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SUMMARY

We define a class of formal expansions
∑∞

`=−∞
α`z

` of a rational function with at least one

nonzero pole. To distinct formal expansions
∑∞

`=−∞
α`z

` and
∑∞

`=−∞
β`z

` in this class we associate

structured arrays A = (aij)
∞
i,j=1 and B = (bij)

∞
i,j=1, defined by aij =

∑k

ν=1
aναpνi+qj+τν

and

bij =
∑k

ν=1
aνβpνi+qj+τν

, where q ( 6= 0), p1, . . . , pk , and τ1, . . . , τk are integers and a1, . . . , ak

are nonzero complex constants. We study the asymptotic relationship between the singular values
of the matrices (aij)1≤i≤hn,1≤j≤kn

and (bij)1≤i≤hn,1≤j≤kn
as min(hn, kn) → ∞. Copyright c© 2000

John Wiley & Sons, Ltd.
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1. INTRODUCTION

We begin by discussing the problem that motivated this paper. Problems of this kind arise in
connection with preconditioning of structured linear systems.

Every rational function with at least one nonzero pole can be written as

R(z) = zkP (z) +

m
∑

s=1

ds−1
∑

r=0

crs

(z − zs)r+1
, (1)

where k is an integer, P is a polynomial, m ≥ 1, z1, . . . , zm are nonzero and distinct, d1, . . . ,
dm are positive integers, and cds−1,s 6= 0, 1 ≤ s ≤ m. We call

d = d1 + · · ·+ dm (2)

the rank index of R. For completeness, the rank index of a rational function with no nonzero
poles is zero.
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2 W. F. TRENCH

If

|zs| 6= 1, 1 ≤ s ≤ k, (3)

then R(z) has a unique expansion

R(z) =

∞
∑

`=−∞

t`z
`

that converges on an open annulus containing the unit circle |z| = 1. Let

h(θ) = R(eiθ) (4)

and

M = max
−π≤θ≤π

|h(θ)|. (5)

If C ∈ Ch×k where n = min(h, k), let

σ1(C) ≤ σ2(C) ≤ · · · ≤ σn(C)

denote the singular values of C. According to the Avram–Parter theorem [1, 2], the singular
values of the Toeplitz matrices Tn = (tr−s)

n
r,s=1, n ≥ 1, are all in the interval [0, M ] and

lim
n→∞

1

n

n
∑

i=1

F (σi(Tn)) =
1

2π

∫ π

−π

F (|h(θ)|) dθ (6)

for every F in C[0, M ]. Because of this it is usually said that the singular values of {Tn}
∞
n=1

are asymptotically distributed like the values of |h|.
For a given (r, s),

1

(z − zs)r+1
= (−1)r+1

∞
∑

`=0

(

r + `

r

)

z−r−`−1
s z`, |z| < |zs|, (7)

and

1

(z − zs)r+1
= (−1)r

−1
∑

`=−∞

(

r + `

r

)

z−r−`−1
s z`, |z| > |zs|. (8)

(Note that the binomial coefficients on the right vanish for −r ≤ ` ≤ −1.) Let

S = {(r, s) | crs 6= 0}

and let C(S) be the cardinality of S. By choosing between the expansions (7) and (8) for each
(r, s) in S, we obtain 2C(S) formal expansions for R(z). We denote this class of expansions
by E(R).

The question we were first interested in was the following: If
∑∞

`=−∞
α`z

` is arbitrary
member of E(R), what can be said about the asymptotic distribution of the singular values
of the Toeplitz matrices Sn = (αr−s)

n
r,s=1, n ≥ 1? (We considered the analogous question for

the eigenvalues of rationally generated Hermitian Toeplitz matrices in [3].) In trying to answer
this question we were led to a more general problem, which is the main subject of this paper.
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SINGULAR VALUES OF RATIONALLY STRUCTURED MATRICES 3

Henceforth we do not assume (3) except in Section 3. Let q (6= 0), p1, . . . , pk, and τ1, . . . , τk

be integers, let a1, . . . , ak be nonzero complex constants, and define the array A = {aij}
∞
i,j=1

by

aij =

k
∑

ν=1

aναpνi+qj+τν
, 1 ≤ i, j < ∞, (9)

where
∑∞

`=−∞ α`z
` ∈ E(R). We say that A is generated by R(z) and the parameters q, p1, . . . ,

pk, τ1, . . . , τk, and a1, . . . , ak. If B = (bij)
∞
i,j=1 where

bij =

k
∑

ν=1

aνβpν i+qj+τν
, 1 ≤ i, j < ∞, (10)

and
∑∞

`=−∞
β`z

` ∈ E(R), we say that A and B are similarly generated by R(z). If h and k
are positive integers, the matrices

A = (aij)1≤i≤h,1≤j≤k and B = (bij)1≤i≤h,1≤j≤k

are the h × k sections of A and B, respectively.
Let F be the set of real-valued continuous functions F on [0,∞) such that limx→∞ F (x)

exists (finite). We will prove the following theorem.

Theorem 1. Suppose that ε > 0, F ∈ F , and the arrays A = (aij)
∞
i,j=1 and B = (bij)

∞
i,j=1

are similarly generated by a rational function R(z) with rank index d > 0. Then there is an

integer N that depends only on ε, F, and d such that if A and B are h × k sections of A and

B and n := min(h, k) > N, then

n
∑

i=1

|F (σi(A)) − F (σi(B))| < nε. (11)

We emphasize that N is independent of the particular choice of R(z) and the parameters in
(9) and (10).

2. PROOF OF THEOREM 1

From (1), (7), and (8),

β` − α` =

m
∑

s=1

ds−1
∑

r=0

γrs

(

r + `

r

)

z−r−`−1
s ,

where γrs = 0 if the same choice of (7) or (8) occurs in both expansions, while γrs = ±crs if
the choices differ. Therefore, from (9) and (10),

bij − aij =

k
∑

ν=1

aν

m
∑

s=1

ds−1
∑

r=0

γrs

(

r + pν i + qj + τν

r

)

z−r−pν i−qj−τν−1
s .

Now suppose that n > d (see (2)). If

m
∏

s=1

(1 − zq
sz)ds =

d
∑

µ=0

φµzµ
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4 W. F. TRENCH

then the k − d linearly independent k-vectors

[φ0 φ1 · · · φd 0 · · · 0]T , [0 φ0 φ1 · · · φd 0 · · · 0]T , . . . , [0 · · · 0 · · ·φ0 φ1 · · · φd]
T

are in the null space of B − A. Therefore rank(B − A) ≤ d. Since

B∗B − A∗A = (B∗ − A∗)B + A∗(B − A),

it follows that
rank(B∗B − A∗A) ≤ 2d. (12)

Henceforth we assume that n > 2d. By a standard theorem (see, e.g., [5, pp. 94–97]) first
applied by Tyrtyshnikov [4] to singular value distribution problems, (12) implies that there
are nonnegative integers p and q such that

p + q ≤ 2d (13)

and
σi−q(A) ≤ σi(B) ≤ σi+p(A), q + 1 ≤ i ≤ n − p. (14)

Now suppose that 0 < ρ < ∞. Since

F (x)− F (min(x, ρ)) =

{

0, 0 ≤ x ≤ ρ,

F (x) − F (ρ), x > ρ,

and limx→∞ F (x) exists (finite), there is a ρ such that

|F (x) − F (min(x, ρ))| < ε/8, 0 ≤ x < ∞.

By the Weierstrass approximation theorem, there is a polynomial P such that

|F (x)− P (x)| < ε/8, 0 ≤ x ≤ ρ.

Then
|F (σi(A)) − F (σi(B))| < |P (min(σi(A), ρ)) − P (min(σi(B), ρ))| + ε/2,

so
n

∑

i=1

|F (σi(A)) − F (σi(B))| < nε/2 + KSn , (15)

where K = max0≤x≤ρ |P
′(x)| and

Sn =

n
∑

i=1

|min(σi(A), ρ) − min(σi(B), ρ)|.

For convenience, denote

si = min(σi(A), ρ), ti = min(σi(B), ρ). (16)

Then

Sn =

n
∑

i=1

|si − ti| = T1 + T2 + T3, (17)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6

Prepared using nlaauth.cls



SINGULAR VALUES OF RATIONALLY STRUCTURED MATRICES 5

where

T1 =

q
∑

i=1

|si − ti| ≤ qρ, T3 =

n
∑

i=n−p+1

|si − ti| ≤ pρ, (18)

and

T2 =

n−p
∑

i=q+1

|si − ti|.

Since min(x, ρ) ≤ min(y, ρ) if 0 ≤ x ≤ y, (14) and (16) imply that

si−q ≤ ti ≤ si+p, q + 1 ≤ i ≤ n − p. (19)

Since

si−q ≤ si ≤ si+p, q + 1 ≤ i ≤ n − p,

(19) implies that

|si − ti| ≤ si+p − si−q , q + 1 ≤ i ≤ n − p.

Hence,

T2 ≤

n−p
∑

i=q+1

(si+p − si−q) ≤ (p + q)ρ.

This, (17) and (18) imply that Sn ≤ 2(p + q)ρ. Hence, (13) and (15) imply that

n
∑

i=1

|F (σi(A)) − F (σi(B))| < nε/2 + 4dρK.

Now choose N so that Nε ≥ 8dρK; then (11) holds if n > N .

3. BACK TO THE AVRAM–PARTER THEOREM

We can now answer the question raised at the beginning of this paper. We let k = a1 = p1 =
−q = 1 and and τ1 = 0 in (9) and (10).

Theorem 2. Let R(z) be as in (1) with d > 0 and assume that (3) holds. For n ≥ 1, let

Tn = (tr−s)
n
r,s=1 and Sn = (αr−s)

n
r,s=1, where

∑∞

`=−∞ t`z
` is the expansion of R(z) that

converges on an open annulus containing the unit circle |z| = 1 and
∑∞

`=−∞
α`z

` is an arbitrary

member of E(R). Let h and M be as in (4) and (5). Then

σi(Sn) ≤ M, 1 ≤ i ≤ n − 2d, n > 2d, (20)

and

lim
n→∞

1

n

n−2d
∑

i=1

F (σi(Sn)) =
1

2π

∫ π

−π

F (|h(θ)|) dθ (21)

for every F in C[0, M ].
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Proof From (13) and (14) with A and B replaced by Tn and Sn,

σi(Sn) ≤ σi+2d(Tn), 1 ≤ i ≤ n − 2d, n > 2d.

Since the singular values of {Tn}
∞
n=1 are all in [0, M ], this implies (20).

If F ∈ C[0, M ], define

G(x) = F (min(x, M)), 0 ≤ x < ∞. (22)

Then G ∈ F , so Theorem 1 implies that

lim
n→∞

1

n

n
∑

i=1

|G(σi(Sn)) − G(σi(Tn))| = 0.

This and (6) imply that

lim
n→∞

1

n

n
∑

i=1

G(σi(Sn)) =
1

2π

∫ π

−π

F (|h(θ)|) dθ. (23)

However, from (20) and (22),

n
∑

i=1

G(σi(Sn)) =

n−2d
∑

i=1

F (σi(Sn)) +

n
∑

i=n−2d+1

G(σi(Sn)).

Since G is bounded on [0,∞), this and (23) imply (21).
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