Asymptotically Constant Solutions of Functional Difference Systems

William F. Trench
J. Difference Eq. Appl., 8 (2002), 811-821
Dedicated to Allan Peterson on the Occasion of His 60th Birthday.

Abstract

We consider the functional difference system (A) $\Delta x_{i}(n)=f_{i}(n ; X)$, $1 \leq i \leq k$, where $X=\left(x_{1}, \ldots, x_{k}\right)$ and $f_{1}(\cdot ; X), \ldots, f_{k}(\cdot ; X)$ are realvalued functionals of X, which may depend quite arbitrarily on values of $X(\ell)$ for multiple values of $\ell \in \mathcal{Z}$. We give sufficient conditions for (A) to have solutions that approach specified constant vectors as $n \rightarrow \infty$. Some of the results guarantee only that the solutions are defined for n sufficiently large, while others are global. The proof of the main theorem is based on the Schauder-Tychonoff theorem. Applications to specific quasi-linear systems are included.

Keywords: Functional difference system; Nonsingular; Quasi-linear; SchauderTychonoff theorem; Singular

Mathematics Subject Classification (2000): 39A11

1 Introduction

Throughout this paper \mathcal{Z} is the set of all integers. If m is an integer, then $\mathcal{Z}_{m}=\{n \in \mathcal{Z} \mid n \geq m\}$.

We consider the functional difference system

$$
\Delta x_{i}(n)=f_{i}(n ; X), \quad 1 \leq i \leq k
$$

where $X=\left(x_{1}, \ldots, x_{k}\right): \mathcal{Z} \rightarrow \mathcal{R}^{k}$ and $f_{1}(\cdot ; X), \ldots, f_{k}(\cdot ; X)$ are real-valued functionals of X. We view $X=\{X(\ell)\}_{\ell \in \mathcal{Z}}$ as a two-way infinite sequence; for a given $n, f_{i}(n ; X)$ may depend quite arbitrarily on values of $X(\ell)$ for multiple values of $\ell \in \mathcal{Z}$. We also write the system as

$$
\begin{equation*}
\Delta X(n)=F(n ; X) \tag{1}
\end{equation*}
$$

Definition 1 If n_{0} is an integer, then $\mathcal{C}_{n_{0}}$ is the space of bounded sequences $X=\{X(n)\}_{n \in \mathcal{Z}}$ that are constant for $n \leq n_{0}$, with norm $\|X\|=\sup _{n \in \mathcal{Z}}|X(n)|$, where $|U|=\max \left\{\left|u_{1}\right|, \ldots,\left|u_{k}\right|\right\}$ if $U=\left(u_{1}, \ldots, u_{k}\right)$. If $\left\{X_{\nu}\right\}$ is an infinite sequence of elements in $\mathcal{C}_{n_{0}}$, we say that $X_{\nu} \rightarrow X$ if $\lim _{\nu \rightarrow \infty}\left\|X_{\nu}-X\right\|=0$. We say that $X \in \mathcal{C}_{n_{0}}$ is a solution of (1) if $\Delta X(n)=F(n ; X)$ for $n \geq n_{0}$.

Note that $\mathcal{C}_{n_{0}}$ is a Banach space. We make the following standing assumption.

Assumption 1 Let m and r be integers, with $0 \leq r \leq k$, and let $\rho_{1}, \ldots, \rho_{k}$ be arbitrary positive numbers. If $X \in \mathcal{C}_{m}$ and

$$
\begin{equation*}
\left|x_{i}(n)\right| \leq \rho_{i}, \quad n \in \mathcal{Z}, \quad 1 \leq i \leq r, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{i}(n)\right| \geq \rho_{i}, \quad n \in \mathcal{Z}, \quad r+1 \leq i \leq k \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|f_{i}(n ; X)\right| \leq w_{i}\left(n, \rho_{1}, \ldots, \rho_{k}\right), \quad n \in \mathcal{Z}_{m}, \quad 1 \leq i \leq k \tag{4}
\end{equation*}
$$

where $w_{i}: \mathcal{Z}_{m} \times(0, \infty)^{k} \rightarrow(0, \infty)$ and

$$
\sum_{n=m}^{\infty} w_{i}\left(n, \rho_{1}, \ldots, \rho_{k}\right)<\infty, \quad 1 \leq i \leq k
$$

for all $\rho_{1}, \ldots, \rho_{k}>0$. Finally, if $\left\{X_{\nu}\right\} \subset \mathcal{C}_{m}$ with

$$
\left|x_{i \nu}(n)\right| \leq \rho_{i}, \quad n \in \mathcal{Z}, \quad 1 \leq i \leq r,
$$

and

$$
\left|x_{i \nu}(n)\right| \geq \rho_{i}, \quad n \in \mathcal{Z}, \quad r+1 \leq i \leq k
$$

for all ν, and $X_{\nu} \rightarrow X$, then

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} F\left(n ; X_{\nu}\right)=F(n ; X), \quad n \in \mathcal{Z}_{m} \tag{5}
\end{equation*}
$$

We say that the system (1) is nonsingular in x_{1}, \ldots, x_{r} and singular in x_{r+1}, \ldots, x_{k}. We also say that (1) is purely singular if $r=0$, purely nonsingular if $r=k$, or mixed if $0<r<k$.

2 The Main Theorem

The following theorem is our main result.
THEOREM 1 Suppose that $n_{0} \geq m$ and $\rho_{1}, \ldots, \rho_{k}$, and $\alpha_{1}, \ldots, \alpha_{k}$ are positive numbers such that $\alpha_{i}<1$ if $1 \leq i \leq r$, and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} w_{i}\left(n, \rho_{1}, \ldots, \rho_{k}\right) \leq \alpha_{i} \rho_{i}, \quad 1 \leq i \leq k \tag{6}
\end{equation*}
$$

Let c_{1}, \ldots, c_{k} be constants such that

$$
\begin{equation*}
\left|c_{i}\right| \leq\left(1-\alpha_{i}\right) \rho_{i}, \quad 1 \leq i \leq r \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|c_{i}\right| \geq\left(1+\alpha_{i}\right) \rho_{i}, \quad r+1 \leq i \leq k \tag{8}
\end{equation*}
$$

Then there is an \hat{X} in $\mathcal{C}_{n_{0}}$ such that

$$
\begin{gather*}
\Delta \hat{X}(n)=F(n ; \hat{X}), \quad n \in \mathcal{Z}_{n_{0}} \tag{9}\\
\left|\hat{x}_{i}(n)-c_{i}\right| \leq \alpha_{i} \rho_{i}, \quad n \in \mathcal{Z}, \quad 1 \leq i \leq k \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \hat{x}_{i}(n)=c_{i}, \quad 1 \leq i \leq k \tag{11}
\end{equation*}
$$

Proof. We obtain \hat{X} as a fixed point of the transformation $Y=\mathcal{T} X$ defined by

$$
y_{i}(n)=\left\{\begin{array}{rl}
c_{i}-\sum_{\ell=n}^{\infty} f_{i}(\ell ; X), & n \geq n_{0} \tag{12}\\
c_{i}-\sum_{\ell=n_{0}}^{\infty} f_{i}(\ell ; X), & n<n_{0}
\end{array} \quad 1 \leq i \leq k\right.
$$

acting on the subset $\mathcal{S}_{n_{0}}$ of $\mathcal{C}_{n_{0}}$ such that

$$
\begin{equation*}
\left|x_{i}(n)-c_{i}\right| \leq \alpha_{i} \rho_{i}, \quad n \in \mathcal{Z}, \quad 1 \leq i \leq k \tag{13}
\end{equation*}
$$

If $\hat{X}=\mathcal{T} \hat{X}$ for some $\hat{X} \in \mathcal{S}_{n_{0}}$, then \hat{X} satisfies (9), (10), and (11).
Since $\mathcal{S}_{n_{0}}$ is a closed convex subset of a Banach space, the Schauder-Tychonoff theorem [1, p. 405] asserts that $\hat{X}=\mathcal{T} \hat{X}$ for some \hat{X} in $\mathcal{S}_{n_{0}}$ if
(a) \mathcal{T} is defined on $\mathcal{S}_{n_{0}}$;
(b) $\mathcal{T}\left(\mathcal{S}_{n_{0}}\right) \subset \mathcal{S}_{n_{0}}$;
(c) $\mathcal{T} X_{\nu} \rightarrow \mathcal{T} X$ if $\left\{X_{\nu}\right\} \subset \mathcal{S}_{n_{0}}$ and $X_{\nu} \rightarrow X$;
(d) $\mathcal{T}\left(\mathcal{S}_{n_{0}}\right)$ has compact closure.

For the rest of the proof we assume that $X \in \mathcal{S}_{n_{0}}$. Then (7) and (13) imply (2), while (8) and (13) imply (3). By Assumption 1, (2) and (3) imply (4); hence, (6) and (12) imply that $Y=\mathcal{T} X$ is defined, and that

$$
\left|y_{i}(n)-c_{i}\right| \leq \alpha_{i} \rho_{i}, \quad n \in \mathcal{Z}, \quad 1 \leq i \leq k
$$

This establishes hypotheses (a) and (b) of the Schauder-Tychonoff theorem.
Now suppose $\left\{X_{\nu}\right\} \subset \mathcal{S}_{n_{0}}$ and $X_{\nu} \rightarrow X$. Let $Y_{\nu}=\mathcal{T} X_{\nu}=\left(y_{1 \nu}, \ldots, y_{k \nu}\right)$ and $Y=\mathcal{T} X=\left(y_{1}, \ldots, y_{k}\right)$. From (12),

$$
\begin{equation*}
\left|y_{i \nu}(n)-y_{i}(n)\right| \leq \sum_{\ell=n_{0}}^{\infty}\left|f_{i}\left(\ell ; X_{\nu}\right)-f_{i}(\ell ; X)\right|, \quad n \in \mathcal{Z}, \quad 1 \leq i \leq k \tag{14}
\end{equation*}
$$

From (6), if $\epsilon>0$, there is an $N>n_{0}$ such that

$$
\sum_{\ell=N+1}^{\infty} w_{i}\left(\ell, \rho_{1}, \ldots, \rho_{k}\right)<\epsilon, \quad 1 \leq i \leq k
$$

Then (4) and (14) imply that

$$
\begin{equation*}
\left|y_{i \nu}(n)-y_{i}(n)\right| \leq \sum_{\ell=n_{0}}^{N}\left|f_{i}\left(\ell ; X_{\nu}\right)-f_{i}(\ell ; X)\right|+2 \epsilon, \quad n \in \mathcal{Z}, \quad 1 \leq i \leq k \tag{15}
\end{equation*}
$$

Since

$$
\lim _{\nu \rightarrow \infty}\left|f_{i}\left(\ell ; X_{\nu}\right)-f_{i}(\ell ; X)\right|=0, \quad \ell \geq n_{0}
$$

from (5), (15) implies that $\lim _{\sup }^{\nu \rightarrow \infty} \boldsymbol{}\left\|Y_{\nu}-Y\right\| \leq 2 \epsilon$. Since $\epsilon>0$, this implies that $\lim _{\nu \rightarrow \infty}\left\|Y_{\nu}-Y\right\|=0$. This establishes hypothesis (c) of the SchauderTychonoff theorem.

We will now show that $\overline{\mathcal{T}\left(\mathcal{S}_{n_{0}}\right)}$ is compact. Let $C=\left(c_{1}, \ldots, c_{k}\right)$ and $\Gamma=$ $\left(\gamma_{1}, \ldots, \gamma_{k}\right)$, with

$$
\gamma_{i}(n)=\sum_{\ell=n}^{\infty} w_{i}\left(\ell, \rho_{1}, \ldots, \rho_{k}\right), \quad 1 \leq i \leq k, \quad n \geq n_{0}
$$

From (4) and (12),

$$
\overline{\mathcal{T}\left(\mathcal{S}_{n_{0}}\right)} \subset \mathcal{A}=\left\{V \in \mathcal{C}_{n_{0}}| | V(n)-C|\leq|\Gamma(n)|\}\right.
$$

so it suffices to show that \mathcal{A} is compact. From [2, pp. 51-53], this is true if \mathcal{A} is totally bounded; that is, for every $\epsilon>0$ there is a finite subset \mathcal{A}_{ϵ} of $\mathcal{C}_{n_{0}}$ such that for each $V \in \mathcal{A}$ there is a $\tilde{V} \in \mathcal{A}_{\epsilon}$ that satisfies the inequality $\|V-\tilde{V}\|<\epsilon$. To establish the existence of \mathcal{A}_{ϵ}, choose an integer $n_{1} \geq n_{0}$ such that $\left|\Gamma\left(n_{1}\right)\right|<\epsilon$. Now let

$$
M=\max \left\{|\Gamma(n)| \mid n_{0} \leq n \leq n_{1}-1\right\},
$$

let p be an integer such that $p \epsilon>M$, and let $Q=\{r \epsilon \mid r=$ integer,$-p \leq r \leq p\}$. Let \mathcal{A}_{ϵ} be the finite set of k-vector functions A on \mathcal{Z} defined as follows:
(i) If $n \geq n_{1}$, then $A(n)=C$.
(ii) If $n \leq n_{0}$, then $A(n)=A\left(n_{0}\right)$.
(iii) If $n_{0} \leq n \leq n_{1}-1$, then $A(n)=\left(c_{1}+q_{1}(n), \ldots, c_{k}+q_{k}(n)\right)$, where $q_{1}(n)$, $\ldots, q_{k}(n)$ are in Q.

Then, since $|V(n)-C| \leq M$ for $n_{0} \leq n \leq n_{1}-1$ if $V \in \mathcal{A}$, the set \mathcal{A}_{ϵ} has the desired property. Therefore the Schauder-Tychonoff theorem implies that $\mathcal{T} \hat{X}=\hat{X}$ for some \hat{X} in $\mathcal{S}_{n_{0}}$.

3 Applications of Theorem 1

Since all our results follow from Theorem 1, we will simply verify (6), (7), and (8) in each case, without specifically citing Theorem 1 . We say that the problem $P_{r}\left(n_{0} ; c_{1}, \ldots, c_{k}\right)$ has a solution if there is a sequence \hat{X} in $\mathcal{C}_{n_{0}}$ such that $\Delta \hat{X}(n)=F(n ; X), n \geq n_{0}$, and $\lim _{n \rightarrow \infty} \hat{x}_{i}(n)=c_{i}, 1 \leq i \leq k$. Some of our results are local at ∞, in that a solution is shown to exist only if n_{0} is sufficiently large. Others are global, in that a solution is shown to exist for all $n \geq m$.

THEOREM 2 If $c_{i} \neq 0$ for $r+1 \leq i \leq k$, then $P_{r}\left(n_{0} ; c_{1}, \ldots, c_{k}\right)$ has a solution if n_{0} is sufficiently large.

Proof. Let $\alpha_{1}, \ldots, \alpha_{k}$ be positive, with $\alpha_{i}<1$ for $1 \leq i \leq r$. Choose $\rho_{1}, \ldots, \rho_{k}$ to satisfy (7) and (8). Then choose n_{0} to satisfy (6).

Theorem 3 If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} w_{i}\left(n, \rho_{1}, \ldots, \rho_{k}\right)<\rho_{i}, \quad 1 \leq i \leq r \tag{16}
\end{equation*}
$$

then $P_{r}\left(n_{0}, c_{1}, \ldots, c_{k}\right)$ has a solution if $\left|c_{1}\right|, \ldots,\left|c_{r}\right|$ are sufficiently small and $\left|c_{r+1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently large.

Proof. Choose $\alpha_{1}, \ldots, \alpha_{k}$ sufficiently large to satisfy (6). (Because of (16), this can be achieved with $\alpha_{i}<1,1 \leq i \leq r$.) Then $P\left(n_{0}, c_{1}, \ldots, c_{k}\right)$ has a solution if (7) and (8) hold.

THEOREM 4 If $\left|c_{1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently large, then $P_{0}\left(m ; c_{1}, \ldots, c_{k}\right)$ has a solution.

Proof. Let $\rho_{1}, \ldots, \rho_{k}$ be positive. Choose $\alpha_{1}, \ldots, \alpha_{k}$ to satisfy (6) with $n_{0}=m$. Then choose c_{1}, \ldots, c_{k} to satisfy (8) with $r=0$.

Theorem 5 Suppose that

$$
\begin{equation*}
\limsup _{\rho \rightarrow 0+} \rho^{-1} \sum_{n=m}^{\infty} w_{i}(n, \rho, \ldots, \rho)=\psi_{i}<1, \quad 1 \leq i \leq k \tag{17}
\end{equation*}
$$

Then $P_{k}\left(m ; c_{1}, \ldots, c_{k}\right)$ has a solution if $\left|c_{1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently small.
Proof. Let $\psi_{i}<\alpha_{i}<1,1 \leq i \leq k$. From (17), we can choose ρ_{0} so small that

$$
\sum_{n=m}^{\infty} w_{i}\left(n, \rho_{0}, \ldots, \rho_{0}\right) \leq \alpha_{i} \rho_{0}, \quad 1 \leq i \leq k
$$

Now choose c_{1}, \ldots, c_{k} so that $\left|c_{i}\right| \leq\left(1-\alpha_{i}\right) \rho_{0}, 1 \leq i \leq k$.

Theorem 6 Suppose that

$$
\begin{equation*}
\limsup _{\rho \rightarrow \infty} \rho^{-1} \sum_{n=m}^{\infty} w_{i}(n, \rho, \ldots, \rho)=\eta_{i}<1, \quad 1 \leq i \leq k \tag{18}
\end{equation*}
$$

Let c_{1}, \ldots, c_{k} be arbitrary. Then $P_{k}\left(m ; c_{1}, \ldots, c_{k}\right)$ has a solution.
Proof. Let $\eta_{i}<\alpha_{i}<1,1 \leq i \leq k$. From (18), we can choose ρ_{0} so large that $\rho_{0} \geq\left|c_{i}\right| /\left(1-\alpha_{i}\right), 1 \leq i \leq k$, and

$$
\sum_{n=m}^{\infty} w_{i}\left(n, \rho_{0}, \ldots, \rho_{0}\right) \leq \alpha_{i} \rho_{0}, \quad 1 \leq i \leq k
$$

Assumption 2 In addition to Assumption 1, assume that (1) is mixed (that is, $0<r<k$), and

$$
w_{i}\left(n, \rho_{1}, \rho_{2}, \ldots, \rho_{k}\right)=u_{i}\left(n, \rho_{1}, \ldots, \rho_{r}\right)+v_{i}\left(n, \rho_{r+1}, \ldots, \rho_{k}\right), \quad 1 \leq i \leq r
$$

where u_{i} and v_{i} are positive, and

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty} \sum_{n=m}^{\infty} v_{i}(n, \rho, \ldots, \rho)=0, \quad 1 \leq i \leq r \tag{19}
\end{equation*}
$$

TheOrem 7 If Assumption 2 holds, then $P_{r}\left(n_{0}, c_{1}, \ldots, c_{k}\right)$ has a solution if n_{0} and $\left|c_{r+1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently large and $\left|c_{1}\right|, \ldots,\left|c_{r}\right|$ are sufficiently small.

Proof. Let $\rho_{1}>0$ and $0<\alpha_{1}<1$, and choose $n_{0} \geq m$ so that

$$
\sum_{n=n_{0}}^{\infty} u_{i}\left(n, \rho_{1}, \ldots, \rho_{1}\right)<\alpha_{1} \rho_{1}, \quad 1 \leq i \leq r
$$

From (19), we can choose ρ_{2} so large that

$$
\sum_{n=n_{0}}^{\infty}\left(u_{i}\left(n, \rho_{1}, \ldots, \rho_{1}\right)+v_{i}\left(n, \rho_{2}, \ldots, \rho_{2}\right)\right) \leq \alpha_{1} \rho_{1}, \quad 1 \leq i \leq r
$$

Now choose α_{2} so that

$$
\sum_{n=n_{0}}^{\infty} w_{i}\left(n, \rho_{1}, \ldots, \rho_{k}\right) \leq \alpha_{2} \rho_{2}, \quad r+1 \leq i \leq k
$$

if $\rho_{i}=\rho_{1}, 1 \leq i \leq r$, and $\rho_{i}=\rho_{2}, r+1 \leq i \leq k$. Then choose $\left|c_{i}\right| \leq\left(1-\alpha_{1}\right) \rho_{1}$, $1 \leq i \leq r$, and $\left|c_{i}\right| \geq\left(1+\alpha_{2}\right) \rho_{2}, r+1 \leq i \leq k$.

Theorem 8 In addition to Assumption 2, suppose that

$$
\limsup _{\rho \rightarrow 0+} \rho^{-1} \sum_{n=m}^{\infty} u_{i}(n, \rho, \ldots, \rho)=\psi_{i}<1, \quad 1 \leq i \leq r .
$$

Then $P_{r}\left(m, c_{1}, \ldots, c_{k}\right)$ has a solution if $\left|c_{1}\right|, \ldots,\left|c_{r}\right|$ are sufficiently small and $\left|c_{r+1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently large.

Proof. Let $\psi_{i}<\alpha_{i}<1,1 \leq i \leq r$. Choose ρ_{1} so small that

$$
\sum_{n=m}^{\infty} u_{i}\left(n, \rho_{1}, \ldots, \rho_{1}\right)<\alpha_{i} \rho_{1}, \quad 1 \leq i \leq r
$$

Now apply the argument used in the proof of Theorem 7 , with $n_{0}=m$.
Theorem 9 In addition to Assumption 2, suppose that

$$
\limsup _{\rho \rightarrow \infty} \rho^{-1} \sum_{n=m}^{\infty} u_{i}(n, \rho, \ldots, \rho)=\eta_{i}<1, \quad 1 \leq i \leq r
$$

Then $P_{r}\left(m, c_{1}, \ldots, c_{k}\right)$ has a solution if $\left|c_{r+1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently large.
Proof. Let $\eta_{i}<\alpha_{i}<1,1 \leq i \leq r$. Choose ρ_{1} so large that $\rho_{1} \geq\left|c_{i}\right| /\left(1-\alpha_{i}\right)$, $1 \leq i \leq r$, and

$$
\sum_{n=m}^{\infty} u_{i}\left(n, \rho_{1}, \ldots, \rho_{1}\right)<\alpha_{i} \rho_{1}, \quad 1 \leq i \leq r
$$

Now apply the argument used in the proof of Theorem 7 , with $n_{0}=m$.

4 Quasi-linear Systems: I

Consider the system

$$
\begin{equation*}
\Delta x_{i}(n)=\sum_{j=1}^{k} a_{i j}(n) g_{i j}\left(x_{j}\left(\phi_{i j}(n)\right)\right), \quad 1 \leq i \leq k \tag{20}
\end{equation*}
$$

assuming throughout that, for some integer m and $1 \leq i \leq j \leq k, \phi_{i j}: \mathcal{Z}_{m} \rightarrow \mathcal{Z}$, $g_{i j}: \mathcal{Z} \rightarrow \mathcal{R}, a_{i j}: \mathcal{Z}_{m} \rightarrow \mathcal{R}$,

$$
\left|g_{i j}(u)\right|=|u|^{\gamma_{i j}} \quad \text { and } \quad \sum_{n=m}^{\infty}\left|a_{i j}(n)\right|<\infty
$$

We assume that for some r in $\{0,1, \ldots, k\}, \gamma_{i j}>0$ if $1 \leq i \leq r$ and $\gamma_{i j}<0$ if $r+1 \leq i \leq k$, for $1 \leq j \leq k$. Then Assumption 1 holds, with

$$
w_{i}\left(n, \rho_{1}, \rho_{2}, \ldots, \rho_{k}\right)=\sum_{j=1}^{k}\left|a_{i j}(n)\right| \rho_{j}^{\gamma_{i j}}
$$

It is to be understood throughout this section that this is the definition of w_{i}. If $0<r<k$, then (20) satisfies Assumption 2 with

$$
u_{i}\left(n, \rho_{1}, \ldots, \rho_{r}\right)=\sum_{j=1}^{r}\left|a_{i j}(n)\right| \rho_{j}^{\gamma_{i j}}
$$

and

$$
v_{i}\left(n, \rho_{r+1}, \ldots, \rho_{k}\right)=\sum_{j=r+1}^{k}\left|a_{i j}(n)\right| \rho_{j}^{\gamma_{i j}}
$$

THEOREM 10 If $\gamma_{i j}>0,1 \leq i, j \leq k$, there is an $n_{0} \geq m$, which depends upon c_{1}, \ldots, c_{k}, such that $P_{k}\left(n_{0} ; c_{1}, \ldots, c_{k}\right)$ has a solution.

Proof. If $0<\alpha<1$, choose $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ so that $\left|c_{i}\right| \leq(1-\alpha) \rho_{i}, 1 \leq i \leq k$. Then choose n_{0} so that

$$
\sum_{n=n_{0}}^{\infty} w_{i}\left(n, \rho_{1}, \rho_{2}, \ldots, \rho_{k}\right) \leq \alpha \rho_{i}, \quad 1 \leq i \leq k
$$

ThEOREM 11 If $\gamma_{i j}=1,1 \leq i, j \leq k$, there is an $n_{0} \geq m$, independent of c_{1}, \ldots, c_{k}, such that $P_{k}\left(n_{0} ; c_{1}, \ldots, c_{k}\right)$ has a solution.

Proof. If $0<\alpha<1$, choose n_{0} so that

$$
\sum_{n=n_{0}}^{\infty} w_{i}(n, 1, \ldots, 1)<\alpha, \quad 1 \leq i \leq k
$$

Then

$$
\sum_{n=n_{0}}^{\infty} w_{i}(n, \rho, \ldots, \rho)<\alpha \rho, \quad 1 \leq i \leq k
$$

for any $\rho>0$. For arbitrary c_{1}, \ldots, c_{k} choose ρ so that $\left|c_{i}\right| \leq(1-\alpha) \rho, 1 \leq i \leq k$. -

Theorems 5-9 imply the following theorems.
TheOrem 12 If $\gamma_{i j}>1,1 \leq i, j \leq k$, then $P_{k}\left(m ; c_{1}, \ldots, c_{k}\right)$ has a solution if $\left|c_{1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently small.

ThEOREM 13 If $0<\gamma_{i j}<1,1 \leq i, j \leq k$, and c_{1}, \ldots, c_{k} are arbitrary, then $P_{k}\left(m ; c_{1}, \ldots, c_{k}\right)$ has a solution.
THEOREM 14 If $0<r<k$, then $P_{r}\left(n_{0} ; c_{1}, \ldots, c_{k}\right)$ has a solution if n_{0} and $\left|c_{r+1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently large and $\left|c_{1}\right|, \ldots,\left|c_{r}\right|$ are sufficiently small.
ThEOREM 15 If $0<r<k$ and $\gamma_{i j}>1,1 \leq i \leq r, 1 \leq j \leq k$, then $P_{r}\left(m ; c_{1}, \ldots, c_{k}\right)$ has a solution if $\left|c_{1}\right|, \ldots,\left|c_{r}\right|$ are sufficiently small and $\left|c_{r+1}\right|$, $\ldots,\left|c_{k}\right|$ are sufficiently large.

ThEOREM 16 If $0<r<k$ and $0<\gamma_{i j}<1,1 \leq i \leq r, 1 \leq j \leq k$, then $P_{r}\left(m ; c_{1}, \ldots, c_{k}\right)$ has a solution if $\left|c_{r+1}\right|, \ldots,\left|c_{k}\right|$ are sufficiently large.

5 Quasi-linear Systems: II

In this section we consider

$$
\begin{equation*}
\Delta x_{i}(n)=\sum_{j=1}^{k} \beta_{i j}^{n} \sum_{\ell=0}^{n} p_{i j}(n-\ell) g_{i j}\left(x_{j}\left(\phi_{i j}(n)\right)\right), \quad 1 \leq i \leq k, \quad n \geq 0 \tag{21}
\end{equation*}
$$

where $g_{i j}$ and $\phi_{i j}$ are as in the previous section, $\left|\beta_{i j}\right|<1$, and

$$
\sum_{n=0}^{\infty}\left|\beta_{i j}^{n} p_{i j}(n)\right|<\infty, \quad 1 \leq i, j \leq n
$$

Here we can take

$$
w_{i}\left(n, \rho_{1}, \ldots, \rho_{k}\right)=\sum_{j=1}^{k} \rho_{j}^{\gamma_{i j}} \sum_{\ell=0}^{n}\left|\beta_{i j}^{n} p_{i j}(n-\ell)\right| .
$$

Therefore Assumption 1 holds with

$$
\sum_{n=0}^{\infty} w_{i}\left(n, \rho_{1}, \ldots, \rho_{k}\right)=\sum_{j=1}^{k} \sigma_{i j} \rho_{j}^{\gamma_{i j}}
$$

where

$$
\begin{aligned}
\sigma_{i j} & =\sum_{n=0}^{\infty} \sum_{\ell=0}^{n}\left|\beta_{i j}^{n} p_{i j}(n-\ell)\right|=\sum_{\ell=0}^{\infty} \sum_{n=\ell}^{\infty}\left|\beta_{i j}^{n} p_{i j}(n-\ell)\right| \\
& =\frac{1}{1-\left|\beta_{i j}\right|} \sum_{n=0}^{\infty}\left|\beta_{i j}^{n} p_{i j}(n)\right| .
\end{aligned}
$$

All the arguments used in the previous section can now be used with $\left|a_{i j}\right|$ replaced by $\sigma_{i j}$; therefore, Theorems 10-16 all hold (with $m=0$) for (21).

References

[1] P. Hartman, Ordinary Differential Equations, John Wiley \& Sons, Inc., New York, London, Sydney, 1964.
[2] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, v. 1 (translated from the 1954 Russian edition by L. F . Boron), Graylock Press, Rochester, N.Y., 1957.

