Fast Algorithms for Structured Matrices: Theory and Applications, (Ed. Vadim Olshevsky), Contemporary Mathematics, Vol. 323, American Mathematical Society (2003) 323-327
 Spectral Distribution of Hermitian Toeplitz Matrices Formally Generated by Rational Functions

William F. Trench

Abstract

We consider the asymptotic spectral distribution of Hermitian Toeplitz matrices $\left\{T_{n}\right\}_{n=1}^{\infty}$ formally generated by a rational function $h(z)=$ $\left(f(z) f^{*}(1 / z)\right) /\left(g(z) g^{*}(1 / z)\right)$, where the numerator and denominator have no common zeros, $\operatorname{deg}(f)<\operatorname{deg}(g)$, and the zeros of g are in the open punctured disk $0<|z|<1$. From Szegö's theorem, the eigenvalues of $\left\{T_{n}\right\}$ are distributed like the values of $h\left(e^{i \theta}\right)$ as $n \rightarrow \infty$ if $T_{n}=\left(t_{r-s}\right)_{r, s=1}^{n}$, where $\left\{t_{\ell}\right\}_{\ell=-\infty}^{\infty}$ are the coefficients in the Laurent series for h that converges in an annulus containing the unit circle. We show that if $\left\{t_{\ell}\right\}_{\ell=-\infty}^{\infty}$ are the coefficients in certain other formal Laurent series for h, then there is an integer p such that all but the p smallest and p largest eigenvalues of T_{n} are distributed like the values of $h\left(e^{i \theta}\right)$ as $n \rightarrow \infty$.

1. Introduction

If $P(z)=a_{0}+a_{1} z+\cdots+a_{k} z^{k}$, then $P^{*}(z)=\bar{a}_{0}+\bar{a}_{1} z+\cdots+\bar{a}_{k} z^{k}$. We consider the spectral distribution of families of Hermitian Toeplitz matrices $T_{n}=$ $\left\{t_{r-s}\right\}_{r, s=1}^{n}, n \geq 1$, where $\left\{t_{\ell}\right\}_{\ell=-\infty}^{\infty}$ are the coefficients in a formal Laurent expansion of a rational function

$$
h(z)=\frac{f(z) f^{*}(1 / z)}{g(z) g^{*}(1 / z)}
$$

where

$$
g(z)=\prod_{j=1}^{k}\left(z-\zeta_{j}\right)^{d_{j}}
$$

$\zeta_{1}, \ldots, \zeta_{k}$ are distinct, $0<\left|\zeta_{r}\right|<1(1 \leq r \leq k), d_{1}, \ldots, d_{k}$ are positive integers, f is a polynomial of degree less than $d_{1}+\cdots+d_{k}$, and $f\left(\zeta_{j}\right) f^{*}\left(1 / \zeta_{j}\right) \neq 0(1 \leq r \leq k)$. Then h has a unique convergent Laurent expansion

$$
\begin{equation*}
h(z)=\sum_{\ell=-\infty}^{\infty} \tilde{t}_{\ell} z^{\ell}, \quad \max _{1 \leq j \leq k}\left|\zeta_{j}\right|<|z|<\min _{1 \leq j \leq k} 1 /\left|\zeta_{j}\right| \tag{1}
\end{equation*}
$$

If α and β are respectively the minimum and maximum of $w(\theta)=h\left(e^{i \theta}\right)$, then Szegö's distribution theorem [1, pp. 64-5] implies that eigenvalues of the matrices $\widetilde{T}_{n}=\left(\widetilde{t}_{r-s}\right)_{r, s=1}^{n}, n \geq 1$, are all in $[\alpha, \beta]$, and are distributed like the values of w as $n \rightarrow \infty$; that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} F\left(\lambda_{i}\left(\widetilde{T}_{n}\right)\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(w(\theta)) d \theta \quad \text { if } \quad F \in C[\alpha, \beta] \tag{2}
\end{equation*}
$$

We are interested in the asymptotic spectral distribution of $2^{k}-1$ other families of Hermitian Toeplitz matrices formally generated by h, to which Szegö's theorem does not apply. To be specific, a partial fraction expansion yields $h=h_{1}+\cdots+h_{k}$, with

$$
\begin{equation*}
h_{j}(z)=\sum_{m=0}^{d_{j}-1}\left(\frac{a_{m j}}{\left(1-\bar{\zeta}_{j} z\right)^{m+1}}+\frac{(-1)^{m} b_{m j} \zeta_{j}^{m+1}}{\left(z-\zeta_{j}\right)^{m+1}}\right) \tag{3}
\end{equation*}
$$

where $\left\{a_{m j}\right\}$ and $\left\{b_{m j}\right\}$ are constants and

$$
\begin{equation*}
a_{d_{j}-1, j} \neq 0, \quad b_{d_{j}-1, j} \neq 0, \quad 1 \leq j \leq k \tag{4}
\end{equation*}
$$

Using the expansions

$$
\begin{equation*}
\frac{1}{\left(1-\bar{\zeta}_{j} z\right)^{m+1}}=\sum_{\ell=0}^{\infty}\binom{m+\ell}{m} \bar{\zeta}_{j}^{\ell} z^{\ell}, \quad|z|<1 /\left|\zeta_{j}\right| \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(-1)^{m} \zeta_{j}^{m+1}}{\left(z-\zeta_{j}\right)^{m+1}}=\sum_{\ell=-\infty}^{-1}\binom{m+\ell}{m} \frac{z^{\ell}}{\zeta_{j}^{\ell}}, \quad|z|>\left|\zeta_{j}\right| \tag{6}
\end{equation*}
$$

for $0 \leq m \leq d_{j}-1$ produces a Laurent series that converges to $h_{j}(z)$ for $\left|\zeta_{j}\right|<$ $|z|<1 /\left|\zeta_{j}\right|$. We will call this the convergent expansion of h_{j}. However, using the expansions

$$
\begin{equation*}
\frac{1}{\left(1-\bar{\zeta}_{j} z\right)^{m+1}}=-\sum_{\ell=-\infty}^{-1}\binom{m+\ell}{m} \bar{\zeta}_{j}^{\ell} z^{\ell}, \quad|z|>1 /\left|\zeta_{j}\right| \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(-1)^{m} \zeta_{j}^{m+1}}{\left(z-\zeta_{j}\right)^{m+1}}=-\sum_{\ell=0}^{\infty}\binom{m+\ell}{m} \frac{z^{\ell}}{\zeta_{j}^{\ell}}, \quad|z|<\left|\zeta_{j}\right| \tag{8}
\end{equation*}
$$

for $0 \leq m \leq d_{j}-1$ produces a formal Laurent series for h_{j} that converges nowhere. We will call this the formal expansion of h_{j}.

Henceforth eigenvalues are numbered in nondecreasing order. We will prove the following theorem.

ThEOREM 1. Let $\left\{\mathcal{S}_{0}, \mathcal{S}_{1}\right\}$ be a partition of $\{1, \ldots, k\}$, with $\mathcal{S}_{1} \neq \emptyset$. For $1 \leq$ $j \leq k$, let $\sum_{\ell=-\infty}^{\infty} t_{\ell}^{(j)} z^{\ell}$ be the convergent expansion of h_{j} if $j \in \mathcal{S}_{0}$, or the formal expansion of h_{j} if $j \in \mathcal{S}_{1}$. Let $T_{n}=\left(t_{r-s}\right)_{r, s=1}^{n}$, where $t_{\ell}=\sum_{j=1}^{k} t_{\ell}^{(j)}$, and let

$$
\begin{equation*}
p=\sum_{j \in \mathcal{S}_{1}} d_{j} \tag{9}
\end{equation*}
$$

Then

$$
\left\{\lambda_{i}\left(T_{n}\right)\right\}_{i=p+1}^{n-p} \subset[\alpha, \beta], \quad n>2 p
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=p+1}^{n-p} F\left(\lambda_{i}\left(T_{n}\right)\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(w(\theta)) d \theta \quad \text { if } \quad F \in C[\alpha, \beta] \tag{10}
\end{equation*}
$$

In fact,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=p+1}^{n-p}\left|F\left(\lambda_{i}\left(T_{n}\right)\right)-F\left(\lambda_{i}\left(\widetilde{T}_{n}\right)\right)\right|=0 \quad \text { if } \quad F \in C[\alpha, \beta] \tag{11}
\end{equation*}
$$

We proved a similar theorem in [2], concerning the asymptotic spectral distribution of Hermitian Toeplitz matrices of the form

$$
T_{n}=\sum_{j} c_{j} K_{n}\left(\zeta_{j} ; P_{j}\right) \quad \text { (finite sum) }
$$

where c_{1}, \ldots, c_{k} are real, $\zeta_{1}, \ldots, \zeta_{k}$ are distinct and nonzero, P_{1}, \ldots, P_{k} are monic polynomials with real coefficients, and

$$
K_{n}(\zeta ; P)=\left(P(|r-s|) \rho^{|r-s|} e^{i(r-s) \phi}\right)_{r, s=1}^{n}
$$

2. Proof of Theorem 1

We need the following lemmas from [2].
Lemma 1. Let

$$
\gamma_{\ell}=\sum_{j=1}^{m} F_{j}(\ell) z_{j}^{\ell}
$$

where $z_{1}, z_{2}, \ldots, z_{m}$ are distinct nonzero complex numbers and $F_{1}, F_{2}, \ldots, F_{m}$ are polynomials with complex coefficients. Define

$$
\mu=\sum_{j=1}^{m}\left(1+\operatorname{deg}\left(F_{j}\right)\right)
$$

Let $\Gamma_{n}=\left(\gamma_{r-s}\right)_{r, s=1}^{n}$. Then $\operatorname{rank}\left(\Gamma_{n}\right)=\mu$ if $n \geq \mu$.
Lemma 2. Let

$$
\gamma_{r}=P(r) \zeta^{r}+P^{*}(-r) \bar{\zeta}^{-r}
$$

where P is a polynomial of degee d and $|\zeta| \neq 0$, 1 . Then the Hermitian matrix $\Gamma_{n}=\left(\gamma_{r-s}\right)_{r, s=1}^{n}$ has inertia $[d+1, n-2 d-2, d+1]$ if $n \geq 2 d+2$.
(In [2] we considered only the case where P has real coefficients; however the same argument yields the more general result stated here.)

Lemma 3. Suppose that H_{n} is Hermitian and

$$
-\infty<\alpha \leq \lambda_{i}\left(H_{n}\right) \leq \beta<\infty, \quad 1 \leq i \leq n, \quad n \geq 1
$$

Let k be a positive integer and let p and q be nonnegative integers such that $p+q=k$. For $n \geq k$ let $T_{n}=H_{n}+B_{n}$, where B_{n} is Hermitian and of rank k, with p positive and q negative eigenvalues. Then

$$
\left\{\lambda_{i}\left(T_{n}\right)\right\}_{i=q+1}^{n-p} \subset[\alpha, \beta], \quad n>k
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=q+1}^{n-p}\left|F\left(\lambda_{i}\left(T_{n}\right)\right)-F\left(\lambda_{i}\left(H_{n}\right)\right)\right|=0 \quad \text { if } \quad F \in C[\alpha, \beta] .
$$

Moreover,

$$
\begin{equation*}
\lambda_{i}\left(T_{n}\right)-\lambda_{i}\left(B_{n}\right)=O(1), \quad 1 \leq i \leq q \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{n-p+j}\left(T_{n}\right)-\lambda_{n-p+j}\left(B_{n}\right)=O(1), \quad 1 \leq j \leq p, \tag{11}
\end{equation*}
$$

as $n \rightarrow \infty$.
In Lemma 3, $\left\{H_{n}\right\}$ and $\left\{B_{n}\right\}$ need not be Toeplitz matrices. Our proof of Lemma 3 was motivated in part by an observation of Tyrtyshnikov [3], who, to our knowledge, was the first to apply the idea of low rank perturbations to spectral distribution problems.

Let

$$
\begin{equation*}
u_{j}(z)=\sum_{m=0}^{d_{j}-1} a_{m j}\binom{m+z}{m} \quad \text { and } \quad v_{j}(z)=\sum_{m=0}^{d_{j}-1} b_{m j}\binom{m+z}{m} . \tag{14}
\end{equation*}
$$

From (4) $\operatorname{deg}\left(u_{j}\right)=\operatorname{deg}\left(v_{j}\right)=d_{j}-1$. We first show that

$$
\begin{equation*}
v_{j}(-z)=u_{j}^{*}(z), \quad 1 \leq j \leq k . \tag{15}
\end{equation*}
$$

The proof is by contradiction. Suppose that (15) is false. Let $\Gamma_{n}=\left(\gamma_{r-s}\right)_{r, s=1}^{n}$, where

$$
\begin{equation*}
\gamma_{\ell}=\sum_{j=1}^{k}\left(v_{j}(-\ell)-u_{j}^{*}(\ell)\right) \zeta_{j}^{\ell} . \tag{16}
\end{equation*}
$$

From Lemma 1, there is a positive integer ν such that

$$
\begin{equation*}
\operatorname{rank}\left(\Gamma_{n}\right)=\nu, \quad n \geq \nu . \tag{17}
\end{equation*}
$$

From (3), (5), (6), and (14), the convergent expansion of h_{j} is

$$
h_{j}(z)=\sum_{\ell=0}^{\infty} u_{j}(\ell) \bar{\zeta}_{j}^{\ell} z^{\ell}+\sum_{\ell=-\infty}^{-1} v_{j}(\ell) \zeta_{j}^{-\ell} z^{\ell}, \quad\left|\zeta_{j}\right|<|z|<1 /\left|\zeta_{j}\right| .
$$

Therefore, the coefficients $\left\{\widetilde{t}_{\ell}\right\}$ in (1) are given by

$$
\tilde{t}_{\ell}= \begin{cases}\sum_{j=1}^{k} u_{j}(\ell) \bar{\zeta}_{j}^{\ell}, & \ell \geq 0 \tag{18}\\ \sum_{j=1}^{k} v_{j}(\ell) \zeta_{j}^{-\ell}, & \ell<0\end{cases}
$$

Since $\tilde{t}_{-\ell}=\overline{\tilde{t}}_{\ell}$, this and (16) imply that $\gamma_{\ell}=0$ if $\ell>0$. From this and (17), there is a largest nonpositive integer ℓ_{0} such that $\gamma_{\ell_{0}} \neq 0$. But then $\operatorname{rank}\left(\Gamma_{n}\right)=n-\left|\ell_{0}\right|$ if $n>\left|\ell_{0}\right|+1$, which contradicts (17). Therefore, (15) is true.

We can now rewrite (18) as

$$
\tilde{t}_{\ell}=\left\{\begin{array}{cc}
\sum_{j=1}^{k} u_{j}(\ell) \bar{\zeta}_{j}^{\ell}, & \ell \geq 0 \tag{19}\\
\sum_{j=1}^{k} u_{j}^{*}(-\ell) \zeta_{j}^{-\ell}, & \ell<0
\end{array}\right.
$$

From (3), (7), (8), and (14), the formal expansion of $h_{j}(z)$ is

$$
-\sum_{\ell=0}^{\infty} v_{j}(\ell) \zeta_{j}^{-\ell} z^{\ell}-\sum_{\ell=-\infty}^{-1} u_{j}(\ell) \bar{\zeta}_{j}^{\ell} z^{\ell}=-\sum_{\ell=0}^{\infty} u_{j}^{*}(-\ell) \zeta_{j}^{-\ell} z^{\ell}-\sum_{\ell=-\infty}^{-1} u_{j}(\ell) \bar{\zeta}_{j}^{\ell} z^{\ell}
$$

Therefore,

$$
t_{\ell}= \begin{cases}\sum_{j \in \mathcal{S}_{0}} u_{j}(\ell) \bar{\zeta}_{j}^{\ell}-\sum_{j \in \mathcal{S}_{1}} u_{j}^{*}(-\ell) \zeta_{j}^{-\ell}, & \ell \geq 0 \\ \sum_{j \in \mathcal{S}_{0}} u_{j}^{*}(-\ell) \zeta_{j}^{-\ell}-\sum_{j \in \mathcal{S}_{1}} u_{j}(\ell) \bar{\zeta}_{j}^{\ell}, & \ell<0\end{cases}
$$

(Note that $t_{-\ell}=\bar{t}_{\ell}$.) From this and (19),

$$
t_{\ell}-\widetilde{t}_{\ell}=-\sum_{j \in \mathcal{S}_{1}}\left(u_{j}(\ell) \bar{\zeta}_{j}^{\ell}+u_{j}^{*}(-\ell) \zeta_{j}^{-\ell}\right), \quad-\infty<\ell<\infty .
$$

Now let $B_{n}=T_{n}-\widetilde{T}_{n}$ and $\mathcal{S}_{1}=\left\{j_{1}, \ldots, j_{k}\right\}$. Then Lemma 1 with $m=2 k$,

$$
\left\{z_{1}, z_{2}, \ldots, z_{2 k}\right\}=\left\{\bar{\zeta}_{j_{1}}, 1 / \zeta_{1}, \ldots, \bar{\zeta}_{j_{k}}, 1 / \zeta_{j_{k}}\right\}
$$

and

$$
\left\{F_{1}(\ell), \ldots, F_{2 k}(\ell)\right\}=\left\{u_{j_{1}}(\ell), u_{j_{1}}^{*}(-\ell), \ldots, u_{j_{k}}(\ell), u_{j_{k}}^{*}(-\ell)\right\}, \quad-\infty<\ell<\infty
$$

implies that $\operatorname{rank}\left(B_{n}\right)=2 p$ if $n \geq 2 p$. (Recall (9) and that $\operatorname{deg}\left(u_{j}\right)=d_{j}-1$.)

$$
\text { If } \Gamma_{n}^{(j)}=\left(\gamma_{r-s}^{(j)}\right)_{r, s=1}^{n} \text { with }
$$

$$
\gamma_{\ell}^{(j)}=u_{j}(\ell) \bar{\zeta}_{j}^{\ell}+u_{j}^{*}(-\ell) \zeta_{j}^{-\ell}
$$

then Lemma 2 implies that $\Gamma_{n}^{(j)}$ has d_{j} positive and d_{j} negative eigenvalues if $n \geq 2 d_{j}$. Therefore, the quadratic form associated with $\Gamma_{n}^{(j)}$ can be written as a sum of squares with d_{j} positive and d_{j} negative coefficients if $n \geq 2 d_{j}$. It follows that B_{n} can be written as a sum of squares with p positive and p negative coefficients if $n \geq 2 p$. Therefore, Sylvester's law of inertia implies that B_{n} has p positive and p negative eigenvalues if $n \geq 2 p$. Now Lemma 3 with $q=p$ implies (11). Since (2) and (11) imply (10), this completes the proof of Theorem 1.

From (12) with $q=p$ and (13), the asymptotic behavior of the $\lambda_{i}\left(T_{n}\right)$ for $1 \leq i \leq p$ and $n-p+1 \leq i \leq n$ is completely determined by the asymptotic behavior of the $2 p$ nonzero eigenvalues of B_{n}. We believe that the latter all tend to $\pm \infty$ as $n \rightarrow \infty$, but we have not been able to prove this.

References

[1] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, Univ. of California Press, Berkeley and Los Angeles, 1958.
[2] W. F. Trench, Spectral distribution of generalized Kac-Murdock-Szegö matrices, Lin. Algebra Appl. 347 (2002), 251-273.
[3] E. E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and clustering, Lin. Algebra Appl. 232 (1996), 1-43.

Trinity University, San Antonio, Texas, USA
E-mail address: wtrench@trinity.edu

