Simplification and Strengthening of Weyl's
 Definition of Asymptotic Equal Distribution of Two Families of Finite Sets

William F. Trench
Trinity University, San Antonio, Texas, USA; wtrench@trinity.edu Mailing address: 95 Pine Lane, Woodland Park, CO 80863 USA

Published in
CUBO, A MATHEMATICAL JOURNAL, Vol. 6, No. 3 (47-54), October 2004

Abstract

Suppose that $-\infty<a<b<\infty, a \leq u_{1 n} \leq u_{2 n} \leq \cdots \leq u_{n n} \leq b$, and $a \leq v_{1 n} \leq v_{2 n} \leq \cdots \leq v_{n n} \leq b, n \geq 1$. We simplify and strenghthen Weyl's definition of asymptotic equal distribution of $\mathbf{U}=\left\{\left\{u_{i n}\right\}_{i=1}^{n}\right\}_{n \geq 1}$ and $\mathbf{V}=\left\{\left\{v_{i n}\right\}_{i=1}^{n}\right\}_{n \geq 1}$ by showing that the following statements are equivalent: (i) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(F\left(u_{i n}\right)-F\left(v_{i n}\right)\right)=0$ for all $F \in C[a, b]$. (ii) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|u_{i n}-v_{i n}\right|=0$. (iii) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|F\left(u_{i n}\right)-F\left(v_{i n}\right)\right|=0$ for all $F \in C[a, b]$.

1 Introduction

The following definition is due to H . Weyl [1, p. 62].
Definition 1.1 Suppose that $-\infty<a<b<\infty$,

$$
\left\{u_{i n}\right\}_{i=1}^{n} \subset[a, b], \quad \text { and } \quad\left\{v_{i n}\right\}_{i=1}^{n} \subset[a, b], \quad n \geq 1
$$

Then $\mathbf{U}=\left\{\left\{u_{i n}\right\}_{i=1}^{n}\right\}_{n \geq 1}$ and $\mathbf{V}=\left\{\left\{v_{i n}\right\}_{i=1}^{n}\right\}_{n \geq 1}$ are asymptotically equally distributed if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(F\left(u_{i n}\right)-F\left(v_{i n}\right)\right)=0, \quad F \in C[a, b]
$$

We present a simple necessary and sufficient condition for asymptotic equal distribution and point out that a stronger conclusion is implicit in Definition 1.1.

Without loss of generality, we may assume that

$$
\begin{equation*}
a \leq u_{1 n} \leq u_{2 n} \leq \cdots \leq u_{n n} \leq b, \quad a \leq v_{1 n} \leq v_{2 n} \leq \cdots \leq v_{n n} \leq b, \quad n \geq 1 \tag{1}
\end{equation*}
$$

THEOREM 1.2 If (1) holds then the following assertions are equivalent:

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(F\left(u_{i n}\right)-F\left(v_{i n}\right)\right)=0, \quad F \in C[a, b] ; \tag{2}\\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|u_{i n}-v_{i n}\right|=0 \tag{3}\\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|F\left(u_{i n}\right)-F\left(v_{i n}\right)\right|=0, \quad F \in C[a, b] . \tag{4}
\end{gather*}
$$

Obviously, (4) implies (2). The proof that (3) implies (4) (Section 2) is straightforward. Our main effort is devoted to showing that (2) implies (3).

Theorem 1.2 is a special case of more general results in [4] concerning asymptotic relationships between the eigenvalues or singular values of two infinite sequences of matrices $\left\{A_{n}\right\}_{n=1}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ related in some way that it is not necessary to specify here. However, [4] is quite technical and of interest mainly to the linear algebra community. We think it is worthwhile to present Theorem 1.2 in this expository article addressed to a larger audience.

Given Theorem 1.2, we suggest replacing Definition 1.1 by the following simpler definition while bearing in mind that (3) implies (4).

Definition 1.3 $\mathbf{U}=\left\{\left\{u_{i n}\right\}_{i=1}^{n}\right\}_{n \geq 1}$ and $\mathbf{V}=\left\{\left\{v_{i n}\right\}_{i=1}^{n}\right\}_{n \geq 1}$ are asymptotically equally distributed if (1) holds and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|u_{i n}-v_{i n}\right|=0
$$

2 Proof that (3) implies (4)

Suppose that $F \in C[a, b]$ and $\epsilon>0$. By the Weierstrass approximation theorem, there is a polynomial P such that

$$
|F(x)-P(x)|<\epsilon / 2, \quad a \leq x \leq b .
$$

By the triangle inequality,

$$
\begin{align*}
\left|F\left(u_{i n}\right)-F\left(v_{i n}\right)\right| & \leq\left|F\left(u_{i n}\right)-P\left(u_{i n}\right)\right|+\left|P\left(u_{i n}\right)-P\left(v_{i n}\right)\right| \\
& +\left|P\left(v_{i n}\right)-F\left(v_{i n}\right)\right| \\
& <\left|P\left(u_{i n}\right)-P\left(v_{i n}\right)\right|+\epsilon . \tag{5}
\end{align*}
$$

Let $M=\max _{a \leq x \leq b}\left|P^{\prime}(x)\right|$. By the mean value theorem,

$$
\left|P\left(u_{i n}\right)-P\left(v_{i n}\right)\right| \leq M\left|u_{i n}-v_{i n}\right| .
$$

This and (5) imply that

$$
\frac{1}{n} \sum_{i=1}^{n}\left|F\left(u_{i n}\right)-F\left(v_{i n}\right)\right|<\epsilon+\frac{M}{n} \sum_{i=1}^{n}\left|u_{i n}-v_{i n}\right| .
$$

From this and (3),

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|F\left(u_{i n}\right)-F\left(v_{i n}\right)\right| \leq \epsilon
$$

Since ϵ is arbitrary, this implies (4).

3 Four Required Lemmas

We need the following lemmas to show that (2) implies (3).
Lemma 3.1 (Helly's First Theorem) Let $\left\{\phi_{m}\right\}_{m=1}^{\infty}$ be an infinite sequence of functions on $[a, b]$ and suppose that there is a finite number K such that

$$
\left|\phi_{m}(x)\right| \leq K, \quad a \leq x \leq b, \quad \text { and } \quad V_{a}^{b}\left(\phi_{m}\right) \leq K, \quad m \geq 1
$$

Then there is a subsequence of $\left\{\phi_{m}\right\}_{m=1}^{\infty}$ that converges at every point of $[a, b]$ to a function of bounded variation on $[a, b]$.

Lemma 3.2 (Helly's Second Theorem) Let $\left\{\phi_{m}\right\}_{m=1}^{\infty}$ be an infinite sequence of functions on $[a, b]$ such that $V_{a}^{b}\left(\phi_{m}\right) \leq K<\infty, m \geq 1$, and

$$
\lim _{m \rightarrow \infty} \phi_{m}(x)=\phi(x), \quad a \leq x \leq b
$$

Then $V_{a}^{b}(\phi) \leq K$ and

$$
\lim _{m \rightarrow \infty} \int_{a}^{b} F(x) d \phi_{m}(x)=\int_{a}^{b} F(x) d \phi(x), \quad F \in C[a, b] .
$$

Lemma 3.3 Suppose that $\phi(a)=\phi(b)=0, \phi$ is of bounded variation on $[a, b]$, and

$$
\int_{a}^{b} F(x) d \phi(x)=0, \quad F \in C[a, b]
$$

Then $\phi(x)=0$ at all points of continuity of ϕ. Thus, $\phi(x) \neq 0$ for at most countably many values of x.

For proofs of Lemmas 3.1-3.3, see [2, p. 222], [2, p. 233], and [3, p. 111].
The following lemma is also known [5, p. 108], but we include its short proof for convenience.

LEMMA 3.4 Suppose that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$. Let $\left\{\ell_{1}, \ell_{2}, \ldots \ell_{n}\right\}$ be a permutation of $\{1,2, \ldots, n\}$ and define

$$
Q\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right)=\sum_{i=1}^{n}\left(x_{i}-y_{\ell_{i}}\right)^{2}
$$

Then

$$
\begin{equation*}
Q\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right) \geq Q(1,2, \ldots, n) \tag{6}
\end{equation*}
$$

Proof The proof is by induction. Let P_{n} be the stated proposition. P_{1} is trivial. Suppose that $n>1$ and P_{n-1} is true. If $\ell_{n}=n, P_{n-1}$ implies P_{n}. If $\ell_{n}=s<n$, choose r so that $\ell_{r}=n$, and define

$$
\ell_{i}^{\prime}= \begin{cases}\ell_{i} & \text { if } i \neq r \text { and } i \neq n \\ s & \text { if } i=r \\ n & \text { if } i=n\end{cases}
$$

Then

$$
\begin{align*}
Q\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right)-Q\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ldots, \ell_{n}^{\prime}\right) & =\left(x_{n}-y_{s}\right)^{2}+\left(x_{r}-y_{n}\right)^{2} \\
& -\left(x_{n}-y_{n}\right)^{2}-\left(x_{r}-y_{s}\right)^{2} \\
& =2\left(x_{n}-x_{r}\right)\left(y_{n}-y_{s}\right) \geq 0 \tag{7}
\end{align*}
$$

Since $\ell_{n}^{\prime}=n, P_{n-1}$ implies that

$$
Q\left(\ell_{1}^{\prime}, \ell_{2}^{\prime}, \ldots, \ell_{n}^{\prime}\right) \geq Q(1,2, \ldots, n)
$$

Therefore (7) implies (6), which completes the induction.

4 Proof that (2) implies (3)

We will show that if (2) holds then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(u_{i n}-v_{i n}\right)^{2}=0 \tag{8}
\end{equation*}
$$

From Schwarz's inequality,

$$
\frac{1}{n} \sum_{i=1}^{n}\left|u_{i n}-v_{i n}\right| \leq\left(\frac{1}{n} \sum_{i=1}^{n}\left(u_{i n}-v_{i n}\right)^{2}\right)^{1 / 2}
$$

so (8) implies (3).
The proof of (8) is by contradiction. If (8) is false, there is an $\epsilon_{0}>0$ and an increasing sequence $\left\{\ell_{k}\right\}_{k=1}^{\infty}$ of positive integers such that

$$
\begin{equation*}
\frac{1}{\ell_{k}} \sum_{i=1}^{\ell_{k}}\left(u_{i \ell_{k}}-v_{i \ell_{k}}\right)^{2} \geq \epsilon_{0}, \quad k \geq 1 \tag{9}
\end{equation*}
$$

However, we will show that if (2) holds, then any increasing sequence $\left\{\ell_{k}\right\}_{k=1}^{\infty}$ of positive integers has a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}}\left(u_{i n_{k}}-v_{i n_{k}}\right)^{2}=0 \tag{10}
\end{equation*}
$$

contradicting (9).
If S is a set, let card S be the cardinality of S. For $a \leq x \leq b$, let

$$
\begin{equation*}
\nu_{n}(x ; \mathbf{U})=\operatorname{card}\left\{i \mid u_{i n}<x\right\} \quad \text { and } \quad \nu_{n}(x ; \mathbf{V})=\operatorname{card}\left\{i \mid v_{i n}<x\right\} \tag{11}
\end{equation*}
$$

Define

$$
\rho_{n}(x ; \mathbf{U})= \begin{cases}\nu_{n}(x ; \mathbf{U}) / n, & a \leq x<b \tag{12}\\ 1, & x=b\end{cases}
$$

and

$$
\rho_{n}(x ; \mathbf{V})= \begin{cases}\nu_{n}(x ; \mathbf{V}) / n, & a \leq x<b \tag{13}\\ 1, & x=b\end{cases}
$$

If $F \in C[a, b]$, then

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} F\left(u_{i n}\right)=\int_{a}^{b} F(x) d \rho_{n}(x ; \mathbf{U}) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} F\left(v_{i n}\right)=\int_{a}^{b} F(x) d \rho_{n}(x ; \mathbf{V}) \tag{15}
\end{equation*}
$$

[2, p. 231]. The sequences $\left\{\rho_{n}(\cdot ; \mathbf{U})\right\}_{n=1}^{\infty}$ and $\left\{\rho_{n}(\cdot ; \mathbf{V})\right\}_{n=1}^{\infty}$ both satisfy the hypotheses of Lemma 3.1. Therefore, there is a subsequence $\left\{m_{k}\right\}_{k=1}^{\infty}$ of $\left\{\ell_{k}\right\}_{k=1}^{\infty}$ such that

$$
\begin{equation*}
\gamma(x ; \mathbf{U}):=\lim _{k \rightarrow \infty} \rho_{m_{k}}(x ; \mathbf{U}) \tag{16}
\end{equation*}
$$

exists for $a \leq x \leq b$, and there is a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of $\left\{m_{k}\right\}_{k=1}^{\infty}$ such that

$$
\begin{equation*}
\gamma(x ; \mathbf{V}):=\lim _{k \rightarrow \infty} \rho_{n_{k}}(x ; \mathbf{V}) \tag{17}
\end{equation*}
$$

exists for $a \leq x \leq b$. Clearly, (16) implies that

$$
\begin{equation*}
\gamma(x ; \mathbf{U})=\lim _{k \rightarrow \infty} \rho_{n_{k}}(x ; \mathbf{U}), \quad a \leq x \leq b \tag{18}
\end{equation*}
$$

From (11)-(13), $\gamma(\cdot ; \mathbf{U})$ and $\gamma(\cdot ; \mathbf{V})$ are nondecreasing,

$$
\begin{equation*}
\gamma(a ; \mathbf{U})=\gamma(a ; \mathbf{V})=0, \quad \text { and } \quad \gamma(b ; \mathbf{U})=\gamma(b ; \mathbf{V})=1 \tag{19}
\end{equation*}
$$

Therefore, (17), (18), and Lemma 3.2 imply that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{a}^{b} F(x) d \rho_{n_{k}}(x ; \mathbf{U})=\int_{a}^{b} F(x) d \gamma(x ; \mathbf{U}), \quad F \in C[a, b] \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{a}^{b} F(x) d \rho_{n_{k}}(x ; \mathbf{V})=\int_{a}^{b} F(x) d \gamma(x ; \mathbf{V}), \quad F \in C[a, b] \tag{21}
\end{equation*}
$$

Now (2), (14), (15) (20), and (21) imply that

$$
\int_{a}^{b} F(x) d \gamma(x ; \mathbf{U})=\int_{a}^{b} F(x) d \gamma(x ; \mathbf{V}), \quad F \in C[a, b]
$$

This, (19), and Lemma 3.3 with $\phi=\gamma(\cdot ; \mathbf{U})-\gamma(\cdot ; \mathbf{V})$ imply that

$$
\gamma(x ; \mathbf{U})=\gamma(x ; \mathbf{V})
$$

except for at most countably many values of x in $[a, b]$.
If $\epsilon>0$, choose $a_{0}, a_{1}, \ldots, a_{m}$ so that

$$
\begin{gather*}
a=a_{0}<a_{1}<\cdots<a_{m}=b \\
a_{j}-a_{j-1}<\sqrt{\epsilon}, \quad 1 \leq j \leq m \tag{22}
\end{gather*}
$$

and

$$
\begin{equation*}
\gamma\left(a_{j} ; \mathbf{U}\right)=\gamma\left(a_{j} ; \mathbf{V}\right), \quad 1 \leq j \leq m \tag{23}
\end{equation*}
$$

Let

$$
I_{j}=\left[a_{j-1}, a_{j}\right), \quad 1 \leq j \leq m-1, \quad I_{m}=\left[a_{m-1}, a_{m}\right]
$$

Define

$$
U_{j k}= \begin{cases}\nu_{n_{k}}\left(a_{1} ; \mathbf{U}\right), & j=1 \\ \nu_{n_{k}}\left(a_{j} ; \mathbf{U}\right)-\nu_{n_{k}}\left(a_{j-1} ; \mathbf{U}\right), & 2 \leq j \leq m-1 \\ n_{k}-\nu_{n_{k}}\left(a_{m-1} ; \mathbf{U}\right), & j=m\end{cases}
$$

and

$$
V_{j k}= \begin{cases}\nu_{n_{k}}\left(a_{1} ; \mathbf{V}\right), & j=1 \\ \nu_{n_{k}}\left(a_{j} ; \mathbf{V}\right)-\nu_{n_{k}}\left(a_{j-1} ; \mathbf{V}\right), & 2 \leq j \leq m-1 \\ n_{k}-\nu_{n_{k}}\left(a_{m-1} ; \mathbf{V}\right), & j=m\end{cases}
$$

Then

$$
U_{j k}=\operatorname{card}\left\{i \mid u_{i n_{k}} \in I_{j}\right\}, \quad V_{j k}=\operatorname{card}\left\{i \mid v_{i n_{k}} \in I_{j}\right\}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{U_{j k}-V_{j k}}{n_{k}}=0, \quad 1 \leq j \leq m \tag{24}
\end{equation*}
$$

from (12), (13), (17), (18), and (23). Since

$$
\min \left(U_{j k}, V_{j k}\right)=\frac{U_{j k}+V_{j k}-\left|U_{j k}-V_{j k}\right|}{2}
$$

and

$$
\sum_{j=1}^{m} U_{j k}=\sum_{j=1}^{m} V_{j k}=n_{k}
$$

it follows that

$$
\begin{equation*}
\sum_{j=1}^{m} \min \left(U_{j k}, V_{j k}\right)=n_{k}-r_{k} \tag{25}
\end{equation*}
$$

where

$$
r_{k}=\frac{1}{2} \sum_{j=1}^{m}\left|U_{j k}-V_{j k}\right|
$$

From (24),

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{r_{k}}{n_{k}}=0 \tag{26}
\end{equation*}
$$

From (22) and (25), there is a permutation $\tau_{n_{k}}$ of $\left\{1, \ldots, n_{k}\right\}$ such that

$$
\left(u_{i n_{k}}-v_{\tau_{k}(i), n_{k}}\right)^{2}<\epsilon
$$

for $n_{k}-r_{k}$ values of i; hence

$$
\sum_{i=1}^{n_{k}}\left(u_{i n_{k}}-v_{\tau_{k}(i), n_{k}}\right)^{2}<n_{k} \epsilon+r_{k}(b-a)^{2}
$$

Now Lemma 3.4 implies that

$$
\sum_{i=1}^{n_{k}}\left(u_{i n_{k}}-v_{i n_{k}}\right)^{2}<n_{k} \epsilon+r_{k}(b-a)^{2}
$$

Hence, from (26),

$$
\limsup _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}}\left(u_{i n_{k}}-v_{i n_{k}}\right)^{2} \leq \epsilon
$$

Since ϵ is arbitrary, this implies (10), which completes the proof.

5 Acknowledgment

I thank Professor Paolo Tilli for a suggestion that enabled me to complete the proof in Section 4.

References

[1] U. Grenander, G. Szegö, Toeplitz Forms and Their Applications, Univ. of California Press, Berkeley and Los Angeles, 1958.
[2] I. P. Natanson, Theory of Functions of a Real Variable, Frederick Ungar Publishing Co., New York, 1955.
[3] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co., New York, 1955.
[4] W. F. Trench, Absolute equal distribution of families of finite sets, Linear Algebra Appl. 367 (2003), 131-146.
[5] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

