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Abstract

Suppose that —co < a < b < 00, a < Uin < Uzn < -0 < Upn < b,
and a < vy < vop <+ < Unp < b, n > 1. We simplify and strenghthen
Weyl’s definition of asymptotic equal distribution of U = {{win }i—1 }n>1
and V = {{vin}i1}n>1 by showing that the following statements are
equivalent:

(i) limp oo = 37 (F(tin) — F(vin)) = 0 for all F € Cla,b).
(ii) limn oo £ "7 [Uin — vin| = 0.
(iii) limp 0o = D7 [F(uin) — F(vin)| = 0 for all F € Cla,b].

1 Introduction
The following definition is due to H. Weyl [1, p. 62].
DEFINITION 1.1 Suppose that —co < a < b < o0,

{win}i—y Cla,b], and {vi}?, Cla,b], n>1.

Then U = {{uin}? }tn>1 and V = {{vin}l }n>1 are asymptotically equally
distributed if
1 n
lim — F(uyp) — F(vin)) =0, F , 0.
tim LS (P(u,) - P =0, FeClat)

=1
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We present a simple necessary and sufficient condition for asymptotic equal
distribution and point out that a stronger conclusion is implicit in Definition 1.1.
Without loss of generality, we may assume that

aS”lnS“@nS"'SunnSb; agvlngv2n§"'gvnn§b; 7121 (1)
THEOREM 1.2 If (1) holds then the following assertions are equivalent:

1 n

Jim ;(F(um — F(vin)) =0, F€Cla,b; (2)
tim 25 fuin = o1l = 0 3)
nggo n 2 Uin — Vin| = U;
1 _
Jim ; |F(uin) — F(vin)| =0, F € Cla,bl. (4)

Obviously, (4) implies (2). The proof that (3) implies (4) (Section 2) is
straightforward. Our main effort is devoted to showing that (2) implies (3).

Theorem 1.2 is a special case of more general results in [4] concerning asymp-
totic relationships between the eigenvalues or singular values of two infinite se-
quences of matrices {A,}52, and {B,}52, related in some way that it is not
necessary to specify here. However, [4] is quite technical and of interest mainly
to the linear algebra community. We think it is worthwhile to present Theo-
rem 1.2 in this expository article addressed to a larger audience.

Given Theorem 1.2, we suggest replacing Definition 1.1 by the following
simpler definition while bearing in mind that (3) implies (4).

DEFINITION 1.3 U = {{uin};}n>1 and V = {{vin}7 1 }n>1 are asymptoti-
cally equally distributed if (1) holds and

n
. 1
lim — g [tin — vin] = 0.
n—oo M i—1
1=

2 Proof that (3) implies (4)

Suppose that F' € Ca, b] and € > 0. By the Weierstrass approximation theorem,
there is a polynomial P such that

|F(x) — P(x)| <¢€¢/2, a<ax<b.
By the triangle inequality,

|F(ti0) = F(vin)] < |F(tin) = Plutgn)| + [P(usn) = P(vin)]
+ [P(vin) = F(vi)|
< [P(usn) = P(vin)| + €. (5)
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Let M = max,<z<p |P'(z)|. By the mean value theorem,
This and (5) imply that
1 & M &
- Z |F (win) — F(vin)| < €+ o Z [tin — Vin]-
i=1 1=1
From this and (3),
timsup £ 3 [F(uan) — Flon)| <
lﬁsolip n < Uin, Vin)| > €.

Since e is arbitrary, this implies (4).

3 Four Required Lemmas
We need the following lemmas to show that (2) implies (3).

LEMMA 3.1 (HELLY’S FIRST THEOREM) Let {¢m}oo_; be an infinite sequence
of functions on [a,b] and suppose that there is a finite number K such that

pm(z)| <K, a<z<b, and VI(¢m)<K, m>1.

Then there is a subsequence of {¢m}oe_y that converges at every point of [a, b]
to a function of bounded variation on [a,b].

LEMMA 3.2 (HELLY’S SECOND THEOREM) Let {¢n}5°_, be an infinite sequence
of functions on [a,b] such that V(¢m) < K < oo, m > 1, and

liin Oom(z) =o(x), a<xz<bh

Then V2 (¢) < K and

b b
lim F(z)dom(z) = | F(z)do(x), F € Cla,b].

m— 00
a a

LEMMA 3.3 Suppose that ¢(a) = ¢(b) = 0, ¢ is of bounded variation on [a,b],
and

b
/F(x)d(b(x):(), F € Cla,b].

Then ¢(x) = 0 at all points of continuity of ¢. Thus, ¢(x) # 0 for at most
countably many values of x.

For proofs of Lemmas 3.1-3.3, see 2,
The following lemma is also known [5,
for convenience.

], [2, p. 233], and [3, p. 111].

. 22
108], but we include its short proof

p
p.
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LEMMA 3.4 Suppose that ©1 < 9 < -+ <z, and y1 < yo < -+ < y,. Let
{l1,0s,...0,} be a permutation of {1,2,...,n} and define

n

Q(éla éQa R én) = Z(x’b - yei)2'

1=1
Then
Q(élaé%"'aén)ZQ(laZa"')n)' (6)

PROOF The proof is by induction. Let P, be the stated proposition. Pj is
trivial. Suppose that n > 1 and P,_1 is true. If ¢,, = n, P,_; implies P,. If
l, = s < mn, choose r so that ¢, = n, and define
¢; ifi#randi#n,
Ui=qs ifi=r,
n ifi=n.

Then

(Tn — 95)2 + (2 — yn)Q
(Tn — yn)Q — (o — 95)2
2(xn - xr)(yn - yS) > 0. (7)

Q(élaé%"'aén)_@( /15 /255641)

Since ¢}, =n, P,_1 implies that

Q( ?l’ /2,"'5641)2@(1,2,"',n)'
Therefore (7) implies (6), which completes the induction.

4 Proof that (2) implies (3)

We will show that if (2) holds then

n

1
li - in — Vin 2= .
i, 7 3 (in = vin)? =0 ®

From Schwarz’s inequality,

1 < 1 < i
o Z |’LL'Ln 'U'Ln| S (Tl Z(U'Ln U'Ln) ) )
i=1 1=1
so (8) implies (3).
The proof of (8) is by contradiction. If (8) is false, there is an ¢y > 0 and an
increasing sequence {¢}72 ; of positive integers such that

L
> (uie, —vie,)? > €0, k>1. 9)

=1

1
Ly,
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However, we will show that if (2) holds, then any increasing sequence {{x}3
of positive integers has a subsequence {ny};2,; such that

1 &

lim — Z(um,c — Vi, )% =0, (10)

k—oo N, < 1
1=

contradicting (9).
If S is a set, let card S be the cardinality of S. For a < x < b, let

Vp(2; U) = card {i ’ U <z} and  vu(z; V) = card {i ’ vin <x}.  (11)

Define
Un(z; U)/n, a<x<b,
pulas ) = § (B O s (12)
1, r=0b,
and
Un(z; V) /n, a<x<b,
pula; V) = V@V - (13)
1, r=b.
If F € Cla,b], then
1 — b
> Flun) = [ F@)dpa(ai0) (14)
i=1 a
and
1 < b
EZF(%) :/ F(x)dpy(x; V) (15)
i=1 a

[2, p. 231]. The sequences {p,(-;U)}22, and {p,(;; V)}22, both satisfy the

n=1
hypotheses of Lemma 3.1. Therefore, there is a subsequence {my, }52; of {¢x}72,
such that

a3 U) = lim p, (3 U) (16)
exists for a < x < b, and there is a subsequence {ng}%>, of {my}32, such that

a3 V) = lim pn, (2; V) (17)
exists for a < x < b. Clearly, (16) implies that

¥(z; U) = klim (2 U), a<az<b. (18)

From (11)—(13), v(-; U) and 7(-; V) are nondecreasing,
a;U) =v(a; V) =0, and  ~(b;U) =~(b; V) = 1. (19)
Therefore, (17), (18), and Lemma 3.2 imply that
b b
lim F(z)dpp,(z;U) = / F(z)dvy(z;U), F € Cla,b], (20)

k—oo [, a
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and
b b

lim F(z)dpp, (z;V) = / F(z)dy(z; V), F € Cla,b]. (21)

k—oo J,

Now (2), (14), (15) (20), and (21) imply that

a

b b
/F(x)d”y(x;U):/ F(z)dvy(z; V), F € Cla,b].

a

This, (19), and Lemma 3.3 with ¢ = v(-; U) — v(-; V) imply that
V(2 U) = (23 V)

except for at most countably many values of z in [a, b].
If € > 0, choose ag, aq, ..., an, so that

a=ag<ay < < amu=0"b,

aj—aj_1 <+e 1<j<m, (22)
and
Y(aj; U) =7(a;; V), 1<j<m. (23)
Let
I =laj1,a5), 1<j<m—1, Iyn=lam_1,0m]
Define
Vnk(a’l;U)a ]: 1,
Ujk: Vﬂk(aj;U)_Vnk(ajfl;U)a 2§j§m_1,
nk_yﬂk(amfl;U)a Jj=m,
and
Vnk(a’l;v)a ]: 1,
ij: Vﬂk(aj;v)_ynk(ajfl;v)a 2§j§m_1,
Nk — Vny(am-1;'V), Jj=m.
Then
Ujj = card {z ’ Uin, € Ij} v Vik= card{i ’ Vin, € Ij} ,
and U v
lim 22— % —g 1<j<m, (24)
k—o00 Nk

from (12), (13), (17), (18), and (23). Since

Ujk + Vik — |Ujk — Vil
2 b

min(Ujg, Vi) =

and

m m
E Ujr = E Vik = ng,
i=1 i=1
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it follows that

> min(Uk, Vi) = ni — 1%, (25)
j=1
where
1 m
Tk = 5 Z |Ujk — ij|
Jj=1
From (24),
Tk
lim — =0 (26)
k—o0 N

From (22) and (25), there is a permutation 7,, of {1,...,n;} such that
(uink - ’U‘rk(i),nk)Q <e

for ny — 7, values of i; hence

Nk

Z(umk — Ve (i)np)” < M€+ (b —a)?
=1

Now Lemma 3.4 implies that

Nk

E (Winy — Ving ) < npe+ (b — a)?.
=1
Hence, from (26),
I TR ( )2 <
imsup — E Ui, — Vi €.
& & gt M Mg —

Since € is arbitrary, this implies (10), which completes the proof.
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