{X} = \mathcal{T}\hat{X}$ for some $\hat{X} \in \mathcal{S}_{n_0}$, then \hat{X} satisfies (9), (10), and (11).

Since S_{n_0} is a closed convex subset of a Banach space, the Schauder-Tychonoff theorem [1, p. 405] asserts that $\hat{X} = T\hat{X}$ for some \hat{X} in S_{n_0} if

- (a) \mathcal{T} is defined on \mathcal{S}_{n_0} ;
- (b) $\mathcal{T}(\mathcal{S}_{n_0}) \subset \mathcal{S}_{n_0}$;
- (c) $\mathcal{T}X_{\nu} \to \mathcal{T}X$ if $\{X_{\nu}\} \subset \mathcal{S}_{n_0}$ and $X_{\nu} \to X$;
- (d) $\mathcal{T}(\mathcal{S}_{n_0})$ has compact closure.

For the rest of the proof we assume that $X \in \mathcal{S}_{n_0}$. Then (7) and (13) imply (2), while (8) and (13) imply (3). By Assumption 1, (2) and (3) imply (4); hence, (6) and (12) imply that $Y = \mathcal{T}X$ is defined, and that

$$|y_i(n) - c_i| \le \alpha_i \rho_i, \quad n \in \mathcal{Z}, \quad 1 \le i \le k.$$

This establishes hypotheses (a) and (b) of the Schauder-Tychonoff theorem.

Now suppose $\{X_{\nu}\}\subset \mathcal{S}_{n_0}$ and $X_{\nu}\to X$. Let $Y_{\nu}=\mathcal{T}X_{\nu}=(y_{1\nu},\ldots,y_{k\nu})$ and $Y=\mathcal{T}X=(y_1,\ldots,y_k)$. From (12),

$$|y_{i\nu}(n) - y_i(n)| \le \sum_{\ell=n_0}^{\infty} |f_i(\ell; X_{\nu}) - f_i(\ell; X)|, \quad n \in \mathcal{Z}, \quad 1 \le i \le k.$$
 (14)

From (6), if $\epsilon > 0$, there is an $N > n_0$ such that

$$\sum_{\ell=N+1}^{\infty} w_i(\ell, \rho_1, \dots, \rho_k) < \epsilon, \quad 1 \le i \le k.$$

Then (4) and (14) imply that

$$|y_{i\nu}(n) - y_i(n)| \le \sum_{\ell=n_0}^N |f_i(\ell; X_{\nu}) - f_i(\ell; X)| + 2\epsilon, \quad n \in \mathbb{Z}, \quad 1 \le i \le k.$$
 (15)

Since

$$\lim_{\nu \to \infty} |f_i(\ell; X_{\nu}) - f_i(\ell; X)| = 0, \quad \ell \ge n_0,$$

from (5), (15) implies that $\limsup_{\nu\to\infty} \|Y_{\nu} - Y\| \le 2\epsilon$. Since $\epsilon > 0$, this implies that $\lim_{\nu\to\infty} \|Y_{\nu} - Y\| = 0$. This establishes hypothesis (c) of the Schauder-Tychonoff theorem.

We will now show that $\overline{\mathcal{T}(S_{n_0})}$ is compact. Let $C = (c_1, \ldots, c_k)$ and $\Gamma = (\gamma_1, \ldots, \gamma_k)$, with

$$\gamma_i(n) = \sum_{\ell=n}^{\infty} w_i(\ell, \rho_1, \dots, \rho_k), \quad 1 \le i \le k, \quad n \ge n_0.$$

From (4) and (12),

$$\overline{\mathcal{T}(\mathcal{S}_{n_0})} \subset \mathcal{A} = \left\{ V \in \mathcal{C}_{n_0} \mid |V(n) - C| \leq |\Gamma(n)| \right\},\,$$

so it suffices to show that \mathcal{A} is compact. From [2, pp. 51-53], this is true if \mathcal{A} is totally bounded; that is, for every $\epsilon > 0$ there is a finite subset \mathcal{A}_{ϵ} of \mathcal{C}_{n_0} such that for each $V \in \mathcal{A}$ there is a $\tilde{V} \in \mathcal{A}_{\epsilon}$ that satisfies the inequality $\|V - \tilde{V}\| < \epsilon$. To establish the existence of \mathcal{A}_{ϵ} , choose an integer $n_1 \geq n_0$ such that $|\Gamma(n_1)| < \epsilon$. Now let

$$M = \max \left\{ |\Gamma(n)| \, \middle| \, n_0 \le n \le n_1 - 1 \right\},\,$$

let p be an integer such that $p\epsilon > M$, and let $Q = \{r\epsilon \mid r = \text{ integer }, -p \leq r \leq p\}$. Let \mathcal{A}_{ϵ} be the finite set of k-vector functions A on \mathcal{Z} defined as follows:

- (i) If $n \ge n_1$, then A(n) = C.
- (ii) If $n \leq n_0$, then $A(n) = A(n_0)$.
- (iii) If $n_0 \le n \le n_1 1$, then $A(n) = (c_1 + q_1(n), \dots, c_k + q_k(n))$, where $q_1(n)$, ..., $q_k(n)$ are in Q.

Then, since $|V(n) - C| \leq M$ for $n_0 \leq n \leq n_1 - 1$ if $V \in \mathcal{A}$, the set \mathcal{A}_{ϵ} has the desired property. Therefore the Schauder-Tychonoff theorem implies that $\mathcal{T}\hat{X} = \hat{X}$ for some \hat{X} in \mathcal{S}_{n_0} .

3 Applications of Theorem 1

Since all our results follow from Theorem 1, we will simply verify (6), (7), and (8) in each case, without specifically citing Theorem 1. We say that the problem $P_r(n_0; c_1, \ldots, c_k)$ has a solution if there is a sequence \hat{X} in C_{n_0} such that $\Delta \hat{X}(n) = F(n; X)$, $n \geq n_0$, and $\lim_{n \to \infty} \hat{x}_i(n) = c_i$, $1 \leq i \leq k$. Some of our results are local at ∞ , in that a solution is shown to exist only if n_0 is sufficiently large. Others are global, in that a solution is shown to exist for all $n \geq m$.

THEOREM 2 If $c_i \neq 0$ for $r+1 \leq i \leq k$, then $P_r(n_0; c_1, \ldots, c_k)$ has a solution if n_0 is sufficiently large.

PROOF. Let $\alpha_1, \ldots, \alpha_k$ be positive, with $\alpha_i < 1$ for $1 \le i \le r$. Choose ρ_1, \ldots, ρ_k to satisfy (7) and (8). Then choose n_0 to satisfy (6).

THEOREM 3 If

$$\sum_{n=n_0}^{\infty} w_i(n, \rho_1, \dots, \rho_k) < \rho_i, \quad 1 \le i \le r, \tag{16}$$

then $P_r(n_0, c_1, \ldots, c_k)$ has a solution if $|c_1|, \ldots, |c_r|$ are sufficiently small and $|c_{r+1}|, \ldots, |c_k|$ are sufficiently large.

PROOF. Choose $\alpha_1, \ldots, \alpha_k$ sufficiently large to satisfy (6). (Because of (16), this can be achieved with $\alpha_i < 1, 1 \le i \le r$.) Then $P(n_0, c_1, \ldots, c_k)$ has a solution if (7) and (8) hold.

THEOREM 4 If $|c_1|, \ldots, |c_k|$ are sufficiently large, then $P_0(m; c_1, \ldots, c_k)$ has a solution.

PROOF. Let ρ_1, \ldots, ρ_k be positive. Choose $\alpha_1, \ldots, \alpha_k$ to satisfy (6) with $n_0 = m$. Then choose c_1, \ldots, c_k to satisfy (8) with r = 0.

Theorem 5 Suppose that

$$\lim_{\rho \to 0+} \sup_{n=m} \rho^{-1} \sum_{n=m}^{\infty} w_i(n, \rho, \dots, \rho) = \psi_i < 1, \quad 1 \le i \le k.$$
 (17)

Then $P_k(m; c_1, \ldots, c_k)$ has a solution if $|c_1|, \ldots, |c_k|$ are sufficiently small.

PROOF. Let $\psi_i < \alpha_i < 1, 1 \le i \le k$. From (17), we can choose ρ_0 so small that

$$\sum_{n=m}^{\infty} w_i(n, \rho_0, \dots, \rho_0) \le \alpha_i \rho_0, \quad 1 \le i \le k.$$

Now choose c_1, \ldots, c_k so that $|c_i| \leq (1 - \alpha_i)\rho_0, 1 \leq i \leq k$.

Theorem 6 Suppose that

$$\limsup_{\rho \to \infty} \rho^{-1} \sum_{n=m}^{\infty} w_i(n, \rho, \dots, \rho) = \eta_i < 1, \quad 1 \le i \le k.$$
 (18)

Let c_1, \ldots, c_k be arbitrary. Then $P_k(m; c_1, \ldots, c_k)$ has a solution.

PROOF. Let $\eta_i < \alpha_i < 1, 1 \le i \le k$. From (18), we can choose ρ_0 so large that $\rho_0 \ge |c_i|/(1-\alpha_i), 1 \le i \le k$, and

$$\sum_{n=m}^{\infty} w_i(n, \rho_0, \dots, \rho_0) \le \alpha_i \rho_0, \quad 1 \le i \le k.$$

Assumption 2 In addition to Assumption 1, assume that (1) is mixed (that is, 0 < r < k), and

$$w_i(n, \rho_1, \rho_2, \dots, \rho_k) = u_i(n, \rho_1, \dots, \rho_r) + v_i(n, \rho_{r+1}, \dots, \rho_k), \quad 1 < i < r,$$

where u_i and v_i are positive, and

$$\lim_{\rho \to \infty} \sum_{n=m}^{\infty} v_i(n, \rho, \dots, \rho) = 0, \quad 1 \le i \le r.$$
 (19)

THEOREM 7 If Assumption 2 holds, then $P_r(n_0, c_1, ..., c_k)$ has a solution if n_0 and $|c_{r+1}|, ..., |c_k|$ are sufficiently large and $|c_1|, ..., |c_r|$ are sufficiently small.

PROOF. Let $\rho_1 > 0$ and $0 < \alpha_1 < 1$, and choose $n_0 \ge m$ so that

$$\sum_{n=n_0}^{\infty} u_i(n, \rho_1, \dots, \rho_1) < \alpha_1 \rho_1, \quad 1 \le i \le r.$$

From (19), we can choose ρ_2 so large that

$$\sum_{n=n_0}^{\infty} (u_i(n, \rho_1, \dots, \rho_1) + v_i(n, \rho_2, \dots, \rho_2)) \le \alpha_1 \rho_1, \quad 1 \le i \le r.$$

Now choose α_2 so that

$$\sum_{n=n_0}^{\infty} w_i(n, \rho_1, \dots, \rho_k) \le \alpha_2 \rho_2, \quad r+1 \le i \le k,$$

if $\rho_i = \rho_1$, $1 \le i \le r$, and $\rho_i = \rho_2$, $r + 1 \le i \le k$. Then choose $|c_i| \le (1 - \alpha_1)\rho_1$, $1 \le i \le r$, and $|c_i| \ge (1 + \alpha_2)\rho_2$, $r + 1 \le i \le k$.

Theorem 8 In addition to Assumption 2, suppose that

$$\limsup_{\rho \to 0+} \rho^{-1} \sum_{n=m}^{\infty} u_i(n, \rho, \dots, \rho) = \psi_i < 1, \quad 1 \le i \le r.$$

Then $P_r(m, c_1, ..., c_k)$ has a solution if $|c_1|, ..., |c_r|$ are sufficiently small and $|c_{r+1}|, ..., |c_k|$ are sufficiently large.

PROOF. Let $\psi_i < \alpha_i < 1, 1 \le i \le r$. Choose ρ_1 so small that

$$\sum_{n=m}^{\infty} u_i(n, \rho_1, \dots, \rho_1) < \alpha_i \rho_1, \quad 1 \le i \le r.$$

Now apply the argument used in the proof of Theorem 7, with $n_0 = m$.

Theorem 9 In addition to Assumption 2, suppose that

$$\limsup_{\rho \to \infty} \rho^{-1} \sum_{n=m}^{\infty} u_i(n, \rho, \dots, \rho) = \eta_i < 1, \quad 1 \le i \le r.$$

Then $P_r(m, c_1, \ldots, c_k)$ has a solution if $|c_{r+1}|, \ldots, |c_k|$ are sufficiently large.

PROOF. Let $\eta_i < \alpha_i < 1$, $1 \le i \le r$. Choose ρ_1 so large that $\rho_1 \ge |c_i|/(1-\alpha_i)$, $1 \le i \le r$, and

$$\sum_{n=m}^{\infty} u_i(n, \rho_1, \dots, \rho_1) < \alpha_i \rho_1, \quad 1 \le i \le r.$$

Now apply the argument used in the proof of Theorem 7, with $n_0 = m$.

4 Quasi-linear Systems: I

Consider the system

$$\Delta x_i(n) = \sum_{j=1}^k a_{ij}(n) g_{ij}(x_j(\phi_{ij}(n))), \quad 1 \le i \le k,$$
 (20)

assuming throughout that, for some integer m and $1 \le i \le j \le k$, $\phi_{ij} : \mathcal{Z}_m \to \mathcal{Z}$, $g_{ij} : \mathcal{Z} \to \mathcal{R}$, $a_{ij} : \mathcal{Z}_m \to \mathcal{R}$,

$$|g_{ij}(u)| = |u|^{\gamma_{ij}}$$
 and $\sum_{n=m}^{\infty} |a_{ij}(n)| < \infty$.

We assume that for some r in $\{0, 1, ..., k\}$, $\gamma_{ij} > 0$ if $1 \le i \le r$ and $\gamma_{ij} < 0$ if $r+1 \le i \le k$, for $1 \le j \le k$. Then Assumption 1 holds, with

$$w_i(n, \rho_1, \rho_2, \dots, \rho_k) = \sum_{j=1}^k |a_{ij}(n)| \rho_j^{\gamma_{ij}}.$$

It is to be understood throughout this section that this is the definition of w_i . If 0 < r < k, then (20) satisfies Assumption 2 with

$$u_i(n, \rho_1, \dots, \rho_r) = \sum_{j=1}^r |a_{ij}(n)| \rho_j^{\gamma_{ij}}$$

and

$$v_i(n, \rho_{r+1}, \dots, \rho_k) = \sum_{j=r+1}^k |a_{ij}(n)| \rho_j^{\gamma_{ij}}.$$

THEOREM 10 If $\gamma_{ij} > 0$, $1 \le i, j \le k$, there is an $n_0 \ge m$, which depends upon c_1, \ldots, c_k , such that $P_k(n_0; c_1, \ldots, c_k)$ has a solution.

PROOF. If $0 < \alpha < 1$, choose $\rho_1, \rho_2, \ldots, \rho_k$ so that $|c_i| \le (1 - \alpha)\rho_i$, $1 \le i \le k$. Then choose n_0 so that

$$\sum_{n=n_0}^{\infty} w_i(n, \rho_1, \rho_2, \dots, \rho_k) \le \alpha \rho_i, \quad 1 \le i \le k.$$

THEOREM 11 If $\gamma_{ij} = 1$, $1 \le i, j \le k$, there is an $n_0 \ge m$, independent of c_1 , ..., c_k , such that $P_k(n_0; c_1, \ldots, c_k)$ has a solution.

PROOF. If $0 < \alpha < 1$, choose n_0 so that

$$\sum_{n=n_0}^{\infty} w_i(n, 1, \dots, 1) < \alpha, \quad 1 \le i \le k.$$

Then

$$\sum_{n=1}^{\infty} w_i(n, \rho, \dots, \rho) < \alpha \rho, \quad 1 \le i \le k,$$

for any $\rho > 0$. For arbitrary c_1, \ldots, c_k choose ρ so that $|c_i| \leq (1-\alpha)\rho$, $1 \leq i \leq k$.

Theorems 5-9 imply the following theorems.

THEOREM 12 If $\gamma_{ij} > 1$, $1 \le i, j \le k$, then $P_k(m; c_1, ..., c_k)$ has a solution if $|c_1|, ..., |c_k|$ are sufficiently small.

THEOREM 13 If $0 < \gamma_{ij} < 1$, $1 \le i, j \le k$, and c_1, \ldots, c_k are arbitrary, then $P_k(m; c_1, \ldots, c_k)$ has a solution.

THEOREM 14 If 0 < r < k, then $P_r(n_0; c_1, \ldots, c_k)$ has a solution if n_0 and $|c_{r+1}|, \ldots, |c_k|$ are sufficiently large and $|c_1|, \ldots, |c_r|$ are sufficiently small.

THEOREM 15 If 0 < r < k and $\gamma_{ij} > 1$, $1 \le i \le r$, $1 \le j \le k$, then $P_r(m; c_1, \ldots, c_k)$ has a solution if $|c_1|, \ldots, |c_r|$ are sufficiently small and $|c_{r+1}|, \ldots, |c_k|$ are sufficiently large.

THEOREM 16 If 0 < r < k and $0 < \gamma_{ij} < 1$, $1 \le i \le r$, $1 \le j \le k$, then $P_r(m; c_1, \ldots, c_k)$ has a solution if $|c_{r+1}|, \ldots, |c_k|$ are sufficiently large.

5 Quasi-linear Systems: II

In this section we consider

$$\Delta x_i(n) = \sum_{j=1}^k \beta_{ij}^n \sum_{\ell=0}^n p_{ij}(n-\ell) g_{ij}(x_j(\phi_{ij}(n))), \quad 1 \le i \le k, \quad n \ge 0,$$
 (21)

where g_{ij} and ϕ_{ij} are as in the previous section, $|\beta_{ij}| < 1$, and

$$\sum_{n=0}^{\infty} |\beta_{ij}^n p_{ij}(n)| < \infty, \quad 1 \le i, j \le n.$$

Here we can take

$$w_i(n, \rho_1, \dots, \rho_k) = \sum_{j=1}^k \rho_j^{\gamma_{ij}} \sum_{\ell=0}^n |\beta_{ij}^n p_{ij}(n-\ell)|.$$

Therefore Assumption 1 holds with

$$\sum_{n=0}^{\infty} w_i(n, \rho_1, \dots, \rho_k) = \sum_{j=1}^{k} \sigma_{ij} \rho_j^{\gamma_{ij}},$$

where

$$\sigma_{ij} = \sum_{n=0}^{\infty} \sum_{\ell=0}^{n} |\beta_{ij}^{n} p_{ij}(n-\ell)| = \sum_{\ell=0}^{\infty} \sum_{n=\ell}^{\infty} |\beta_{ij}^{n} p_{ij}(n-\ell)|$$
$$= \frac{1}{1-|\beta_{ij}|} \sum_{n=0}^{\infty} |\beta_{ij}^{n} p_{ij}(n)|.$$

All the arguments used in the previous section can now be used with $|a_{ij}|$ replaced by σ_{ij} ; therefore, Theorems 10-16 all hold (with m=0) for (21).

References

- [1] P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York, London, Sydney, 1964.
- [2] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, v. 1 (translated from the 1954 Russian edition by L. F. Boron), Graylock Press, Rochester, N.Y., 1957.